

Filling multiples of embedded curves and quantifying nonorientability

Robert Young
New York University

November 2015

Filling multiples of embedded curves

If T is an integral 1-cycle (i.e., union of oriented closed curves) in \mathbb{R}^n , let $\text{FA}(T)$ (*filling area*) be the minimal area of an integral 2-chain with boundary T .

Filling multiples of embedded curves

If T is an integral 1-cycle (i.e., union of oriented closed curves) in \mathbb{R}^n , let $\text{FA}(T)$ (*filling area*) be the minimal area of an integral 2-chain with boundary T .

How is $\text{FA}(T)$ related to $\text{FA}(2T)$?

How is $\text{FA}(T)$ related to $\text{FA}(2T)$?

For all T , $\text{FA}(2T) \leq 2 \text{FA}(T)$.

How is $\text{FA}(T)$ related to $\text{FA}(2T)$?

For all T , $\text{FA}(2T) \leq 2 \text{FA}(T)$.

- ▶ $n = 2$: If T is a curve in \mathbb{R}^2 , then $\text{FA}(2T) = 2 \text{FA}(T)$.

How is $\text{FA}(T)$ related to $\text{FA}(2T)$?

For all T , $\text{FA}(2T) \leq 2 \text{FA}(T)$.

- ▶ $n = 2$: If T is a curve in \mathbb{R}^2 , then $\text{FA}(2T) = 2 \text{FA}(T)$.
- ▶ $n = 3$: If T is a curve in \mathbb{R}^3 , then $\text{FA}(2T) = 2 \text{FA}(T)$.
(Federer, 1974)

How is $\text{FA}(T)$ related to $\text{FA}(2T)$?

For all T , $\text{FA}(2T) \leq 2 \text{FA}(T)$.

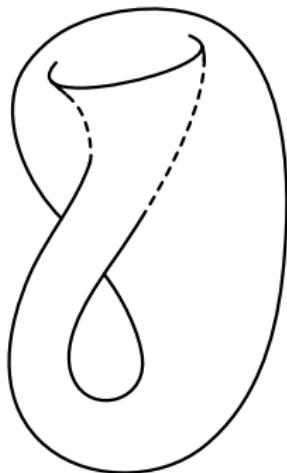
- ▶ $n = 2$: If T is a curve in \mathbb{R}^2 , then $\text{FA}(2T) = 2 \text{FA}(T)$.
- ▶ $n = 3$: If T is a curve in \mathbb{R}^3 , then $\text{FA}(2T) = 2 \text{FA}(T)$.
(Federer, 1974)
- ▶ $n = 4$: There is a curve $T \in \mathbb{R}^4$ such that

$$\text{FA}(2T) \leq 1.52 \text{FA}(T)$$

(L. C. Young, 1963)

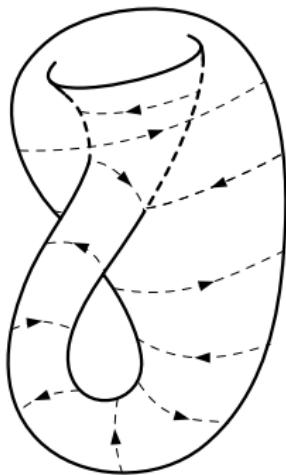
L. C. Young's example

Let K be a Klein bottle

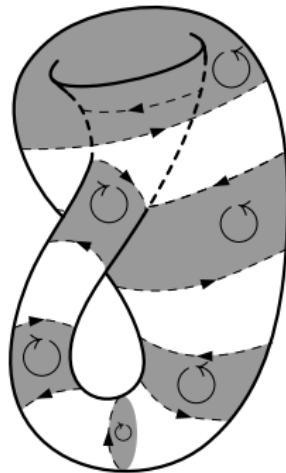


L. C. Young's example

Let K be a Klein bottle and let T be the sum of $2k + 1$ loops in alternating directions.

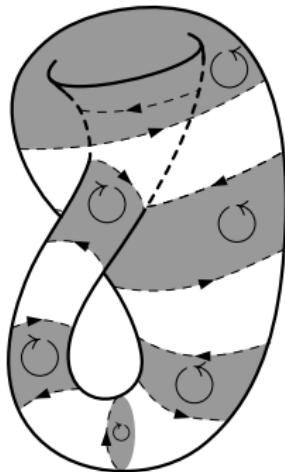
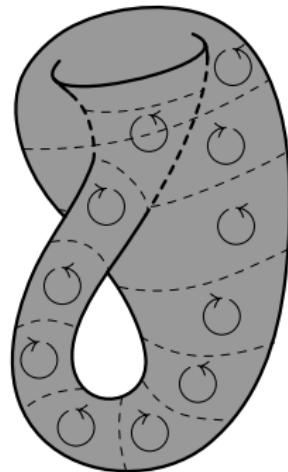


L. C. Young's example



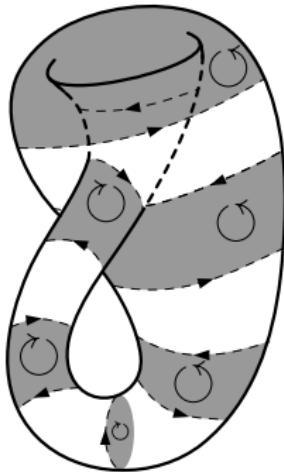
- ▶ T can be filled with k bands and one extra disc D
- ▶ $\text{FA}(T) \approx \frac{\text{area } K}{2} + \text{area } D$

L. C. Young's example

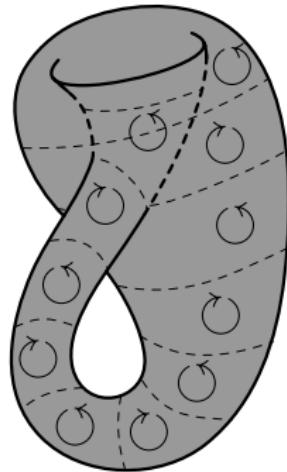


- ▶ T can be filled with k bands and one extra disc D
- ▶ $\text{FA}(T) \approx \frac{\text{area } K}{2} + \text{area } D$
- ▶ $2T$ can be filled with $2k+1$ bands
- ▶ $\text{FA}(2T) \approx \text{area } K$

L. C. Young's example



- ▶ T can be filled with k bands and one extra disc D
- ▶ $\text{FA}(T) \approx \frac{\text{area } K}{2} + \text{area } D$



- ▶ $2T$ can be filled with $2k + 1$ bands
- ▶ $\text{FA}(2T) \approx \text{area } K$ —less than $2 \text{FA}(T)$ by $2 \text{area } D$!

The main theorem

Q: Is there a $c > 0$ such that $\text{FA}(2T) \geq c \text{FA}(T)$?

The main theorem

Q: Is there a $c > 0$ such that $\text{FA}(2T) \geq c \text{FA}(T)$?

Theorem (Y.)

Yes! For any d, n , there is a c such that if T is a d -cycle in \mathbb{R}^n , then $\text{FA}(2T) \geq c \text{FA}(T)$.

Corollaries

Let $\mathcal{F}_d(\mathbb{R}^N)$ be the set of integral flat chains in \mathbb{R}^N . Then:

- ▶ If $k > 0$ is a positive integer, the multiply-by- k map $f : \mathcal{F}_d(\mathbb{R}^N) \rightarrow \mathcal{F}_d(\mathbb{R}^N)$, $f(T) = kT$ is an embedding.

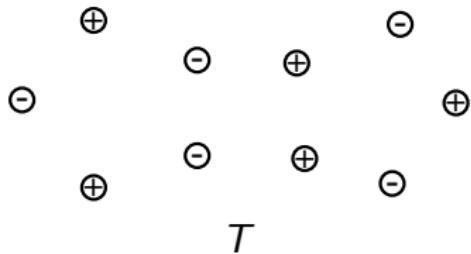
Corollaries

Let $\mathcal{F}_d(\mathbb{R}^N)$ be the set of integral flat chains in \mathbb{R}^N . Then:

- ▶ If $k > 0$ is a positive integer, the multiply-by- k map $f : \mathcal{F}_d(\mathbb{R}^N) \rightarrow \mathcal{F}_d(\mathbb{R}^N)$, $f(T) = kT$ is an embedding.
- ▶ If T is a mod- k current, then $T \equiv T_{\mathbb{Z}}$ (mod k) for some integral current $T_{\mathbb{Z}}$. Consequently, the set of mod- k currents is a quotient of the integral currents.

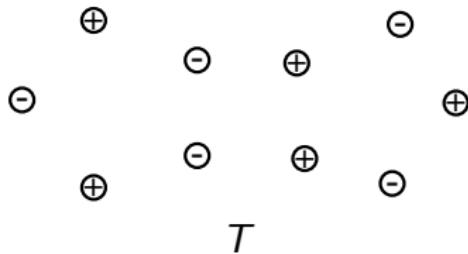
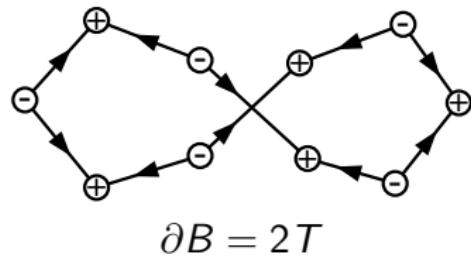
Proving the theorem in dimension 0

Strategy: If B is a filling of $2T$, then “half of B ” fills T .



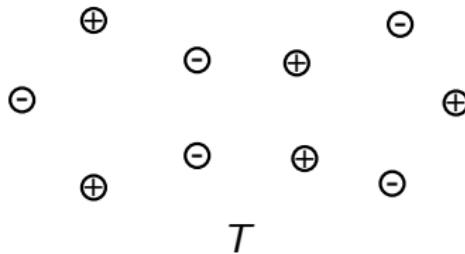
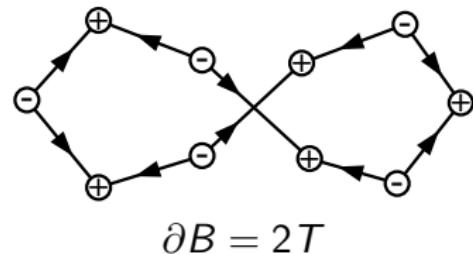
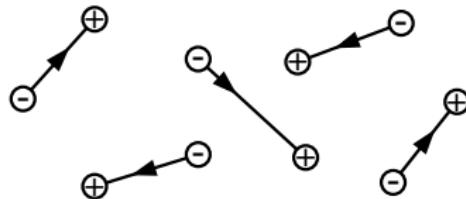
Proving the theorem in dimension 0

Strategy: If B is a filling of $2T$, then “half of B ” fills T .



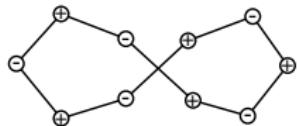
Proving the theorem in dimension 0

Strategy: If B is a filling of $2T$, then “half of B ” fills T .



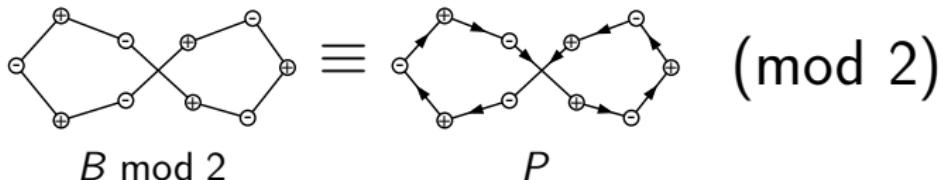
What does “half” mean?

Consider the mod-2 cycle $B \bmod 2$.



What does “half” mean?

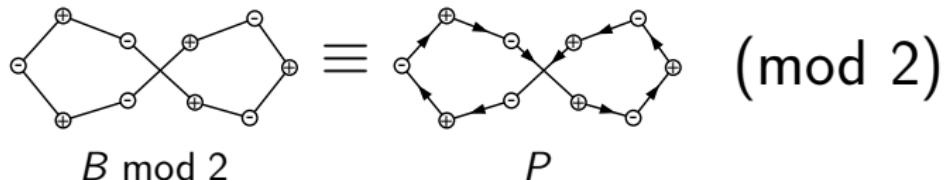
Consider the mod-2 cycle $B \bmod 2$.



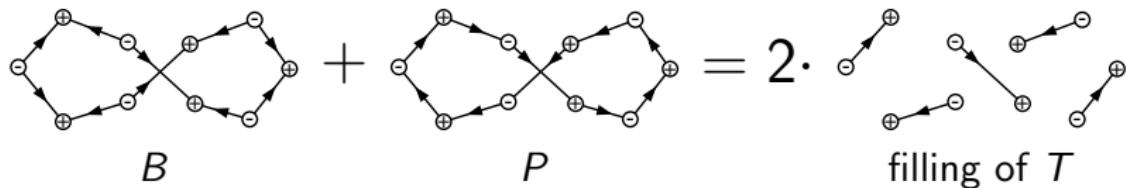
Then $B \bmod 2$ is an orientable closed curve with orientation P .

What does “half” mean?

Consider the mod-2 cycle $B \bmod 2$.

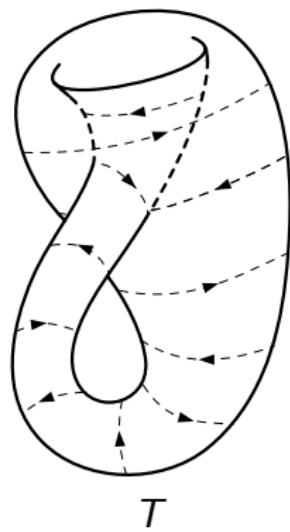


Then $B \bmod 2$ is an orientable closed curve with orientation P .



“Half” of the Klein bottle

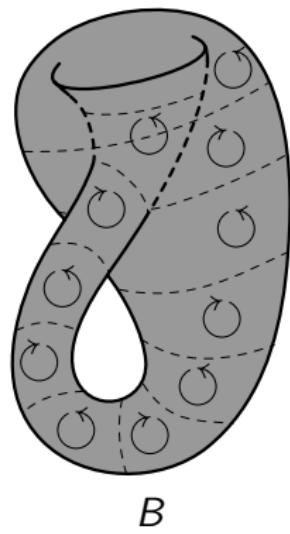
Let T be a cycle



“Half” of the Klein bottle

Let T be a cycle and suppose that

$$\partial B = 2T.$$



B
filling of $2T$

“Half” of the Klein bottle

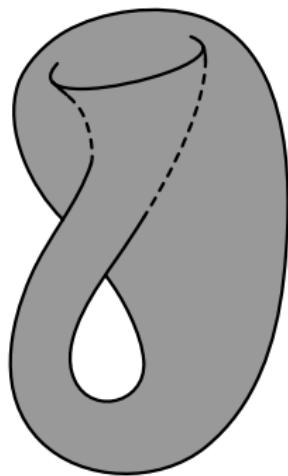
Let T be a cycle and suppose that

$$\partial B = 2T.$$

Then

$$\partial B \equiv 0 \pmod{2},$$

so $B \bmod 2$ is a cycle.



$B \bmod 2$

“Half” of the Klein bottle

Let T be a cycle and suppose that

$$\partial B = 2T.$$

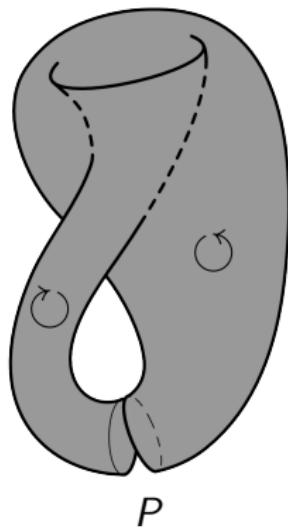
Then

$$\partial B \equiv 0 \pmod{2},$$

so $B \bmod 2$ is a cycle.

If P is an integral cycle such that

$B \equiv P \pmod{2}$ (a *pseudo-orientation* of B)



pseudo-orientation

“Half” of the Klein bottle

Let T be a cycle and suppose that

$$\partial B = 2T.$$

Then

$$\partial B \equiv 0 \pmod{2},$$

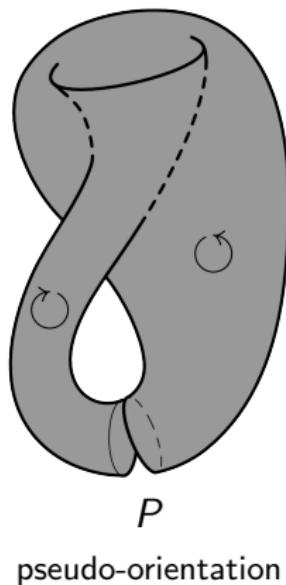
so $B \bmod 2$ is a cycle.

If P is an integral cycle such that

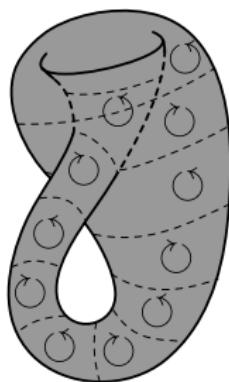
$B \equiv P \pmod{2}$ (a *pseudo-orientation* of B),
then

$$B + P \equiv 0 \pmod{2}$$

$$\partial \frac{B + P}{2} = \frac{2T + 0}{2} = T.$$

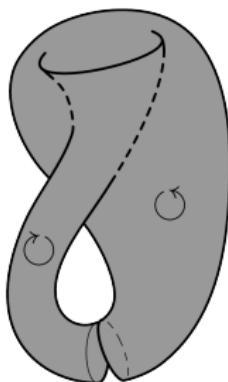


The Klein bottle, again



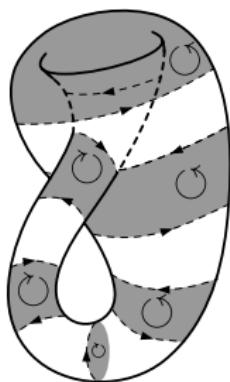
filling of $2T$

+



pseudo-orientation

$= 2 \cdot$



filling of T

Nonorientability

If A is a mod-2 cycle, define the *nonorientability* of A by

$$\text{NO}(A) = \inf\{\text{mass } P \mid P \text{ is an integral cycle and } P \equiv A \pmod{2}\}$$

This measures how hard it is to “lift” A to an integral cycle.

Nonorientability

If A is a mod-2 cycle, define the *nonorientability* of A by

$$\text{NO}(A) = \inf\{\text{mass } P \mid P \text{ is an integral cycle and } P \equiv A \pmod{2}\}$$

This measures how hard it is to “lift” A to an integral cycle.

If $\partial B = 2T$, then

$$\text{FV}(T) \leq \frac{\text{mass } B + \text{NO}(B \bmod 2)}{2}$$

So, to prove that $\text{FV}(T) \lesssim \text{FV}(2T)$, it suffices to show:

Proposition

If A is a mod-2 d -cycle in \mathbb{R}^n , then $\text{NO}(A) \lesssim \text{mass } A$.

Quantifying nonorientability

Proposition

If A is a mod-2 d -cycle in \mathbb{R}^n , then $\text{NO}(A) \lesssim \text{mass } A$.

Quantifying nonorientability

Proposition

If A is a mod-2 d -cycle in \mathbb{R}^n , then $\text{NO}(A) \lesssim \text{mass } A$.

Strategy:

- ▶ Find a mod-2 $(d + 1)$ -chain such that $A = \partial F$, then lift F to an integral chain $F_{\mathbb{Z}}$. Then $P = \partial F_{\mathbb{Z}}$ is a pseudo-orientation of A .

Quantifying nonorientability

Proposition

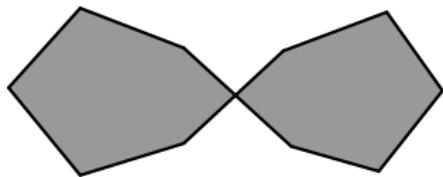
If A is a mod-2 d -cycle in \mathbb{R}^n , then $\text{NO}(A) \lesssim \text{mass } A$.

Strategy:

- ▶ Find a mod-2 $(d + 1)$ -chain such that $A = \partial F$, then lift F to an integral chain $F_{\mathbb{Z}}$. Then $P = \partial F_{\mathbb{Z}}$ is a pseudo-orientation of A .
- ▶ Generally, F will be non-orientable. We will need to cut F into orientable pieces to get $F_{\mathbb{Z}}$, and $\text{NO}(A)$ measures how much of F we need to cut.

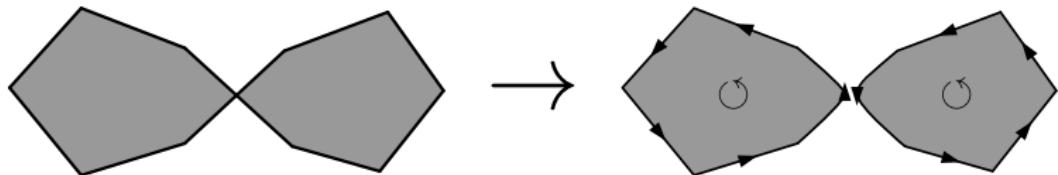
Codimension 1

If A is codimension 1, then A is the boundary of a top-dimensional chain F :



Codimension 1

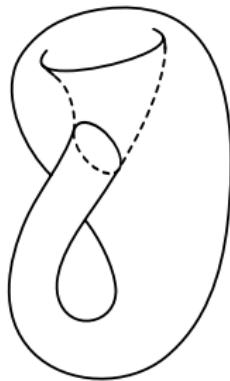
If A is codimension 1, then A is the boundary of a top-dimensional chain F :



F is orientable, so A is orientable and $\text{NO}(A) = \text{mass}(A)$.

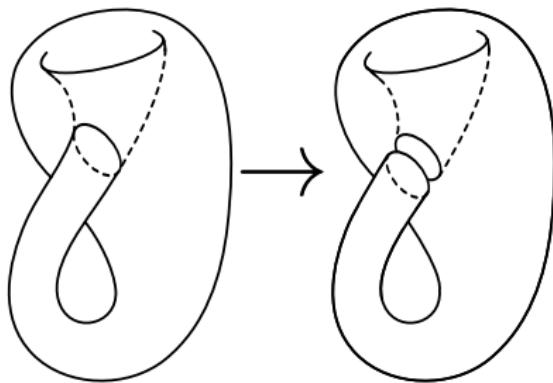
Example: the immersed Klein bottle

A Klein bottle immersed in \mathbb{R}^3 has an inside and an outside



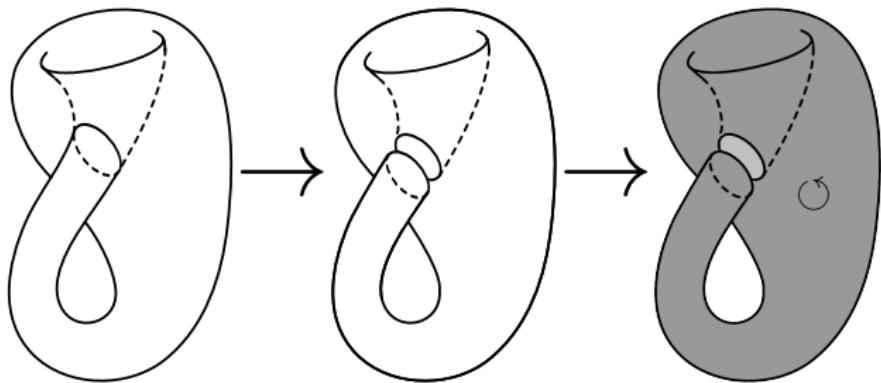
Example: the immersed Klein bottle

A Klein bottle immersed in \mathbb{R}^3 has an inside and an outside



Example: the immersed Klein bottle

A Klein bottle immersed in \mathbb{R}^3 has an inside and an outside



so it is orientable!

Results in low codimension

Proposition

Every $(n - 1)$ -cycle in \mathbb{R}^n is orientable.

Results in low codimension

Proposition

Every $(n - 1)$ -cycle in \mathbb{R}^n is orientable.

Corollary (Federer)

If T is an integral $(n - 2)$ -cycle in \mathbb{R}^n , then $\text{FV}(2T) = 2 \text{FV}(T)$.

Results in low codimension

Proposition

Every $(n - 1)$ -cycle in \mathbb{R}^n is orientable.

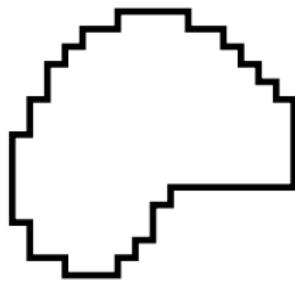
Corollary (Federer)

If T is an integral $(n - 2)$ -cycle in \mathbb{R}^n , then $\text{FV}(2T) = 2 \text{FV}(T)$.

What about higher codimensions?

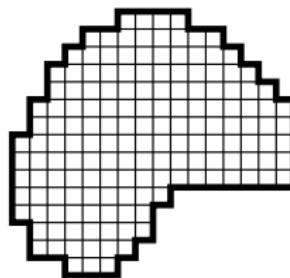
A simple argument in high codimension

Let A be a mod-2 cellular d -cycle of mass V



A simple argument in high codimension

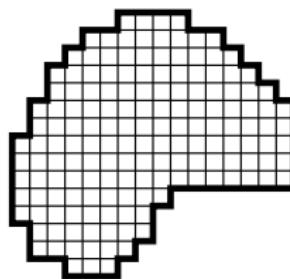
Let A be a mod-2 cellular d -cycle of mass V



- ▶ Fill A with a mod-2 chain F

A simple argument in high codimension

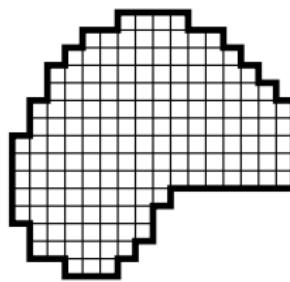
Let A be a mod-2 cellular d -cycle of mass V



- ▶ Fill A with a mod-2 chain F
- ▶ F is a sum of $V^{(d+1)/d}$ cubes, each with side length ~ 1

A simple argument in high codimension

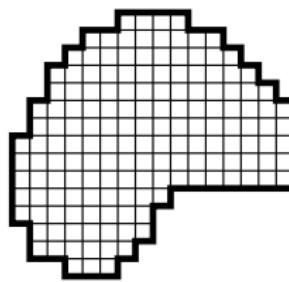
Let A be a mod-2 cellular d -cycle of mass V



- ▶ Fill A with a mod-2 chain F
- ▶ F is a sum of $V^{(d+1)/d}$ cubes, each with side length ~ 1
- ▶ Orient the cubes at random to get $F_{\mathbb{Z}}$

A simple argument in high codimension

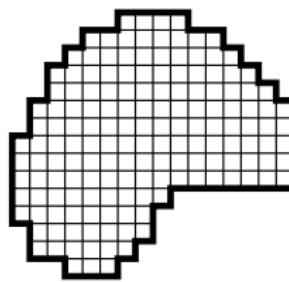
Let A be a mod-2 cellular d -cycle of mass V



- ▶ Fill A with a mod-2 chain F
- ▶ F is a sum of $V^{(d+1)/d}$ cubes, each with side length ~ 1
- ▶ Orient the cubes at random to get $F_{\mathbb{Z}}$
- ▶ $\partial F_{\mathbb{Z}}$ is a pseudo-orientation

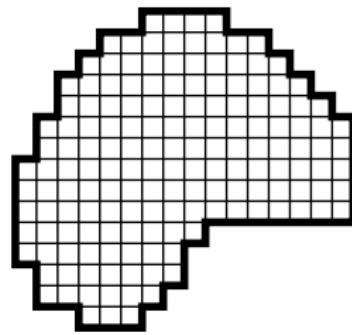
A simple argument in high codimension

Let A be a mod-2 cellular d -cycle of mass V



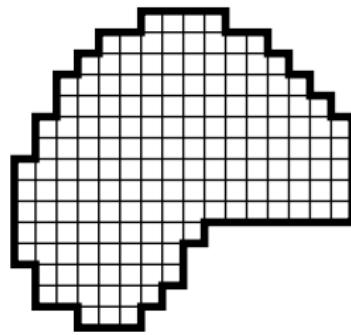
- ▶ Fill A with a mod-2 chain F
- ▶ F is a sum of $V^{(d+1)/d}$ cubes, each with side length ~ 1
- ▶ Orient the cubes at random to get $F_{\mathbb{Z}}$
- ▶ $\partial F_{\mathbb{Z}}$ is a pseudo-orientation
- ▶ $\text{NO}(A) \lesssim \text{mass } \partial F_{\mathbb{Z}} \sim V^{(d+1)/d}$

Bigger cubes

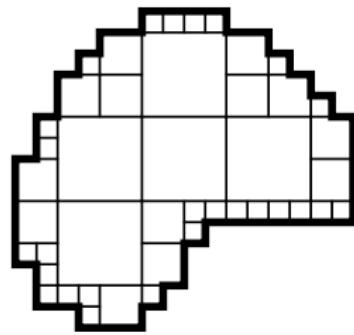


Total boundary: $V^{(d+1)/d}$

Bigger cubes

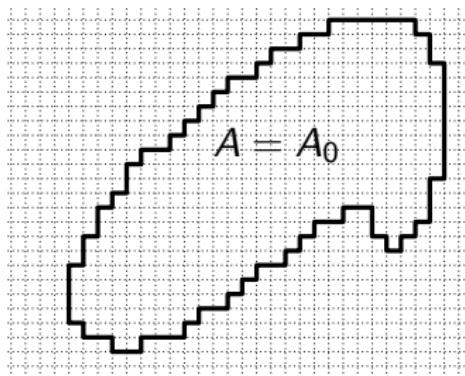


Total boundary: $V^{(d+1)/d}$

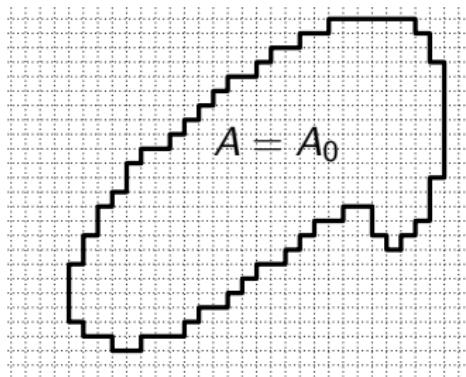
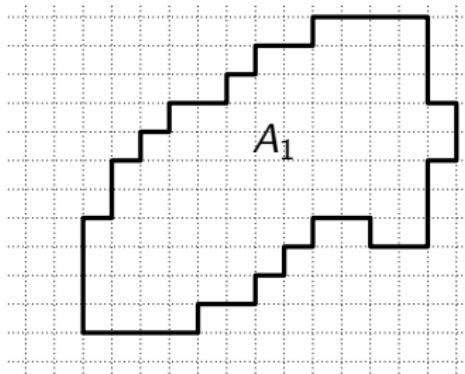


Total boundary: much less

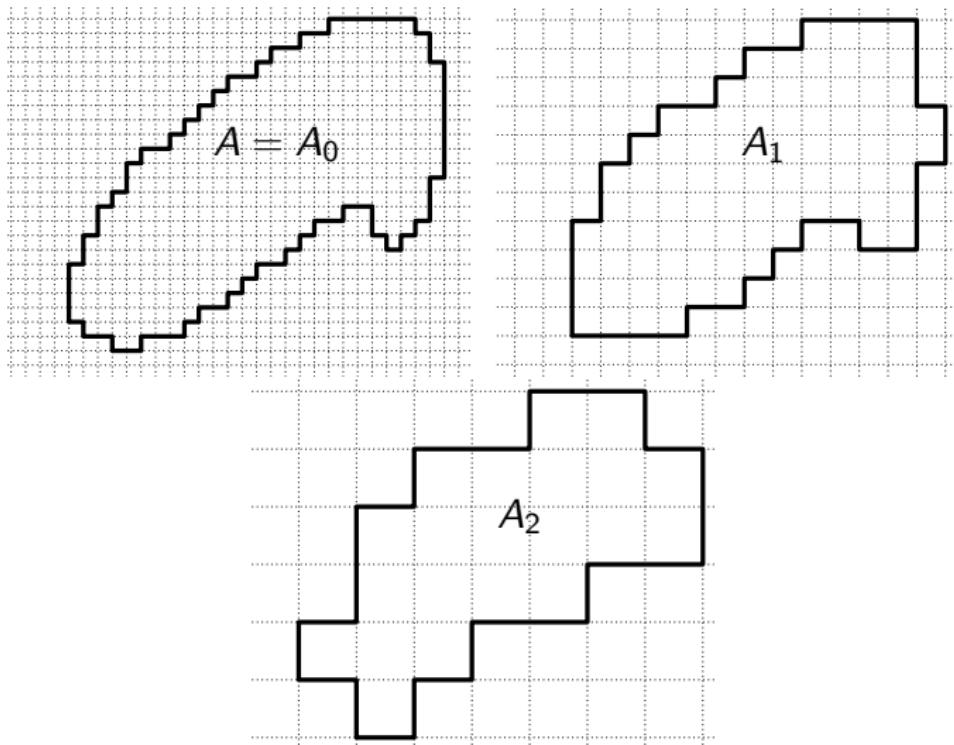
Filling through approximations



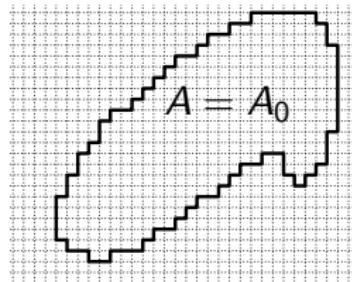
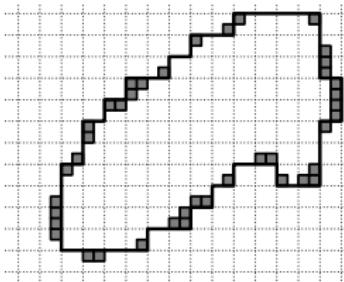
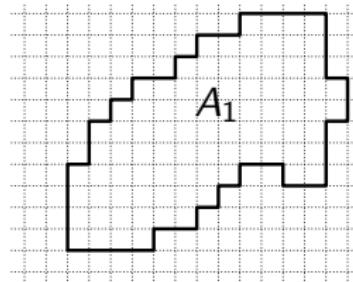
Filling through approximations



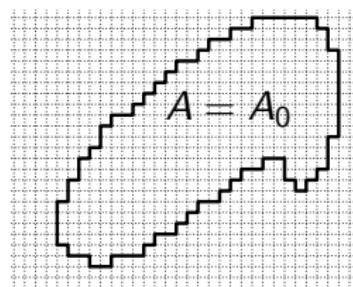
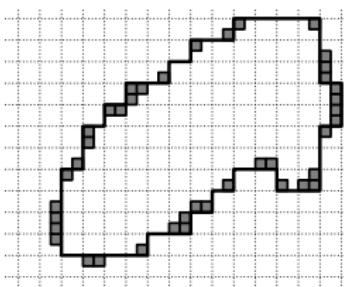
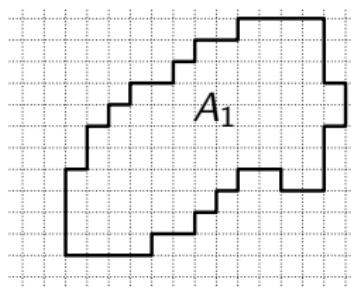
Filling through approximations



Filling through approximations

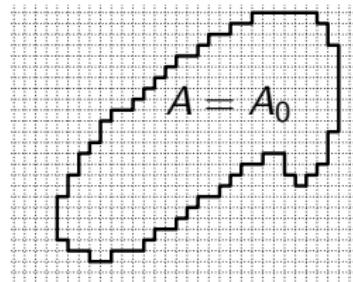
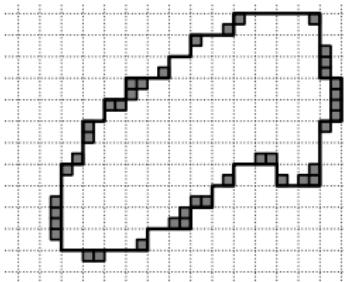
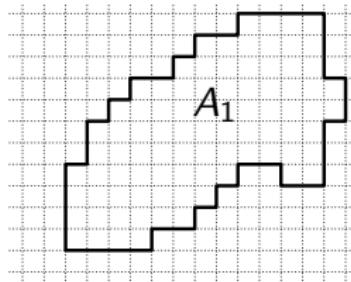


Filling through approximations

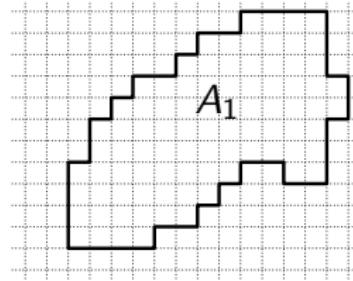
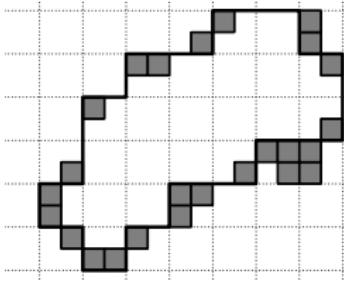
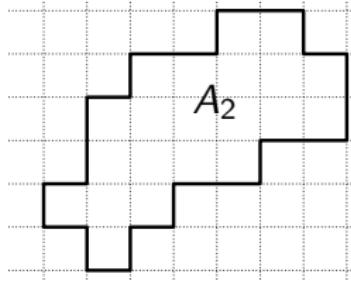


$\sim V$ squares each with perimeter ~ 1

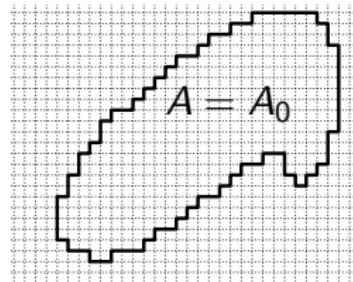
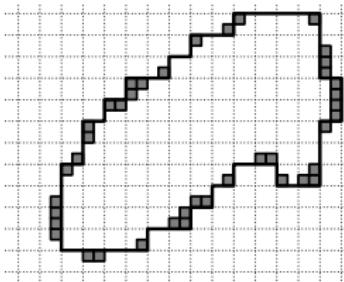
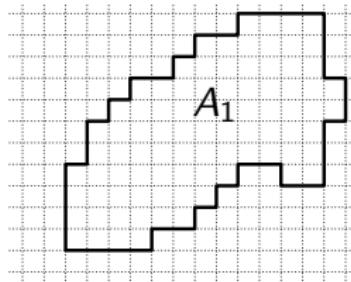
Filling through approximations



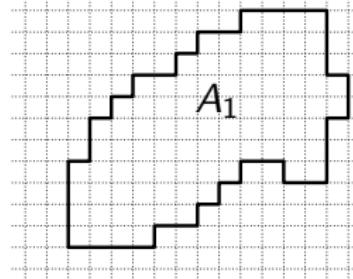
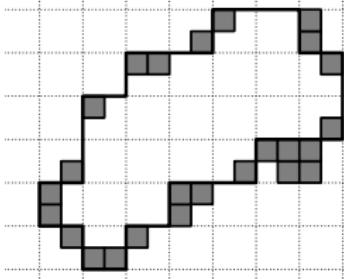
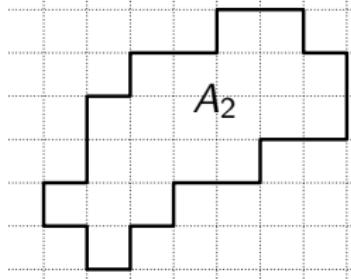
$\sim V$ squares each with perimeter ~ 1



Filling through approximations



$\sim V$ squares each with perimeter ~ 1



$\sim V/2$ squares each with perimeter ~ 2

Filling through approximations

Sketch:

- ▶ Approximate A at $\sim \log V$ scales, then connect the approximations.
- ▶ We use cubes with total boundary $\sim V$ at each scale.
- ▶ Since there are $\sim \log V$ scales, we conclude:

Proposition (Guth-Y.)

If A is a cellular mod-2 cycle with volume V , then it has a pseudo-orientation P such that mass $P \lesssim V \log V$.

Filling through approximations

Sketch:

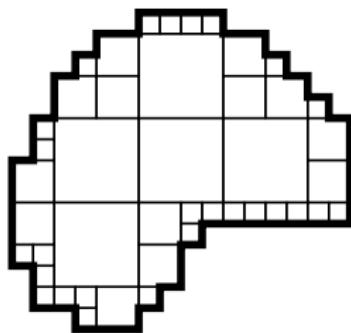
- ▶ Approximate A at $\sim \log V$ scales, then connect the approximations.
- ▶ We use cubes with total boundary $\sim V$ at each scale.
- ▶ Since there are $\sim \log V$ scales, we conclude:

Proposition (Guth-Y.)

If A is a cellular mod-2 cycle with volume V , then it has a pseudo-orientation P such that mass $P \lesssim V \log V$.

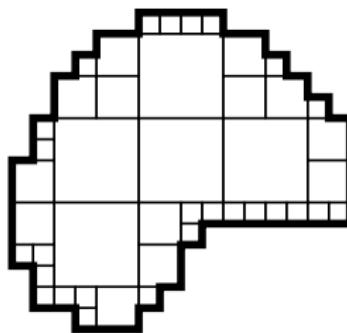
Now we just need to get rid of the log factor!

Getting rid of the log factor



- ▶ Choosing orientations randomly is wasteful when A is close to a plane

Getting rid of the log factor



- ▶ Choosing orientations randomly is wasteful when A is close to a plane
- ▶ But what if A is never close to a plane?

Dealing with fractals

How do we prove the proposition for sets that are close to fractals?

- ▶ Show that adding topological complexity adds extra area
- ▶ Prove the theorem when A has “low complexity”

Properties of “simple” sets

Definition

A set $E \subset \mathbb{R}^n$ is Ahlfors d -regular if for any $x \in E$ and any $0 < r < \text{diam } E$,

$$\mathcal{H}^d(E \cap B(x, r)) \sim r^d.$$

Definition

A set $E \subset \mathbb{R}^n$ is d -rectifiable if it can be covered by countably many Lipschitz images of \mathbb{R}^d .

Properties of “simple” sets

Definition

A set $E \subset \mathbb{R}^n$ is Ahlfors d -regular if for any $x \in E$ and any $0 < r < \text{diam } E$,

$$\mathcal{H}^d(E \cap B(x, r)) \sim r^d.$$

Definition

A set $E \subset \mathbb{R}^n$ is d -rectifiable if it can be covered by countably many Lipschitz images of \mathbb{R}^d .

But sets that are close to fractals can be regular, rectifiable, but still very complicated!

Uniform rectifiability

Definition (David-Semmes)

A set $E \subset \mathbb{R}^n$ is uniformly d -rectifiable if it is d -regular and there is a c such that for all $x \in E$ and $0 < r < \text{diam } E$, there is a c -Lipschitz map $B_d(0, r) \rightarrow \mathbb{R}^n$ which covers a $1/c$ -fraction of $B(x, r) \cap E$.

Uniform rectifiability

Definition (David-Semmes)

A set $E \subset \mathbb{R}^n$ is uniformly d -rectifiable if it is d -regular and there is a c such that for all $x \in E$ and $0 < r < \text{diam } E$, there is a c -Lipschitz map $B_d(0, r) \rightarrow \mathbb{R}^n$ which covers a $1/c$ -fraction of $B(x, r) \cap E$.

These sets are close to planes on “most” balls.

Sketch of proof

Proposition

Every mod-2 cellular d -cycle A can be written as a sum

$$A = \sum_i A_i$$

of mod-2 cellular d -cycles with uniformly rectifiable support such that

$$\sum \text{mass } A_i \leq C \text{ mass } A.$$

Sketch of proof

Proposition

Every mod-2 cellular d -cycle A can be written as a sum

$$A = \sum_i A_i$$

of mod-2 cellular d -cycles with uniformly rectifiable support such that

$$\sum \text{mass } A_i \leq C \text{ mass } A.$$

Proposition

Any mod-2 cellular d -cycle A with uniformly rectifiable support has a pseudo-orientation P with

$$\text{mass } P \leq C \text{ mass } A.$$

Open questions

- ▶ More generally,

$$\text{FV}(T) \geq c_k \frac{\text{FV}(kT)}{k}.$$

Can the c_k be chosen uniformly?

Open questions

- ▶ More generally,

$$\text{FV}(T) \geq c_k \frac{\text{FV}(kT)}{k}.$$

Can the c_k be chosen uniformly?

- ▶ What does this tell us about the geometry of surfaces embedded in \mathbb{R}^n by a bilipschitz map?