# Surfaces in Heisenberg groups and quantitative rectifiability 

Robert Young<br>New York University

June 2024

cims.nyu.edu/~ryoung/slides/slidesGMT.pdf
R.Y. was supported by NSF grants DMS 1612061 and 2005609.

## The Heisenberg groups

Let $n \geq 1$. Let $H_{n} \subset M_{n+2}$ be the $(2 n+1)$-dimensional nilpotent Lie group

$$
H_{n}=\left\{\left(\begin{array}{ccccc}
1 & x_{1} & \ldots & x_{n} & z \\
& 1 & & & y_{1} \\
& & \ddots & & \vdots \\
& & & 1 & y_{n} \\
& & & & 1
\end{array}\right): x_{i}, y_{i}, z \in \mathbb{R}\right\}
$$

with Lie algebra

$$
\begin{aligned}
& \mathfrak{h}_{n}=\left\langle X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}, Z:\right. \\
& \left.\quad\left[X_{i}, Y_{i}\right]=Z, \text { all other pairs commute }\right\rangle .
\end{aligned}
$$

## A lattice in H


$H_{1}$ has a lattice
$\langle X, Y, Z:[X, Y]=Z$,
all other pairs commute $\rangle$.

## A lattice in $H$


$H_{1}$ has a lattice
$\langle X, Y, Z:[X, Y]=Z$,
all other pairs commute $\rangle$.

$$
Z=X Y X^{-1} Y^{-1}
$$

## A lattice in H


$H_{1}$ has a lattice
$\langle X, Y, Z:[X, Y]=Z$,
all other pairs commute $\rangle$.

$$
\begin{gathered}
Z=X Y X^{-1} Y^{-1} \\
Z^{4}=X^{2} Y^{2} X^{-2} Y^{-2}
\end{gathered}
$$

## A lattice in $H$


$H_{1}$ has a lattice
$\langle X, Y, Z:[X, Y]=Z$,
all other pairs commute $\rangle.$

$$
\begin{aligned}
Z & =X Y X^{-1} Y^{-1} \\
Z^{4} & =X^{2} Y^{2} X^{-2} Y^{-2} \\
Z^{n^{2}} & =X^{n} Y^{n} X^{-n} Y^{-n}
\end{aligned}
$$

From Cayley graph to sub-riemannian metric


- $d(u, v)=\inf \{\ell(\gamma) \mid \gamma$ is a horizontal curve from $u$ to $v\}$

From Cayley graph to sub-riemannian metric


- $d(u, v)=\inf \{\ell(\gamma) \mid \gamma$ is a horizontal curve from $u$ to $v$ \}
- The map
$s_{t}(x, y, z)=\left(t x, t y, t^{2} z\right)$ scales the metric

From Cayley graph to sub-riemannian metric


- $d(u, v)=\inf \{\ell(\gamma) \mid \gamma$ is a horizontal curve from $u$ to $v$ \}
- The map
$s_{t}(x, y, z)=\left(t x, t y, t^{2} z\right)$ scales the metric
- So $H_{n}$ has topological dimension $2 n+1$ but Hausdorff dimension $2 n+2$


## Symmetries of $H_{n}$



- The unitary group $U(n)$ acts on $H_{n}$ by isometries


## Symmetries of $H_{n}$



- The unitary group $U(n)$ acts on $H_{n}$ by isometries
- Any one-parameter horizontal subgroup is a line. We call these horizontal lines.


## Today: Surfaces in $H_{n}$

- Surfaces in $H_{n}$ behave differently when $n=1$ and $n \geq 2$


## Today: Surfaces in $H_{n}$

- Surfaces in $H_{n}$ behave differently when $n=1$ and $n \geq 2$
- This stems from the geometry of vertical planes in $H_{n}$


## Today: Surfaces in $H_{n}$

- Surfaces in $H_{n}$ behave differently when $n=1$ and $n \geq 2$
- This stems from the geometry of vertical planes in $H_{n}$
- Because of the different geometry, we can use different techniques to study surfaces in $H_{n}$ and $H_{1}$.


## Vertical planes

A vertical plane is a codimension-1 plane parallel to the $Z$-axis.

- When $n=1$, up to isometry, this is $\langle Y, Z\rangle \cong \mathbb{R} \times \mathbb{R}$ with the parabolic metric

$$
d\left(\left(y_{1}, z_{1}\right),\left(y_{2}, z_{2}\right)\right) \approx\left|y_{1}-y_{2}\right|+\sqrt{\left|z_{1}-z_{2}\right|}
$$

## Vertical planes

A vertical plane is a codimension-1 plane parallel to the $Z$-axis.

- When $n=1$, up to isometry, this is $\langle Y, Z\rangle \cong \mathbb{R} \times \mathbb{R}$ with the parabolic metric

$$
d\left(\left(y_{1}, z_{1}\right),\left(y_{2}, z_{2}\right)\right) \approx\left|y_{1}-y_{2}\right|+\sqrt{\left|z_{1}-z_{2}\right|}
$$

- When $n>1$, up to isometry, this is

$$
\left\langle Y_{1}\right\rangle \times\left\langle X_{2}, \ldots, X_{n}, Y_{2}, \ldots, Y_{n}, Z\right\rangle \cong \mathbb{R} \times H_{n-1}
$$

with the product metric.

## Vertical planes

A vertical plane is a codimension-1 plane parallel to the $Z$-axis.

- When $n=1$, up to isometry, this is $\langle Y, Z\rangle \cong \mathbb{R} \times \mathbb{R}$ with the parabolic metric

$$
d\left(\left(y_{1}, z_{1}\right),\left(y_{2}, z_{2}\right)\right) \approx\left|y_{1}-y_{2}\right|+\sqrt{\left|z_{1}-z_{2}\right|}
$$

- When $n>1$, up to isometry, this is

$$
\left\langle Y_{1}\right\rangle \times\left\langle X_{2}, \ldots, X_{n}, Y_{2}, \ldots, Y_{n}, Z\right\rangle \cong \mathbb{R} \times H_{n-1}
$$

with the product metric.

- When $n>1$, this is horizontally connected, when $n=1$, this is horizontally disconnected.


## Smooth surfaces in $H_{n}$

Let $\Sigma \subset H_{n}$ be a smooth surface in $H_{n}$.

- At every $p \in \Sigma, \Sigma$ has a Euclidean tangent plane $P_{p}^{\mathbb{R}}$.


## Smooth surfaces in $H_{n}$

Let $\Sigma \subset H_{n}$ be a smooth surface in $H_{n}$.

- At every $p \in \Sigma, \Sigma$ has a Euclidean tangent plane $P_{p}^{\mathbb{R}}$.
- If $P_{p}^{\mathbb{R}}$ is the horizontal plane at $p$, we say that $p$ is a characteristic point. Since the horizontal distribution is nonintegrable, these points are rare.


## Smooth surfaces in $H_{n}$

Let $\Sigma \subset H_{n}$ be a smooth surface in $H_{n}$.

- At every $p \in \Sigma, \Sigma$ has a Euclidean tangent plane $P_{p}^{\mathbb{R}}$.
- If $P_{p}^{\mathbb{R}}$ is the horizontal plane at $p$, we say that $p$ is a characteristic point. Since the horizontal distribution is nonintegrable, these points are rare.
- Otherwise, $s_{t}\left(p^{-1} P_{p}^{\mathbb{R}}\right)$ converges to a vertical plane as $t \rightarrow \infty$, which we call the (intrinsic) tangent plane $P_{p}$.


## Tangent planes in $H_{1}$



A horizontal plane through the origin

## Tangent planes in $H_{1}$



A Pansu bubble set

## Horizontal mean curvature

If $\Sigma \subset H_{1}$ is smooth and has no characteristic points, then the first variation of area is determined by horizontal mean curvature, the curvature of the projection of its horizontal curves to the $x y$-plane:


Horizontal curves are lines, $H_{\text {horiz }}=0$.

## Horizontal mean curvature

If $\Sigma \subset H_{1}$ is smooth and has no characteristic points, then the first variation of area is determined by horizontal mean curvature, the curvature of the projection of its horizontal curves to the $x y$-plane:


Horizontal curves are lines, $H_{\text {horiz }}=0$.


Horizontal curves project to circles, $H_{\text {horiz }}$ is constant.

## Some minimal surfaces in $H_{1}$



Herringbone surface (Pauls)

## Some minimal surfaces in $H_{1}$



Branched singularity (Ritoré)


From above

## Some minimal surfaces in $H_{1}$



Minimal surface with boundary

## Some minimal surfaces in $H_{1}$



Minimal surface with boundary

## Some minimal surfaces in $H_{1}$



Is this minimizing?

## Some minimal surfaces in $H_{1}$



## Some minimal surfaces in $H_{1}$



Open question: are all area-minimizing sets in $H_{1}$ like this?

## Intrinsic graphs



Let $X_{n}^{t}$ be the 1-parameter subgroup generated by $X_{n}$. Let $x_{n}: H_{n} \rightarrow \mathbb{R}$ be the $x_{n}$-coordinate function.

For $f: V_{0}=\left\{x_{n}=0\right\} \rightarrow \mathbb{R}$, we define the intrinsic graph of $f$ as

$$
\Gamma_{f}=\left\{v X_{n}^{f(v)}: v \in V_{0}\right\}
$$

## Intrinsic graphs



Let $X_{n}^{t}$ be the 1-parameter subgroup generated by $X_{n}$. Let $x_{n}: H_{n} \rightarrow \mathbb{R}$ be the $x_{n}$-coordinate function. For $f: V_{0}=\left\{x_{n}=0\right\} \rightarrow \mathbb{R}$, we define the intrinsic graph of $f$ as

$$
\Gamma_{f}=\left\{v X_{n}^{f(v)}: v \in V_{0}\right\} .
$$

For $g: V_{0} \rightarrow \mathbb{R}$, we define the horizontal gradient of $g$ by

$$
\nabla_{f} g=\left(X_{1} g, \ldots, X_{n-1} g, Y_{1} g, \ldots, Y_{n-1} g,\left(Y_{n}+f Z\right) g\right),
$$

where $X_{i}, Y_{i}, Z$ are the left-invariant fields generating $\mathfrak{h}_{n}$.

## Intrinsic graphs



Let $X_{n}^{t}$ be the 1-parameter subgroup generated by $X_{n}$. Let $x_{n}: H_{n} \rightarrow \mathbb{R}$ be the $x_{n}$-coordinate function. For $f: V_{0}=\left\{x_{n}=0\right\} \rightarrow \mathbb{R}$, we define the intrinsic graph of $f$ as

$$
\Gamma_{f}=\left\{v X_{n}^{f(v)}: v \in V_{0}\right\} .
$$

For $g: V_{0} \rightarrow \mathbb{R}$, we define the horizontal gradient of $g$ by

$$
\nabla_{f} g=\left(X_{1} g, \ldots, X_{n-1} g, Y_{1} g, \ldots, Y_{n-1} g,\left(Y_{n}+f Z\right) g\right),
$$

where $X_{i}, Y_{i}, Z$ are the left-invariant fields generating $\mathfrak{h}_{n}$. If $f$ is smooth, then $\nabla_{f} f$ gives the slope of the tangent plane to $\Gamma_{f}$.

## Intrinsic Lipschitz graphs

An intrinsic graph $\Gamma_{f}$ is an intrinsic Lipschitz graph if there is an $0<L<1$ such that for all $p, q \in \Gamma_{f}$,

$$
\left|x_{n}(p)-x_{n}(q)\right| \leq L d(p, q)
$$

## Intrinsic Lipschitz graphs

An intrinsic graph $\Gamma_{f}$ is an intrinsic Lipschitz graph if there is an $0<L<1$ such that for all $p, q \in \Gamma_{f}$,

$$
\left|x_{n}(p)-x_{n}(q)\right| \leq L d(p, q)
$$

Theorem (Bigolin-Caravenna-Serra Cassano)
$\Gamma_{f}$ is an intrinsic Lipschitz graph if and only if $\nabla_{f} f$ (defined distributionally) is $L_{\infty}$.

## An intrinsic Lipschitz graph



## Differentiability of intrinsic Lipschitz graphs

Theorem (Franchi-Serapioni-Serra Cassano)
A set is rectifiable if and only if it can be covered by intrinsic Lipschitz graphs up to a set of measure zero.

## Differentiability of intrinsic Lipschitz graphs

Theorem (Franchi-Serapioni-Serra Cassano)
A set is rectifiable if and only if it can be covered by intrinsic Lipschitz graphs up to a set of measure zero.

Theorem (Franchi-Serapioni-Serra Cassano)
Let $\Gamma$ be an intrinsic Lipschitz graph. Then $\Gamma$ has a tangent plane at almost every point, i.e., for almost every $x \in \Gamma$, there is a vertical plane $P$ such that

$$
\lim _{r \rightarrow 0} r^{-1} d_{\text {Haus }}(P \cap B(x, r), \Gamma \cap B(x, r))=0
$$

## Differentiability of intrinsic Lipschitz graphs

Theorem (Franchi-Serapioni-Serra Cassano)
A set is rectifiable if and only if it can be covered by intrinsic Lipschitz graphs up to a set of measure zero.

Theorem (Franchi-Serapioni-Serra Cassano)
Let $\Gamma$ be an intrinsic Lipschitz graph. Then $\Gamma$ has a tangent plane at almost every point, i.e., for almost every $x \in \Gamma$, there is a vertical plane $P$ such that

$$
\lim _{r \rightarrow 0} r^{-1} d_{\text {Haus }}(P \cap B(x, r), \Gamma \cap B(x, r))=0
$$

Today: Can we quantify this? How fast does this limit converge?

## Quantitative differentiability

Intrinsic Lipschitz graphs in $H_{n}$ are flatter than graphs in $H_{1}$ !

## Quantitative differentiability

Intrinsic Lipschitz graphs in $H_{n}$ are flatter than graphs in $H_{1}$ ! We measure how flat $\Gamma$ is near $x$ by

$$
\beta_{\Gamma}(x, r)=\inf _{P} r^{-1} f_{\Gamma \cap B(x, r)} d(y, P) d y
$$

## Quantitative differentiability

Intrinsic Lipschitz graphs in $H_{n}$ are flatter than graphs in $H_{1}$ !
We measure how flat $\Gamma$ is near $x$ by

$$
\beta_{\Gamma}(x, r)=\inf _{P} r^{-1} f_{\Gamma \cap B(x, r)} d(y, P) d y
$$

Theorem (Chousionis-Li-Y.)
Let $\Gamma \subset H_{n}$ be L-intrinsic Lipschitz. For $x_{0} \in \Gamma$,

$$
\int_{0}^{1} \int_{B\left(x_{0}, 1\right)} \beta_{\Gamma}(x, r)^{p} d x \frac{d r}{r} \lesssim L 1
$$

where $p=2$ if $n \geq 2$ and $p=4$ if $n=1$. This inequality is sharp.

## Quantitative differentiability

Intrinsic Lipschitz graphs in $H_{n}$ are flatter than graphs in $H_{1}$ ! We measure how flat $\Gamma$ is near $x$ by

$$
\beta_{\Gamma}(x, r)=\inf _{P} r^{-1} f_{\Gamma \cap B(x, r)} d(y, P) d y
$$

Theorem (Chousionis-Li-Y.)
Let $\Gamma \subset H_{n}$ be L-intrinsic Lipschitz. For $x_{0} \in \Gamma$,

$$
\int_{0}^{1} \int_{B\left(x_{0}, 1\right)} \beta_{\Gamma}(x, r)^{p} d x \frac{d r}{r} \lesssim L 1
$$

where $p=2$ if $n \geq 2$ and $p=4$ if $n=1$. This inequality is sharp.
We say that $\Gamma$ is close to a plane at most points and most scales.

We can compare the theorem to a theorem of Dorronsoro:
Theorem (Dorronsoro)
Let $L>0$. If $\Gamma \subset \mathbb{R}^{n}$ is an L-Lipschitz graph, then for $x_{0} \in \Gamma$,

$$
\int_{0}^{1} \int_{B\left(x_{0}, 1\right)} \beta_{\Gamma}(x, r)^{2} d x \frac{d r}{r} \lesssim L 1
$$

We can compare the theorem to a theorem of Dorronsoro:
Theorem (Dorronsoro)
Let $L>0$. If $\Gamma \subset \mathbb{R}^{n}$ is an L-Lipschitz graph, then for $x_{0} \in \Gamma$,

$$
\int_{0}^{1} \int_{B\left(x_{0}, 1\right)} \beta_{\Gamma}(x, r)^{2} d x \frac{d r}{r} \lesssim L 1
$$

So intrinsic Lipschitz graphs in $H_{n}$ are about as rough as Lipschitz graphs in $\mathbb{R}^{n}$, intrinsic Lipschitz graphs in $H_{1}$ are rougher.

## Proof outline

We need two different proofs for the two cases:

## Proof outline

We need two different proofs for the two cases:

- When $n \geq 2$, we slice $\Gamma$ along vertical planes and apply a version of Dorronsoro to each slice.


## Proof outline

We need two different proofs for the two cases:

- When $n \geq 2$, we slice 「 along vertical planes and apply a version of Dorronsoro to each slice.
- When $n=1$, we study graphs in $H_{1}$ by studying the horizontal foliation.


## $H_{n}$ : Slicing

Let $f: V_{0} \rightarrow \mathbb{R}$ and let $\Gamma=\Gamma_{f}$. Then $V_{0} \cong H_{n-1} \times \mathbb{R}$.

## $H_{n}$ : Slicing

Let $f: V_{0} \rightarrow \mathbb{R}$ and let $\Gamma=\Gamma_{f}$. Then $V_{0} \cong H_{n-1} \times \mathbb{R}$. For $t \in \mathbb{R}$, let $H_{n-1} \times\{t\}=V_{0} \cap\left\{y_{n}=t\right\}$ and let $\Gamma_{f, t}=\Gamma_{f} \cap\left\{y_{n}=t\right\}$.

## $H_{n}$ : Slicing

Let $f: V_{0} \rightarrow \mathbb{R}$ and let $\Gamma=\Gamma_{f}$. Then $V_{0} \cong H_{n-1} \times \mathbb{R}$. For $t \in \mathbb{R}$, let $H_{n-1} \times\{t\}=V_{0} \cap\left\{y_{n}=t\right\}$ and let $\Gamma_{f, t}=\Gamma_{f} \cap\left\{y_{n}=t\right\}$.
Then $\Gamma_{f, t} \subset\left\{y_{n}=t\right\} \cong H_{n-1} \times \mathbb{R}$ is the graph of $\left.f\right|_{H_{n-1} \times\{t\}}$.

## $H_{n}$ : Slicing

Let $f: V_{0} \rightarrow \mathbb{R}$ and let $\Gamma=\Gamma_{f}$. Then $V_{0} \cong H_{n-1} \times \mathbb{R}$. For $t \in \mathbb{R}$, let $H_{n-1} \times\{t\}=V_{0} \cap\left\{y_{n}=t\right\}$ and let $\Gamma_{f, t}=\Gamma_{f} \cap\left\{y_{n}=t\right\}$.
Then $\Gamma_{f, t} \subset\left\{y_{n}=t\right\} \cong H_{n-1} \times \mathbb{R}$ is the graph of $\left.f\right|_{H_{n-1} \times\{t\}}$. The derivatives of $f$ are bounded, so $\left.f\right|_{H_{n-1} \times\{t\}}$ is Lipschitz (in the usual sense)

## $H_{n}$ : Slicing

Let $f: V_{0} \rightarrow \mathbb{R}$ and let $\Gamma=\Gamma_{f}$. Then $V_{0} \cong H_{n-1} \times \mathbb{R}$. For $t \in \mathbb{R}$, let $H_{n-1} \times\{t\}=V_{0} \cap\left\{y_{n}=t\right\}$ and let $\Gamma_{f, t}=\Gamma_{f} \cap\left\{y_{n}=t\right\}$.

Then $\Gamma_{f, t} \subset\left\{y_{n}=t\right\} \cong H_{n-1} \times \mathbb{R}$ is the graph of $\left.f\right|_{H_{n-1} \times\{t\}}$. The derivatives of $f$ are bounded, so $\left.f\right|_{H_{n-1} \times\{t\}}$ is Lipschitz (in the usual sense) and $\Gamma_{f, t}$ is the graph of a Lipschitz function on a copy of $H_{n-1}$.

## $H_{n}$ : Slicing

Let $f: V_{0} \rightarrow \mathbb{R}$ and let $\Gamma=\Gamma_{f}$. Then $V_{0} \cong H_{n-1} \times \mathbb{R}$. For $t \in \mathbb{R}$, let $H_{n-1} \times\{t\}=V_{0} \cap\left\{y_{n}=t\right\}$ and let $\Gamma_{f, t}=\Gamma_{f} \cap\left\{y_{n}=t\right\}$.
Then $\Gamma_{f, t} \subset\left\{y_{n}=t\right\} \cong H_{n-1} \times \mathbb{R}$ is the graph of $\left.f\right|_{H_{n-1} \times\{t\}}$. The derivatives of $f$ are bounded, so $\left.f\right|_{H_{n-1} \times\{t\}}$ is Lipschitz (in the usual sense) and $\Gamma_{f, t}$ is the graph of a Lipschitz function on a copy of $H_{n-1}$.

## Theorem (Fässler-Orponen)

For any $n \geq 1$, let $\Gamma \subset H_{n} \times \mathbb{R}$ be the graph of a Lipschitz function $g: H_{n} \rightarrow \mathbb{R}$. For $x_{0} \in \Gamma$,

$$
\int_{0}^{1} \int_{B\left(x_{0}, 1\right)} \beta_{\Gamma}(x, r)^{2} d x \frac{d r}{r} \lesssim L 1
$$

## $H_{n}$ : Slicing

Let $f: V_{0} \rightarrow \mathbb{R}$ and let $\Gamma=\Gamma_{f}$. Then $V_{0} \cong H_{n-1} \times \mathbb{R}$. For $t \in \mathbb{R}$, let $H_{n-1} \times\{t\}=V_{0} \cap\left\{y_{n}=t\right\}$ and let $\Gamma_{f, t}=\Gamma_{f} \cap\left\{y_{n}=t\right\}$.
Then $\Gamma_{f, t} \subset\left\{y_{n}=t\right\} \cong H_{n-1} \times \mathbb{R}$ is the graph of $\left.f\right|_{H_{n-1} \times\{t\}}$. The derivatives of $f$ are bounded, so $\left.f\right|_{H_{n-1} \times\{t\}}$ is Lipschitz (in the usual sense) and $\Gamma_{f, t}$ is the graph of a Lipschitz function on a copy of $H_{n-1}$.

## Theorem (Fässler-Orponen)

For any $n \geq 1$, let $\Gamma \subset H_{n} \times \mathbb{R}$ be the graph of a Lipschitz function $g: H_{n} \rightarrow \mathbb{R}$. For $x_{0} \in \Gamma$,

$$
\int_{0}^{1} \int_{B\left(x_{0}, 1\right)} \beta_{\Gamma}(x, r)^{2} d x \frac{d r}{r} \lesssim L 1
$$

We repeat this with different planes to get the full inequality.

## $H_{1}$ : Horizontal curves

## Lemma

Let $f$ be intrinsic Lipschitz. If $\gamma$ is an integral curve of the vector field $\nabla_{f}=Y+f Z$, then the graph

$$
\tilde{\gamma}(t)=\gamma(t) X^{f(\gamma(t))}
$$

is a horizontal curve in $\Gamma_{f}$. We call $\gamma$ a characteristic curve.
$H_{1}$ : Characteristic curves
Any smooth intrinsic graph induces a foliation of $V_{0}$ :

$H_{1}$ : Characteristic curves
Any smooth intrinsic graph induces a foliation of $V_{0}$ :

$H_{1}$ : Characteristic curves
Any smooth intrinsic graph induces a foliation of $V_{0}$ :

$H_{1}$ : Characteristic curves
Any smooth intrinsic graph induces a foliation of $V_{0}$ :

$H_{1}$ : Characteristic curves
Any smooth intrinsic graph induces a foliation of $V_{0}$ :



## $H_{1}$ : Characteristic curves

Intrinsic Lipschitz graphs might not have unique integral curves:


## $H_{1}$ : Lower bound - constructing a bumpy surface

Any foliation with bounded second derivative corresponds to an intrinsic Lipschitz graph:


## $H_{1}$ : Lower bound - constructing a bumpy surface

Any foliation with bounded second derivative corresponds to an intrinsic Lipschitz graph:


## $H_{1}$ : Lower bound - constructing a bumpy surface

Any foliation with bounded second derivative corresponds to an intrinsic Lipschitz graph:


## $H_{1}$ : Lower bound - constructing a bumpy surface

Any foliation with bounded second derivative corresponds to an intrinsic Lipschitz graph:


If we make the $\frac{\text { width }}{\text { height }}$ ratio large enough, we can perturb the plane by $\epsilon$ but only add $\epsilon^{4}$ area. If we do this $\epsilon^{-4}$ times, we get a surface that makes the inequality sharp.

## $H_{1}$ : Upper bound - foliated corona decompositions

Theorem (Naor-Y.)
Any intrinsic Lipschitz graph has a foliated corona decomposition: we can cut $V_{0}$ along vertical lines and characteristic curves to get quadrilaterals satisfying certain bounds.


We analyze this decomposition to prove the inequality.

## Takeaway:

- When $n \geq 2, H_{n}$ is big enough that we can analyze surfaces by slicing


## Takeaway:

- When $n \geq 2, H_{n}$ is big enough that we can analyze surfaces by slicing
- In $H_{1}$, slicing doesn't work, but we can analyze foliations of surfaces


## Takeaway:

- When $n \geq 2, H_{n}$ is big enough that we can analyze surfaces by slicing
- In $H_{1}$, slicing doesn't work, but we can analyze foliations of surfaces
- Different groups lead to different geometry!


## Takeaway:

- When $n \geq 2, H_{n}$ is big enough that we can analyze surfaces by slicing
- In $H_{1}$, slicing doesn't work, but we can analyze foliations of surfaces
- Different groups lead to different geometry!

Further questions:

- What about surfaces of higher codimension?


## Takeaway:

- When $n \geq 2, H_{n}$ is big enough that we can analyze surfaces by slicing
- In $H_{1}$, slicing doesn't work, but we can analyze foliations of surfaces
- Different groups lead to different geometry!


## Further questions:

- What about surfaces of higher codimension?
- Can we classify the intrinsic Lipschitz graphs that are area-minimizing?


## Takeaway:

- When $n \geq 2, H_{n}$ is big enough that we can analyze surfaces by slicing
- In $H_{1}$, slicing doesn't work, but we can analyze foliations of surfaces
- Different groups lead to different geometry!


## Further questions:

- What about surfaces of higher codimension?
- Can we classify the intrinsic Lipschitz graphs that are area-minimizing?
- We can construct minimal surfaces with a wide variety of singularities in $H_{1}$, but $H_{n}$ seems much more limited. Are minimal surfaces different in $H_{1}$ and $H_{n}$ ?

