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The Heisenberg groups

Let n > 1. Let H, C Mp2 be the (2n + 1)-dimensional nilpotent
Lie group
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with Lie algebra

hn: <X17--'7Xn7 Yl,...,yn,Z:
[Xi, Yi] = Z, all other pairs commute).
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Symmetries of H,
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Symmetries of H,

\/

» The unitary group U(n)
acts on H, by isometries

» Any one-parameter
horizontal subgroup is a
line. We call these
horizontal lines.
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» Surfaces in H, behave differently when n=1 and n > 2
» This stems from the geometry of vertical planes in H,

» Because of the different geometry, we can use different
techniques to study surfaces in H, and Hs.



Vertical planes

A vertical plane is a codimension—1 plane parallel to the Z-axis.

» When n =1, up to isometry, thisis (Y, Z) 2 R x R with the
parabolic metric

d((y1,21), (2, 22)) = [y1 — yo| + V|21 — 22|



Vertical planes

A vertical plane is a codimension—1 plane parallel to the Z-axis.

» When n =1, up to isometry, thisis (Y, Z) 2 R x R with the
parabolic metric

d((y1,21), (2, 22)) = [y1 — yo| + V|21 — 22|

» When n > 1, up to isometry, this is
<Y1> X <)<2,...,)<,,7 YQ,...,Y,,,Z> ~2 R x Hn—l

with the product metric.



Vertical planes

A vertical plane is a codimension—1 plane parallel to the Z-axis.

» When n =1, up to isometry, thisis (Y, Z) 2 R x R with the
parabolic metric

d((y1,21), (y2, 2)) = Iy1 — y2| + V|21 — 2|
» When n > 1, up to isometry, this is
<Y1> X <)<2,...,)<,,7 YQ,...,Y,,,Z> ~2 R x Hn—l

with the product metric.

» When n > 1, this is horizontally connected, when n =1, this
is horizontally disconnected.
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Smooth surfaces in H,

Let ¥ C H, be a smooth surface in H,.
> At every p € ¥, ¥ has a Euclidean tangent plane PE.

> If Plﬂf is the horizontal plane at p, we say that p is a
characteristic point. Since the horizontal distribution is
nonintegrable, these points are rare.

» Otherwise, st(p_lP,[;R) converges to a vertical plane as
t — oo, which we call the (intrinsic) tangent plane P,,.



Tangent planes in H;

A horizontal plane through the origin



Tangent planes in H;

A Pansu bubble set



Horizontal mean curvature

If X C H; is smooth and has no characteristic points, then the first
variation of area is determined by horizontal mean curvature, the
curvature of the projection of its horizontal curves to the xy—plane:

Horizontal curves are lines,
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Horizontal mean curvature

If X C H; is smooth and has no characteristic points, then the first
variation of area is determined by horizontal mean curvature, the
curvature of the projection of its horizontal curves to the xy—plane:

Horizontal curves are lines, Horizontal curves project to
Hhoriz = 0. circles, Hhoriz is constant.
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Some minimal surfaces in H;

Branched singularity (Ritoré) From above
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Some minimal surfaces in H;
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Some minimal surfaces in H;

Is this minimizing? Smaller area

Open question: are all area-minimizing sets in Hy like this?
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Intrinsic graphs

Let X! be the 1-parameter subgroup generated
,‘ by X,. Let x, : H, — R be the x,—coordinate
function.

For f : Vo = {x, = 0} — R, we define the intrinsic
graph of f as

Me={vwX/ v e v

For g : Vo — R, we define the horizontal gradient of g by
Vig=(X1g,.. ., Xn-18, Y18, .-, Y18, (Yn + 2)g),

where X;, Y;, Z are the left-invariant fields generating b,.
If f is smooth, then V¢f gives the slope of the tangent plane to I'f.
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Intrinsic Lipschitz graphs

An intrinsic graph ¢ is an intrinsic Lipschitz graph if there is an
0 < L < 1 such that for all p,qg € Iy,

Ixa(p) — xn(q)| < Ld(p, q).

Theorem (Bigolin—Caravenna—Serra Cassano)

['¢ is an intrinsic Lipschitz graph if and only if V¢f (defined
distributionally) is L.



An intrinsic Lipschitz graph




Differentiability of intrinsic Lipschitz graphs
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Differentiability of intrinsic Lipschitz graphs

Theorem (Franchi—Serapioni—Serra Cassano)

A set is rectifiable if and only if it can be covered by intrinsic
Lipschitz graphs up to a set of measure zero.

Theorem (Franchi—Serapioni—Serra Cassano)

Let T be an intrinsic Lipschitz graph. Then I has a tangent plane
at almost every point, i.e., for almost every x € I', there is a
vertical plane P such that

Im‘b rildHaus(P N B(Xa r)7 rn B(X7 r)) =0.
r—

Today: Can we quantify this? How fast does this limit converge?
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Intrinsic Lipschitz graphs in H,, are flatter than graphs in H;!
We measure how flat I is near x by
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Theorem (Chousionis—Li-Y.)
Let I C H, be L—intrinsic Lipschitz. For xg €T,

1
/ / ﬂr(X, I’)p dX ﬂ rSL 1,
0 JB(x,1) r

where p=2ifn>2 and p =4 if n=1. This inequality is sharp.

We say that [ is close to a plane at most points and most scales.
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We can compare the theorem to a theorem of Dorronsoro:

Theorem (Dorronsoro)
Let L> 0. IfT C R" is an L-Lipschitz graph, then for xg € T,

1
/ / Br(x, r)? dx dr S L
0 JB(x,1) r

So intrinsic Lipschitz graphs in H,, are about as rough as Lipschitz
graphs in R”, intrinsic Lipschitz graphs in H; are rougher.



Proof outline

We need two different proofs for the two cases:



Proof outline

We need two different proofs for the two cases:

» When n > 2, we slice ' along vertical planes and apply a
version of Dorronsoro to each slice.



Proof outline

We need two different proofs for the two cases:

» When n > 2, we slice ' along vertical planes and apply a
version of Dorronsoro to each slice.

» When n =1, we study graphs in H; by studying the horizontal
foliation.
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Let f:Vg—Randletl =Tf. Then Vo =2 H,—1 xR. Fort € R,
let Hoo1 x {t} =Von{ya=t}and let ¢, =TrN{y, =t}
Then I'ry C {yn = t} = Hy_1 x Riis the graph of [y, (. The
derivatives of f are bounded, so f|H,,_1><{t} is Lipschitz (in the

usual sense) and I¢ ¢ is the graph of a Lipschitz function on a copy
of H,,,l.

Theorem (Fassler—Orponen)

Forany n>1, let T C H, xR be the graph of a Lipschitz function
g:H,—=R. Forxgerl,

1
/ / /Br(X, r)2 dx ﬂ SL 1.
0 JB(x,1) r

We repeat this with different planes to get the full inequality.



H;: Horizontal curves

Lemma
Let f be intrinsic Lipschitz. If v is an integral curve of the vector
field V¢ =Y + fZ, then the graph

7(t) = 7 (t)X 0

is a horizontal curve in I'r. We call v a characteristic curve.



H;: Characteristic curves

Any smooth intrinsic graph induces a foliation of Vj:
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H;: Characteristic curves

Any smooth intrinsic graph induces a foliation of Vj:
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H: Lower bound - constructing a bumpy surface

Any foliation with bounded second derivative corresponds to an
intrinsic Lipschitz graph:

width

If we make the

height ratio large enough, we can perturb the plane

by € but only add €* area. If we do this e* times, we get a surface
that makes the inequality sharp.



H: Upper bound - foliated corona decompositions

Theorem (Naor-Y.)

Any intrinsic Lipschitz graph has a foliated corona decomposition:
we can cut Vg along vertical lines and characteristic curves to get
quadrilaterals satisfying certain bounds.
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We analyze this decomposition to prove the inequality.
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Takeaway:

» When n > 2, H, is big enough that we can analyze surfaces
by slicing

» In Hi, slicing doesn't work, but we can analyze foliations of
surfaces

» Different groups lead to different geometry!

Further questions:

» What about surfaces of higher codimension?

» Can we classify the intrinsic Lipschitz graphs that are
area-minimizing?

> We can construct minimal surfaces with a wide variety of

singularities in Hy, but H, seems much more limited. Are
minimal surfaces different in H; and H,?



