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Filling multiples of embedded curves

If T is an integral 1-cycle (i.e., union of oriented closed curves) in
Rn, let FA(T ) (filling area) be the minimal area of an integral
2-chain with boundary T .

How is FA(T ) related to FA(2T )?
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(Federer, 1974)

I n = 4: There is a curve T ∈ R4 such that
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and let T be the sum of 2k + 1 loops in
alternating directions.
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L. C. Young’s example

I T can be filled with k
bands and one extra disc D

I FA(T ) ≈ areaK
2 + areaD

I 2T can be filled with
2k + 1 bands

I FA(2T ) ≈ areaK— less
than 2 FA(T ) by 2 areaD!
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The main theorem

Q: Is there a c > 0 such that FA(2T ) ≥ c FA(T )?

Theorem (Y.)

Yes! For any d, n, there is a c such that if T is a d-cycle in Rn,
then FA(2T ) ≥ c FA(T ).
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Corollaries

Let Fd(RN) be the set of integral flat chains in RN . Then:

I If k > 0 is a positive integer, the multiply-by-k map
f : Fd(RN)→ Fd(RN), f (T ) = kT is an embedding.

I If T is a mod-k current, then T ≡ TZ (mod k) for some
integral current TZ. Consequently, the set of mod-k currents
is a quotient of the integral currents.
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Proving the theorem in dimension 0

Strategy: If B is a filling of 2T , then “half of B” fills T .
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What does “half” mean?

Consider the mod-2 cycle B mod 2.
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“Half” of the Klein bottle

Let T be a cycle

and suppose that

∂B = 2T .

Then
∂B ≡ 0 (mod 2),

so B mod 2 is a cycle.
If P is an integral cycle such that
B ≡ P (mod 2) (a pseudo-orientation of B),
then

B + P ≡ 0 (mod 2)

∂
B + P

2
=

2T + 0

2
= T .

T
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The Klein bottle, again

filling of 2T

+

pseudo-orientation

= 2·

filling of T



Nonorientability

If A is a mod-2 cycle, define the nonorientability of A by

NO(A) = inf{massP | P is an integral cycle and P ≡ A (mod 2)}

This measures how hard it is to “lift” A to an integral cycle.

If ∂B = 2T , then

FV(T ) ≤ massB + NO(B mod 2)

2

So, to prove that FV(T ) . FV(2T ), it suffices to show:

Proposition

If A is a mod-2 d-cycle in Rn, then NO(A) . massA.
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Quantifying nonorientability

Proposition

If A is a mod-2 d-cycle in Rn, then NO(A) . massA.

Strategy:

I Find a mod-2 (d + 1)-chain such that A = ∂F , then lift F to
an integral chain FZ. Then P = ∂FZ is a pseudo-orientation
of A.

I Generally, F will be non-orientable. We will need to cut F
into orientable pieces to get FZ, and NO(A) measures how
much of F we need to cut.
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Codimension 1

If A is codimension 1, then A is the boundary of a top-dimensional
chain F :

→
F is orientable, so A is orientable and NO(A) = mass(A).
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A Klein bottle immersed in R3 has an inside and an outside
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so it is orientable!



Example: the immersed Klein bottle

A Klein bottle immersed in R3 has an inside and an outside

→

→

so it is orientable!



Example: the immersed Klein bottle

A Klein bottle immersed in R3 has an inside and an outside

→ →

so it is orientable!



Results in low codimension

Proposition

Every (n − 1)–cycle in Rn is orientable.

Corollary (Federer)

If T is an integral (n − 2)–cycle in Rn, then FV(2T ) = 2 FV(T ).

What about higher codimensions?
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A simple argument in high codimension

Let A be a mod-2 cellular d-cycle of mass V

I Fill A with a mod-2 chain F

I F is a sum of V (d+1)/d cubes, each with side length ∼ 1

I Orient the cubes at random to get FZ
I ∂FZ is a pseudo-orientation

I NO(A) . mass ∂FZ ∼ V (d+1)/d
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Bigger cubes

Total boundary: V (d+1)/d



Bigger cubes

Total boundary: V (d+1)/d Total boundary: much less
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Filling through approximations

Sketch:

I Approximate A at ∼ logV scales, then connect the
approximations.

I We use cubes with total boundary ∼ V at each scale.

I Since there are ∼ logV scales, we conclude:

Proposition (Guth-Y.)

If A is a cellular mod-2 cycle with volume V , then it has a
pseudo-orientation P such that massP . V logV .

Now we just need to get rid of the log factor!
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Getting rid of the log factor

I Choosing orientations randomly is wasteful when A is close to
a plane

I But what if A is never close to a plane?
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Dealing with fractals

How do we prove the proposition for sets that are close to fractals?

I Show that adding topological complexity adds extra area

I Prove the theorem when A has “low complexity”



Properties of “simple” sets

Definition
A set E ⊂ Rn is Ahlfors d-regular if for any x ∈ E and any
0 < r < diamE,

Hd(E ∩ B(x , r)) ∼ rd .

Definition
A set E ⊂ Rn is d-rectifiable if it can be covered by countably
many Lipschitz images of Rd .

But sets that are close to fractals can be regular, rectifiable, but
still very complicated!
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Uniform rectifiability

Definition (David-Semmes)

A set E ⊂ Rn is uniformly d-rectifiable if it is d-regular and there
is a c such that for all x ∈ E and 0 < r < diamE, there is a
c-Lipschitz map Bd(0, r)→ Rn which covers a 1/c-fraction of
B(x , r) ∩ E.

These sets are close to planes on “most” balls.
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Sketch of proof

Proposition

Every mod-2 cellular d-cycle A can be written as a sum

A =
∑
i

Ai

of mod-2 cellular d-cycles with uniformly rectifiable support such
that ∑

massAi ≤ C massA.

Proposition

Any mod-2 cellular d-cycle A with uniformly rectifiable support has
a pseudo-orientation P with

massP ≤ C massA.
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Open questions

I More generally,

FV(T ) ≥ ck
FV(kT )

k
.

Can the ck be chosen uniformly?

I What does this tell us about the geometry of surfaces
embedded in Rn by a bilipschitz map?
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