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The Heisenberg groups

Let n ≥ 1. Let Hn ⊂ Mn+2 be the (2n + 1)–dimensional nilpotent
Lie group

Hn =




1 x1 . . . xn z

1 y1
. . .

...
1 yn

1

 : xi , yi , z ∈ R


with Lie algebra

hn = ⟨X1, . . . ,Xn,Y1, . . . ,Yn,Z :

[Xi ,Yi ] = Z , all other pairs commute⟩.



A lattice in H

H1 has a lattice

⟨X ,Y ,Z : [X ,Y ] = Z ,

all other pairs commute⟩.

Z = XYX−1Y−1

Z 4 = X 2Y 2X−2Y−2

Zn2 = X nY nX−nY−n
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From Cayley graph to sub-riemannian metric

▶ d(u, v) = inf{ℓ(γ) | γ is a
horizontal curve from u to
v}

▶ The map
st(x , y , z) = (tx , ty , t2z)
scales the metric

▶ So Hn has topological
dimension 2n + 1 but
Hausdorff dimension 2n + 2
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Symmetries of Hn

▶ The unitary group U(n)
acts on Hn by isometries

▶ Any one-parameter
horizontal subgroup is a
line. We call these
horizontal lines.
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Today: Surfaces in Hn

▶ Surfaces in Hn behave differently when n = 1 and n ≥ 2

▶ This stems from the geometry of vertical planes in Hn

▶ Because of the different geometry, we can use different
techniques to study surfaces in Hn and H1.
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Vertical planes

A vertical plane is a codimension–1 plane parallel to the Z–axis.

▶ When n = 1, up to isometry, this is ⟨Y ,Z ⟩ ∼= R× R with the
parabolic metric

d((y1, z1), (y2, z2)) ≈ |y1 − y2|+
√
|z1 − z2|

▶ When n > 1, up to isometry, this is

⟨Y1⟩ × ⟨X2, . . . ,Xn,Y2, . . . ,Yn,Z ⟩ ∼= R× Hn−1

with the product metric.

▶ When n > 1, this is horizontally connected, when n = 1, this
is horizontally disconnected.



Vertical planes

A vertical plane is a codimension–1 plane parallel to the Z–axis.

▶ When n = 1, up to isometry, this is ⟨Y ,Z ⟩ ∼= R× R with the
parabolic metric

d((y1, z1), (y2, z2)) ≈ |y1 − y2|+
√
|z1 − z2|

▶ When n > 1, up to isometry, this is

⟨Y1⟩ × ⟨X2, . . . ,Xn,Y2, . . . ,Yn,Z ⟩ ∼= R× Hn−1

with the product metric.

▶ When n > 1, this is horizontally connected, when n = 1, this
is horizontally disconnected.



Vertical planes

A vertical plane is a codimension–1 plane parallel to the Z–axis.

▶ When n = 1, up to isometry, this is ⟨Y ,Z ⟩ ∼= R× R with the
parabolic metric

d((y1, z1), (y2, z2)) ≈ |y1 − y2|+
√
|z1 − z2|

▶ When n > 1, up to isometry, this is

⟨Y1⟩ × ⟨X2, . . . ,Xn,Y2, . . . ,Yn,Z ⟩ ∼= R× Hn−1

with the product metric.

▶ When n > 1, this is horizontally connected, when n = 1, this
is horizontally disconnected.



Smooth surfaces in Hn

Let Σ ⊂ Hn be a smooth surface in Hn.

▶ At every p ∈ Σ, Σ has a Euclidean tangent plane PR
p .

▶ If PR
p is the horizontal plane at p, we say that p is a

characteristic point. Since the horizontal distribution is
nonintegrable, these points are rare.

▶ Otherwise, st(p
−1PR

p ) converges to a vertical plane as
t → ∞, which we call the (intrinsic) tangent plane Pp.
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Tangent planes in H1

A horizontal plane through the origin



Tangent planes in H1

A Pansu bubble set



Horizontal mean curvature

If Σ ⊂ H1 is smooth and has no characteristic points, then the first
variation of area is determined by horizontal mean curvature, the
curvature of the projection of its horizontal curves to the xy–plane:

Horizontal curves are lines,
Hhoriz = 0.

Horizontal curves project to
circles, Hhoriz is constant.
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Some minimal surfaces in H1

Herringbone surface (Pauls)
From above



Some minimal surfaces in H1

Branched singularity (Ritoré) From above



Some minimal surfaces in H1

Minimal surface with boundary

From above



Some minimal surfaces in H1

Minimal surface with boundary



Some minimal surfaces in H1

Is this minimizing?

Smaller area

Open question: are all area-minimizing sets in H1 like this?
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Intrinsic graphs

Let X t
n be the 1–parameter subgroup generated

by Xn. Let xn : Hn → R be the xn–coordinate
function.

For f : V0 = {xn = 0} → R, we define the intrinsic
graph of f as

Γf = {vX f (v)
n : v ∈ V0}.

For g : V0 → R, we define the horizontal gradient of g by

∇f g = (X1g , . . . ,Xn−1g ,Y1g , . . . ,Yn−1g , (Yn + fZ )g),

where Xi ,Yi ,Z are the left-invariant fields generating hn.
If f is smooth, then ∇f f gives the slope of the tangent plane to Γf .
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Intrinsic Lipschitz graphs

An intrinsic graph Γf is an intrinsic Lipschitz graph if there is an
0 < L < 1 such that for all p, q ∈ Γf ,

|xn(p)− xn(q)| ≤ Ld(p, q).

Theorem (Bigolin–Caravenna–Serra Cassano)

Γf is an intrinsic Lipschitz graph if and only if ∇f f (defined
distributionally) is L∞.
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An intrinsic Lipschitz graph



Differentiability of intrinsic Lipschitz graphs

Theorem (Franchi–Serapioni–Serra Cassano)

A set is rectifiable if and only if it can be covered by intrinsic
Lipschitz graphs up to a set of measure zero.

Theorem (Franchi–Serapioni–Serra Cassano)

Let Γ be an intrinsic Lipschitz graph. Then Γ has a tangent plane
at almost every point, i.e., for almost every x ∈ Γ, there is a
vertical plane P such that

lim
r→0

r−1dHaus(P ∩ B(x , r), Γ ∩ B(x , r)) = 0.

Today: Can we quantify this? How fast does this limit converge?
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Quantitative differentiability

Intrinsic Lipschitz graphs in Hn are flatter than graphs in H1!

We measure how flat Γ is near x by

βΓ(x , r) = inf
P

r−1

 
Γ∩B(x ,r)

d(y ,P) dy .

Theorem (Chousionis–Li–Y.)

Let Γ ⊂ Hn be L–intrinsic Lipschitz. For x0 ∈ Γ,

ˆ 1

0

ˆ
B(x0,1)

βΓ(x , r)
p dx

dr

r
≲L 1,

where p = 2 if n ≥ 2 and p = 4 if n = 1. This inequality is sharp.

We say that Γ is close to a plane at most points and most scales.
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We can compare the theorem to a theorem of Dorronsoro:

Theorem (Dorronsoro)

Let L > 0. If Γ ⊂ Rn is an L–Lipschitz graph, then for x0 ∈ Γ,

ˆ 1

0

ˆ
B(x0,1)

βΓ(x , r)
2 dx

dr

r
≲L 1.

So intrinsic Lipschitz graphs in Hn are about as rough as Lipschitz
graphs in Rn, intrinsic Lipschitz graphs in H1 are rougher.
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Proof outline

We need two different proofs for the two cases:

▶ When n ≥ 2, we slice Γ along vertical planes and apply a
version of Dorronsoro to each slice.

▶ When n = 1, we study graphs in H1 by studying the horizontal
foliation.
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Hn: Slicing

Let f : V0 → R and let Γ = Γf . Then V0
∼= Hn−1 × R.

For t ∈ R,
let Hn−1 × {t} = V0 ∩ {yn = t} and let Γf ,t = Γf ∩ {yn = t}.

Then Γf ,t ⊂ {yn = t} ∼= Hn−1 × R is the graph of f |Hn−1×{t}. The
derivatives of f are bounded, so f |Hn−1×{t} is Lipschitz (in the
usual sense) and Γf ,t is the graph of a Lipschitz function on a copy
of Hn−1.

Theorem (Fässler–Orponen)

For any n ≥ 1, let Γ ⊂ Hn ×R be the graph of a Lipschitz function
g : Hn → R. For x0 ∈ Γ,

ˆ 1

0

ˆ
B(x0,1)

βΓ(x , r)
2 dx

dr

r
≲L 1.

We repeat this with different planes to get the full inequality.
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H1: Horizontal curves

Lemma
Let f be intrinsic Lipschitz. If γ is an integral curve of the vector
field ∇f = Y + fZ , then the graph

γ̃(t) = γ(t)X f (γ(t))

is a horizontal curve in Γf . We call γ a characteristic curve.
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H1: Characteristic curves
Intrinsic Lipschitz graphs might not have unique integral curves:

Herringbone surface
Characteristic curves



H1: Lower bound - constructing a bumpy surface

Any foliation with bounded second derivative corresponds to an
intrinsic Lipschitz graph:

If we make the width
height ratio large enough, we can perturb the plane

by ϵ but only add ϵ4 area. If we do this ϵ−4 times, we get a surface
that makes the inequality sharp.
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H1: Upper bound - foliated corona decompositions

Theorem (Naor–Y.)

Any intrinsic Lipschitz graph has a foliated corona decomposition:
we can cut V0 along vertical lines and characteristic curves to get
quadrilaterals satisfying certain bounds.

We analyze this decomposition to prove the inequality.



Takeaway:

▶ When n ≥ 2, Hn is big enough that we can analyze surfaces
by slicing

▶ In H1, slicing doesn’t work, but we can analyze foliations of
surfaces

▶ Different groups lead to different geometry!

Further questions:

▶ What about surfaces of higher codimension?

▶ Can we classify the intrinsic Lipschitz graphs that are
area-minimizing?

▶ We can construct minimal surfaces with a wide variety of
singularities in H1, but Hn seems much more limited. Are
minimal surfaces different in H1 and Hn?
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