Surfaces in Heisenberg groups and quantitative rectifiability

Robert Young New York University

June 2024

cims.nyu.edu/~ryoung/slides/slidesGMT.pdf
R.Y. was supported by NSF grants DMS 1612061 and 2005609.

The Heisenberg groups

Let $n \geq 1$. Let $H_n \subset M_{n+2}$ be the (2n+1)-dimensional nilpotent Lie group

$$H_n = \left\{ \begin{pmatrix} 1 & x_1 & \dots & x_n & z \\ & 1 & & y_1 \\ & \ddots & & \vdots \\ & & & 1 & y_n \\ & & & & 1 \end{pmatrix} : x_i, y_i, z \in \mathbb{R} \right\}$$

with Lie algebra

$$\mathfrak{h}_n = \langle X_1, \dots, X_n, Y_1, \dots, Y_n, Z :$$

 $[X_i, Y_i] = Z$, all other pairs commute \rangle .

 H_1 has a lattice

$$\langle X, Y, Z : [X, Y] = Z,$$

all other pairs commute \rangle .

 H_1 has a lattice

 $\langle X, Y, Z : [X, Y] = Z,$ all other pairs commute \rangle .

 $Z = X Y X^{-1} Y^{-1}$

 H_1 has a lattice

 $\langle X, Y, Z : [X, Y] = Z,$ all other pairs commute \rangle .

 $Z = X Y X^{-1} Y^{-1}$

$$Z^4 = X^2 Y^2 X^{-2} Y^{-2}$$

 H_1 has a lattice

 $\langle X, Y, Z : [X, Y] = Z,$ all other pairs commute \rangle .

 $Z = X Y X^{-1} Y^{-1}$

- $Z^4 = X^2 Y^2 X^{-2} Y^{-2}$
- $Z^{n^2} = X^n Y^n X^{-n} Y^{-n}$

From Cayley graph to sub-riemannian metric

d(u, v) = inf{ℓ(γ) | γ is a horizontal curve from u to v}

From Cayley graph to sub-riemannian metric

- d(u, v) = inf{ℓ(γ) | γ is a horizontal curve from u to v}
- The map s_t(x, y, z) = (tx, ty, t²z) scales the metric

From Cayley graph to sub-riemannian metric

- d(u, v) = inf{ℓ(γ) | γ is a horizontal curve from u to v}
- The map s_t(x, y, z) = (tx, ty, t²z) scales the metric
- So H_n has topological dimension 2n + 1 but Hausdorff dimension 2n + 2

Symmetries of H_n

The unitary group U(n) acts on H_n by isometries

Symmetries of H_n

- The unitary group U(n) acts on H_n by isometries
- Any one-parameter horizontal subgroup is a line. We call these horizontal lines.

Today: Surfaces in H_n

Today: Surfaces in H_n

- Surfaces in H_n behave differently when n = 1 and $n \ge 2$
- **\triangleright** This stems from the geometry of vertical planes in H_n

Today: Surfaces in H_n

- Surfaces in H_n behave differently when n = 1 and $n \ge 2$
- This stems from the geometry of vertical planes in H_n
- Because of the different geometry, we can use different techniques to study surfaces in H_n and H₁.

Vertical planes

A vertical plane is a codimension-1 plane parallel to the Z-axis.

▶ When n = 1, up to isometry, this is $\langle Y, Z \rangle \cong \mathbb{R} \times \mathbb{R}$ with the parabolic metric

$$d((y_1, z_1), (y_2, z_2)) \approx |y_1 - y_2| + \sqrt{|z_1 - z_2|}$$

Vertical planes

A vertical plane is a codimension-1 plane parallel to the Z-axis.

▶ When n = 1, up to isometry, this is $\langle Y, Z \rangle \cong \mathbb{R} \times \mathbb{R}$ with the parabolic metric

$$d((y_1, z_1), (y_2, z_2)) \approx |y_1 - y_2| + \sqrt{|z_1 - z_2|}$$

• When n > 1, up to isometry, this is

$$\langle Y_1 \rangle \times \langle X_2, \ldots, X_n, Y_2, \ldots, Y_n, Z \rangle \cong \mathbb{R} \times H_{n-1}$$

with the product metric.

Vertical planes

A vertical plane is a codimension-1 plane parallel to the Z-axis.

▶ When n = 1, up to isometry, this is $\langle Y, Z \rangle \cong \mathbb{R} \times \mathbb{R}$ with the parabolic metric

$$d((y_1, z_1), (y_2, z_2)) \approx |y_1 - y_2| + \sqrt{|z_1 - z_2|}$$

• When n > 1, up to isometry, this is

$$\langle Y_1 \rangle \times \langle X_2, \ldots, X_n, Y_2, \ldots, Y_n, Z \rangle \cong \mathbb{R} \times H_{n-1}$$

with the product metric.

When n > 1, this is horizontally connected, when n = 1, this is horizontally disconnected.

Smooth surfaces in H_n

Let $\Sigma \subset H_n$ be a smooth surface in H_n .

• At every $p \in \Sigma$, Σ has a Euclidean tangent plane $P_p^{\mathbb{R}}$.

Smooth surfaces in H_n

Let $\Sigma \subset H_n$ be a smooth surface in H_n .

- At every $p \in \Sigma$, Σ has a Euclidean tangent plane $P_p^{\mathbb{R}}$.
- If P^ℝ_p is the horizontal plane at p, we say that p is a characteristic point. Since the horizontal distribution is nonintegrable, these points are rare.

Smooth surfaces in H_n

Let $\Sigma \subset H_n$ be a smooth surface in H_n .

- At every $p \in \Sigma$, Σ has a Euclidean tangent plane $P_p^{\mathbb{R}}$.
- If P^ℝ_p is the horizontal plane at p, we say that p is a characteristic point. Since the horizontal distribution is nonintegrable, these points are rare.
- Otherwise, $s_t(p^{-1}P_p^{\mathbb{R}})$ converges to a vertical plane as $t \to \infty$, which we call the *(intrinsic) tangent plane* P_p .

Tangent planes in H_1

A horizontal plane through the origin

Tangent planes in H_1

A Pansu bubble set

Horizontal mean curvature

If $\Sigma \subset H_1$ is smooth and has no characteristic points, then the first variation of area is determined by *horizontal mean curvature*, the curvature of the projection of its horizontal curves to the *xy*-plane:

Horizontal curves are lines, $H_{\text{horiz}} = 0.$

Horizontal mean curvature

If $\Sigma \subset H_1$ is smooth and has no characteristic points, then the first variation of area is determined by *horizontal mean curvature*, the curvature of the projection of its horizontal curves to the *xy*-plane:

Horizontal curves are lines, $H_{\text{horiz}} = 0.$

Horizontal curves project to circles, H_{horiz} is constant.

Herringbone surface (Pauls)

Branched singularity (Ritoré)

From above

Minimal surface with boundary

Minimal surface with boundary

Is this minimizing?

Open question: are all area-minimizing sets in H_1 like this?

Intrinsic graphs

Let X_n^t be the 1-parameter subgroup generated by X_n . Let $x_n : H_n \to \mathbb{R}$ be the x_n -coordinate function.

For $f: V_0 = \{x_n = 0\} \rightarrow \mathbb{R}$, we define the *intrinsic* graph of f as

$$\Gamma_f = \{ v X_n^{f(v)} : v \in V_0 \}.$$

Intrinsic graphs

Let X_n^t be the 1-parameter subgroup generated by X_n . Let $x_n : H_n \to \mathbb{R}$ be the x_n -coordinate function.

For $f: V_0 = \{x_n = 0\} \rightarrow \mathbb{R}$, we define the *intrinsic* graph of f as

$$\Gamma_f = \{vX_n^{f(v)} : v \in V_0\}.$$

For $g: V_0 \to \mathbb{R}$, we define the *horizontal gradient of* g by

$$\nabla_f g = (X_1g,\ldots,X_{n-1}g,Y_1g,\ldots,Y_{n-1}g,(Y_n+fZ)g),$$

where X_i, Y_i, Z are the left-invariant fields generating \mathfrak{h}_n .

Intrinsic graphs

Let X_n^t be the 1-parameter subgroup generated by X_n . Let $x_n : H_n \to \mathbb{R}$ be the x_n -coordinate function.

For $f: V_0 = \{x_n = 0\} \rightarrow \mathbb{R}$, we define the *intrinsic* graph of f as

$$\Gamma_f = \{ v X_n^{f(v)} : v \in V_0 \}.$$

For $g: V_0 \to \mathbb{R}$, we define the *horizontal gradient of g* by

$$\nabla_f g = (X_1g,\ldots,X_{n-1}g,Y_1g,\ldots,Y_{n-1}g,(Y_n+fZ)g),$$

where X_i, Y_i, Z are the left-invariant fields generating \mathfrak{h}_n . If f is smooth, then $\nabla_f f$ gives the slope of the tangent plane to Γ_f . An intrinsic graph Γ_f is an *intrinsic Lipschitz graph* if there is an 0 < L < 1 such that for all $p, q \in \Gamma_f$,

 $|x_n(p)-x_n(q)| \leq Ld(p,q).$

An intrinsic graph Γ_f is an *intrinsic Lipschitz graph* if there is an 0 < L < 1 such that for all $p, q \in \Gamma_f$,

$$|x_n(p)-x_n(q)| \leq Ld(p,q).$$

Theorem (Bigolin–Caravenna–Serra Cassano)

 Γ_f is an intrinsic Lipschitz graph if and only if $\nabla_f f$ (defined distributionally) is L_{∞} .

An intrinsic Lipschitz graph

Differentiability of intrinsic Lipschitz graphs

Theorem (Franchi-Serapioni-Serra Cassano)

A set is rectifiable if and only if it can be covered by intrinsic Lipschitz graphs up to a set of measure zero.

Differentiability of intrinsic Lipschitz graphs

Theorem (Franchi-Serapioni-Serra Cassano)

A set is rectifiable if and only if it can be covered by intrinsic Lipschitz graphs up to a set of measure zero.

Theorem (Franchi-Serapioni-Serra Cassano)

Let Γ be an intrinsic Lipschitz graph. Then Γ has a tangent plane at almost every point, i.e., for almost every $x \in \Gamma$, there is a vertical plane P such that

$$\lim_{r\to 0} r^{-1} d_{Haus}(P \cap B(x,r), \Gamma \cap B(x,r)) = 0.$$

Differentiability of intrinsic Lipschitz graphs

Theorem (Franchi-Serapioni-Serra Cassano)

A set is rectifiable if and only if it can be covered by intrinsic Lipschitz graphs up to a set of measure zero.

Theorem (Franchi-Serapioni-Serra Cassano)

Let Γ be an intrinsic Lipschitz graph. Then Γ has a tangent plane at almost every point, i.e., for almost every $x \in \Gamma$, there is a vertical plane P such that

$$\lim_{r\to 0} r^{-1} d_{Haus}(P \cap B(x,r), \Gamma \cap B(x,r)) = 0.$$

Today: Can we quantify this? How fast does this limit converge?

Intrinsic Lipschitz graphs in H_n are flatter than graphs in H_1 !

Intrinsic Lipschitz graphs in H_n are flatter than graphs in H_1 ! We measure how flat Γ is near x by

$$\beta_{\Gamma}(x,r) = \inf_{P} r^{-1} \oint_{\Gamma \cap B(x,r)} d(y,P) \, dy.$$

Intrinsic Lipschitz graphs in H_n are flatter than graphs in H_1 ! We measure how flat Γ is near x by

$$\beta_{\Gamma}(x,r) = \inf_{P} r^{-1} \oint_{\Gamma \cap B(x,r)} d(y,P) \, dy.$$

Theorem (Chousionis–Li–Y.) Let $\Gamma \subset H_n$ be L–intrinsic Lipschitz. For $x_0 \in \Gamma$,

$$\int_0^1 \int_{B(x_0,1)} \beta_{\Gamma}(x,r)^p \ dx \ \frac{dr}{r} \lesssim_L 1$$

where p = 2 if $n \ge 2$ and p = 4 if n = 1. This inequality is sharp.

Intrinsic Lipschitz graphs in H_n are flatter than graphs in H_1 ! We measure how flat Γ is near x by

$$\beta_{\Gamma}(x,r) = \inf_{P} r^{-1} \oint_{\Gamma \cap B(x,r)} d(y,P) \, dy.$$

Theorem (Chousionis–Li–Y.) Let $\Gamma \subset H_n$ be L–intrinsic Lipschitz. For $x_0 \in \Gamma$,

$$\int_0^1 \int_{B(x_0,1)} \beta_{\Gamma}(x,r)^p \ dx \ \frac{dr}{r} \lesssim_L 1,$$

where p = 2 if $n \ge 2$ and p = 4 if n = 1. This inequality is sharp. We say that Γ is close to a plane at most points and most scales. We can compare the theorem to a theorem of Dorronsoro:

Theorem (Dorronsoro)

Let L > 0. If $\Gamma \subset \mathbb{R}^n$ is an L–Lipschitz graph, then for $x_0 \in \Gamma$,

$$\int_0^1 \int_{B(x_0,1)} \beta_{\Gamma}(x,r)^2 \ dx \ \frac{dr}{r} \lesssim_L 1.$$

We can compare the theorem to a theorem of Dorronsoro:

Theorem (Dorronsoro) Let L > 0. If $\Gamma \subset \mathbb{R}^n$ is an L-Lipschitz graph, then for $x_0 \in \Gamma$,

$$\int_0^1 \int_{B(x_0,1)} \beta_{\Gamma}(x,r)^2 \, dx \, \frac{dr}{r} \lesssim_L 1.$$

So intrinsic Lipschitz graphs in H_n are about as rough as Lipschitz graphs in \mathbb{R}^n , intrinsic Lipschitz graphs in H_1 are rougher.

Proof outline

We need two different proofs for the two cases:

Proof outline

We need two different proofs for the two cases:

When n ≥ 2, we slice Γ along vertical planes and apply a version of Dorronsoro to each slice.

Proof outline

We need two different proofs for the two cases:

- When n ≥ 2, we slice Γ along vertical planes and apply a version of Dorronsoro to each slice.
- ▶ When n = 1, we study graphs in H₁ by studying the horizontal foliation.

Let $f: V_0 \to \mathbb{R}$ and let $\Gamma = \Gamma_f$. Then $V_0 \cong H_{n-1} \times \mathbb{R}$.

Let $f: V_0 \to \mathbb{R}$ and let $\Gamma = \Gamma_f$. Then $V_0 \cong H_{n-1} \times \mathbb{R}$. For $t \in \mathbb{R}$, let $H_{n-1} \times \{t\} = V_0 \cap \{y_n = t\}$ and let $\Gamma_{f,t} = \Gamma_f \cap \{y_n = t\}$.

Let $f: V_0 \to \mathbb{R}$ and let $\Gamma = \Gamma_f$. Then $V_0 \cong H_{n-1} \times \mathbb{R}$. For $t \in \mathbb{R}$, let $H_{n-1} \times \{t\} = V_0 \cap \{y_n = t\}$ and let $\Gamma_{f,t} = \Gamma_f \cap \{y_n = t\}$. Then $\Gamma_{f,t} \subset \{y_n = t\} \cong H_{n-1} \times \mathbb{R}$ is the graph of $f|_{H_{n-1} \times \{t\}}$.

Let $f: V_0 \to \mathbb{R}$ and let $\Gamma = \Gamma_f$. Then $V_0 \cong H_{n-1} \times \mathbb{R}$. For $t \in \mathbb{R}$, let $H_{n-1} \times \{t\} = V_0 \cap \{y_n = t\}$ and let $\Gamma_{f,t} = \Gamma_f \cap \{y_n = t\}$. Then $\Gamma_{f,t} \subset \{y_n = t\} \cong H_{n-1} \times \mathbb{R}$ is the graph of $f|_{H_{n-1} \times \{t\}}$. The derivatives of f are bounded, so $f|_{H_{n-1} \times \{t\}}$ is Lipschitz (in the

usual sense)

Let $f: V_0 \to \mathbb{R}$ and let $\Gamma = \Gamma_f$. Then $V_0 \cong H_{n-1} \times \mathbb{R}$. For $t \in \mathbb{R}$, let $H_{n-1} \times \{t\} = V_0 \cap \{y_n = t\}$ and let $\Gamma_{f,t} = \Gamma_f \cap \{y_n = t\}$. Then $\Gamma_{f,t} \subset \{y_n = t\} \cong H_{n-1} \times \mathbb{R}$ is the graph of $f|_{H_{n-1} \times \{t\}}$. The derivatives of f are bounded, so $f|_{H_{n-1} \times \{t\}}$ is Lipschitz (in the usual sense) and $\Gamma_{f,t}$ is the graph of a Lipschitz function on a copy of H_{n-1} .

Let $f: V_0 \to \mathbb{R}$ and let $\Gamma = \Gamma_f$. Then $V_0 \cong H_{n-1} \times \mathbb{R}$. For $t \in \mathbb{R}$, let $H_{n-1} \times \{t\} = V_0 \cap \{y_n = t\}$ and let $\Gamma_{f,t} = \Gamma_f \cap \{y_n = t\}$. Then $\Gamma_{f,t} \subset \{y_n = t\} \cong H_{n-1} \times \mathbb{R}$ is the graph of $f|_{H_{n-1} \times \{t\}}$. The derivatives of f are bounded, so $f|_{H_{n-1} \times \{t\}}$ is Lipschitz (in the usual sense) and $\Gamma_{f,t}$ is the graph of a Lipschitz function on a copy of H_{n-1} .

Theorem (Fässler–Orponen)

For any $n \ge 1$, let $\Gamma \subset H_n \times \mathbb{R}$ be the graph of a Lipschitz function $g: H_n \to \mathbb{R}$. For $x_0 \in \Gamma$,

$$\int_0^1 \int_{B(x_0,1)} \beta_{\Gamma}(x,r)^2 \, dx \, \frac{dr}{r} \lesssim_L 1.$$

Let $f: V_0 \to \mathbb{R}$ and let $\Gamma = \Gamma_f$. Then $V_0 \cong H_{n-1} \times \mathbb{R}$. For $t \in \mathbb{R}$, let $H_{n-1} \times \{t\} = V_0 \cap \{y_n = t\}$ and let $\Gamma_{f,t} = \Gamma_f \cap \{y_n = t\}$. Then $\Gamma_{f,t} \subset \{y_n = t\} \cong H_{n-1} \times \mathbb{R}$ is the graph of $f|_{H_{n-1} \times \{t\}}$. The derivatives of f are bounded, so $f|_{H_{n-1} \times \{t\}}$ is Lipschitz (in the usual sense) and $\Gamma_{f,t}$ is the graph of a Lipschitz function on a copy of H_{n-1} .

Theorem (Fässler–Orponen)

For any $n \ge 1$, let $\Gamma \subset H_n \times \mathbb{R}$ be the graph of a Lipschitz function $g: H_n \to \mathbb{R}$. For $x_0 \in \Gamma$,

$$\int_0^1 \int_{B(x_0,1)} \beta_{\Gamma}(x,r)^2 \ dx \ \frac{dr}{r} \lesssim_L 1.$$

We repeat this with different planes to get the full inequality.

H₁: Horizontal curves

Lemma

Let f be intrinsic Lipschitz. If γ is an integral curve of the vector field $\nabla_f = Y + fZ$, then the graph

$$\tilde{\gamma}(t) = \gamma(t) X^{f(\gamma(t))}$$

is a horizontal curve in Γ_f . We call γ a characteristic curve.

Intrinsic Lipschitz graphs might not have unique integral curves:

Herringbone surface

Any foliation with bounded second derivative corresponds to an intrinsic Lipschitz graph:

Any foliation with bounded second derivative corresponds to an intrinsic Lipschitz graph:

Any foliation with bounded second derivative corresponds to an intrinsic Lipschitz graph:

Any foliation with bounded second derivative corresponds to an intrinsic Lipschitz graph:

If we make the $\frac{\text{width}}{\text{height}}$ ratio large enough, we can perturb the plane by ϵ but only add ϵ^4 area. If we do this ϵ^{-4} times, we get a surface that makes the inequality sharp.

 H_1 : Upper bound - foliated corona decompositions

Theorem (Naor-Y.)

Any intrinsic Lipschitz graph has a foliated corona decomposition: we can cut V_0 along vertical lines and characteristic curves to get quadrilaterals satisfying certain bounds.

We analyze this decomposition to prove the inequality.

When n ≥ 2, H_n is big enough that we can analyze surfaces by slicing

- When n ≥ 2, H_n is big enough that we can analyze surfaces by slicing
- In H₁, slicing doesn't work, but we can analyze foliations of surfaces

- When n ≥ 2, H_n is big enough that we can analyze surfaces by slicing
- In H₁, slicing doesn't work, but we can analyze foliations of surfaces
- Different groups lead to different geometry!

- When n ≥ 2, H_n is big enough that we can analyze surfaces by slicing
- In H₁, slicing doesn't work, but we can analyze foliations of surfaces
- Different groups lead to different geometry!

Further questions:

What about surfaces of higher codimension?

- When n ≥ 2, H_n is big enough that we can analyze surfaces by slicing
- In H₁, slicing doesn't work, but we can analyze foliations of surfaces
- Different groups lead to different geometry!

Further questions:

- What about surfaces of higher codimension?
- Can we classify the intrinsic Lipschitz graphs that are area-minimizing?

- When n ≥ 2, H_n is big enough that we can analyze surfaces by slicing
- In H₁, slicing doesn't work, but we can analyze foliations of surfaces
- Different groups lead to different geometry!

Further questions:

- What about surfaces of higher codimension?
- Can we classify the intrinsic Lipschitz graphs that are area-minimizing?
- We can construct minimal surfaces with a wide variety of singularities in H₁, but H_n seems much more limited. Are minimal surfaces different in H₁ and H_n?