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How is FA(T) related to FA(2T)?

For all T, FA(2T) < 2FA(T).

» n=2: If Tisa curve in R?, then FA(2T) = 2FA(T).

» n=3: If Tisa curve in R3, then FA(2T) = 2FA(T).
(Federer, 1974)

» n=4: Thereis a curve T € R* such that

FA(2T) < 1.52FA(T)

(L. C. Young, 1963)
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L. C. Young's example

Let K be a Klein bottle and let T be the sum of 2k + 1 loops in
alternating directions.
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L. C. Young's example

» T can be filled with k » 2T can be filled with
bands and one extra disc D 2k + 1 bands

> FA(T) ~ %K +area D » FA(2T) ~ area K— less
than 2FA(T) by 2area D!
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The main theorem

Q: Is there a ¢ > 0 such that FA(2T) > cFA(T)?
Theorem (Y.)

Yes! For any d, n, there is a ¢ such that if T is a d-cycle in R",
then FA(2T) > cFA(T).
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Corollaries

Let F4(RN) be the set of integral flat chains in RV. Then:
» If k > 0 is a positive integer, the multiply-by-k map
f: Fa(RV) — Fy(RN), f(T) = kT is an embedding.
» If T is a mod-k current, then T = Tz (mod k) for some

integral current Tyz. Consequently, the set of mod-k currents
is a quotient of the integral currents.



Proving the theorem in dimension 0

Strategy: If B is a filling of 2T, then “half of B” fills T.



Proving the theorem in dimension 0

Strategy: If B is a filling of 2T, then “half of B” fills T.




Proving the theorem in dimension 0

Strategy: If B is a filling of 2T, then “half of B” fills T.

“half of B" is a filling of T
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“Half” of the Klein bottle

Let T be a cycle and suppose that

0B =2T.

Then
0B =0 (mod2),
so B mod 2 is a cycle.

If P is an integral cycle such that

B = P (mod 2) (a pseudo-orientation of B),
then

B+P=0 (mod?2)

B+P 2T P
tP_2TH0_ 4

2 2 pseudo-orientation

0




The Klein bottle, again

_|_

filling of 2T pseudo-orientation filling of T



Nonorientability

If Ais a mod-2 cycle, define the nonorientability of A by
NO(A) = inf{mass P | P is an integral cycle and P=A (mod 2)}
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Nonorientability

If Ais a mod-2 cycle, define the nonorientability of A by
NO(A) = inf{mass P | P is an integral cycle and P=A (mod 2)}

This measures how hard it is to "lift” A to an integral cycle.
If 0B = 2T, then

FV(T) < mass B + NO(B mod 2)
2
So, to prove that FV(T) < FV(2T), it suffices to show:

Proposition
If A'is a mod-2 d-cycle in R", then NO(A) < mass A.



Quantifying nonorientability

Proposition
If A'is a mod-2 d-cycle in R", then NO(A) < mass A.



Quantifying nonorientability

Proposition
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Quantifying nonorientability

Proposition
If A'is a mod-2 d-cycle in R", then NO(A) < mass A.
Strategy:
» Find a mod-2 (d + 1)-chain such that A = OF, then lift F to

an integral chain Fz. Then P = 0Fy is a pseudo-orientation
of A.

» Generally, F will be non-orientable. We will need to cut F
into orientable pieces to get Fz, and NO(A) measures how
much of F we need to cut.



Codimension 1

If Ais codimension 1, then A is the boundary of a top-dimensional
chain F:




Codimension 1

If Ais codimension 1, then A is the boundary of a top-dimensional
chain F:

%

F is orientable, so A is orientable and NO(A) = mass(A).
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Example: the immersed Klein bottle

A Klein bottle immersed in R3 has an inside and an outside

— Y |=

O C

so it is orientable!




Results in low codimension

Proposition
Every (n — 1)—cycle in R" is orientable.
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Results in low codimension

Proposition
Every (n — 1)—cycle in R" is orientable.

Corollary (Federer)
If T is an integral (n — 2)—cycle in R", then FV(2T) =2FV(T).

What about higher codimensions?
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A simple argument in high codimension

Let A be a mod-2 cellular d-cycle of mass V

v

Fill A with a mod-2 chain F
» Fis a sum of V(4t1)/d cybes, each with side length ~ 1

Orient the cubes at random to get Fy

v

v

OFyz is a pseudo-orientation
NO(A) < mass dFz ~ V(d+1)/d

v



Bigger cubes

Total boundary: V(d+1)/d



Bigger cubes

Total boundary: V(d+1)/d Total boundary: much less
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Filling through approximations

2= |

~ V squares each with perimeter ~ 1

W,

~ V/ /2 squares each with perimeter ~ 2



Filling through approximations

Sketch:

» Approximate A at ~ log V scales, then connect the
approximations.

» We use cubes with total boundary ~ V' at each scale.
» Since there are ~ log V scales, we conclude:
Proposition (Guth-Y.)

If A is a cellular mod-2 cycle with volume V/, then it has a
pseudo-orientation P such that mass P < Vlog V.



Filling through approximations

Sketch:

» Approximate A at ~ log V scales, then connect the
approximations.

» We use cubes with total boundary ~ V' at each scale.
» Since there are ~ log V scales, we conclude:
Proposition (Guth-Y.)

If A is a cellular mod-2 cycle with volume V/, then it has a
pseudo-orientation P such that mass P < Vlog V.

Now we just need to get rid of the log factor!



Getting rid of the log factor

» Choosing orientations randomly is wasteful when A is close to
a plane



Getting rid of the log factor

» Choosing orientations randomly is wasteful when A is close to
a plane

» But what if A is never close to a plane?



Dealing with fractals

How do we prove the proposition for sets that are close to fractals?

» Show that adding topological complexity adds extra area

» Prove the theorem when A has “low complexity”



Properties of “simple” sets

Definition
A set E C R" is Ahlfors d-regular if for any x € E and any
0<r<diameE,

HIENB(x,r)) ~ r.

Definition
A set E C R" is d-rectifiable if it can be covered by countably
many Lipschitz images of RY.



Properties of “simple” sets

Definition
A set E C R" is Ahlfors d-regular if for any x € E and any
0<r<diameE,

HIENB(x,r)) ~ r.

Definition

A set E C R" is d-rectifiable if it can be covered by countably
many Lipschitz images of RY.

But sets that are close to fractals can be regular, rectifiable, but
still very complicated!



Uniform rectifiability

Definition (David-Semmes)

A set E C R" is uniformly d-rectifiable if it is d-regular and there
is a ¢ such that for all x € E and 0 < r < diam E, there is a
c-Lipschitz map B4(0, r) — R" which covers a 1/c-fraction of
B(x,r)NE.



Uniform rectifiability

Definition (David-Semmes)

A set E C R" is uniformly d-rectifiable if it is d-regular and there
is a ¢ such that for all x € E and 0 < r < diam E, there is a
c-Lipschitz map B4(0, r) — R" which covers a 1/c-fraction of
B(x,r)NE.

These sets are close to planes on “most” balls.



Sketch of proof

Proposition
Every mod-2 cellular d-cycle A can be written as a sum

A:ZA,-
i

of mod-2 cellular d-cycles with uniformly rectifiable support such
that
Z mass A; < C mass A.



Sketch of proof

Proposition
Every mod-2 cellular d-cycle A can be written as a sum

A:ZA,-
i

of mod-2 cellular d-cycles with uniformly rectifiable support such
that
Z mass A; < C mass A.

Proposition

Any mod-2 cellular d-cycle A with uniformly rectifiable support has
a pseudo-orientation P with

mass P < C mass A.
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> More generally,
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Can the ¢ be chosen uniformly?




Open questions

> More generally,
FV(kT)

FY(T) > e

Can the ¢ be chosen uniformly?

» What does this tell us about the geometry of surfaces
embedded in R” by a bilipschitz map?
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