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2 NOTES ON QUANTITATIVE TOPOLOGY

0. INTRODUCTION

One of the basic questions of topology is: given topological spaces X and Y ,
when is there a continuous map f : X → Y with given properties. And this mo-
tivates a lot of what’s done in topology: for instance, the fundamental group
answers the question of when a closed curve in X extends to a disc.

In this class, we’ll try to make some of these questions quantitative. Suppose
we know that a map or a space with certain properties exists – what can we say
about that map or space? How big is it? How complex is it?

I have a couple of goals here:

• Introduce some of the ideas and methods of quantitative geometry, like
discretization, scaling, and limits

• Apply these ideas to geometric group theory and topology

0.1. Acknowledgments. R. Y. was supported by the National Science Founda-
tion under Grant No. 2005609.

1. LECTURE 1: 2022-01-25: QUANTIFYING SIMPLE CONNECTIVITY (NOTES BY

ROBERT YOUNG)

Let’s start with the question from the introduction: the fundamental group
tells you when a closed curve in X extends to a disc. How do we quantify this?

Suppose X is a space, say a Riemannian manifold or simplicial complex. Let
γ : S1 → X be a null-homotopic curve in X . Then there is a homotopy from γ to
a point; we can view this as a map β : D2 → X . How does the size of β depend on
γ?

Specifically, we can define the filling area of a curve and the Dehn function of
a space. Given a Lipschitz curve γ : S1 → X , the filling area of γ is

δX (γ) = inf
β : D2→X

areaβ,

where the infimum is taken over the Lipschitz maps β : D2 → X such that β
agrees with γ on its boundary, i.e., β|1S = γ. The Dehn function of X is the func-
tion

δX (L) = sup
γ : S1→X

δX (γ),

where the infimum is taken over null-homotopic closed curves of length at most
L.

(Instead of taking the infimum over null-homotopic closed curves, we can
pass to the universal cover — any closed curve in the universal cover corre-
sponds to a null-homotopic closed curve, so

δX (L) = sup
γ : S1→X̃

δX̃ (γ),

where the infimum is taken over all closed curves of length at most L.)
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Remark (Lipschitz maps). Recall that a map f : X → Y is Lipschitz if there is
some C > 0 such that dY ( f (p), f (q)) ≤ C dX (p, q) for all p, q ∈ X . We use Lips-
chitz maps because we can define their length and area. By Rademacher’s The-
orem, if f : Rm → Rn is Lipschitz, it is differentiable almost everywhere, in the
sense that for almost every x there is a linear map D fx : Rm →Rn such that when
y is sufficiently close to x,

f (y) = f (x)+D fx (y −x)+o(‖y −x‖).

(Recall that o(‖y −x‖) denotes an error term that’s strictly smaller than ‖x‖, i.e.,

lim
y→x

f (y)− ( f (x)+D fx (y −x))

‖y −x‖ = 0.)

If f : I →Rn is a Lipschitz curve, we define

`( f ) =
∫

I
‖D fx‖d x;

this is the same formula as the formula for the length of a C 1 curve. If f : U →Rn

is a Lipschitz map with U ⊂Rm a measurable set, we define

volm( f ) =
∫

U

√
det[(D fx )T D fx ]d x;

this is likewise the same formula as the formula for the area of a surface, and
these formulas generalize to Riemannian manifolds and (with some work) to
simplicial complexes.

Note that if f : U ⊂Rm →Rn is C –Lipschitz, then volm( f ) ≤C m volm(U ), where
volm(U ) is the euclidean volume of U .

For example, consider the case that X =R2 and γ is a simple closed curve. By
the Jordan Curve Theorem, γ bounds a disc D , and the filling area of γ is equal
to the area of D .

1.1. Example: Rn . Finding exact values of δX is generally difficult, but one can
often prove asymptotics. For example, the following holds in Rn :

Proposition 1.1. Let γ : S1 →Rn be a Lipschitz closed curve. Then

δRn (γ) ≤ 1

4
`(γ)2.

Proof. We fill γ by a straight-line homotopy. Let ∗ be a basepoint in S1, and let
(r,θ) be polar coordinates on D2. Let β : D2 →Rn ,

β(r,θ) = γ(∗)+ r (γ(θ)−γ(∗)).

This is a Lipschitz disc filling γ. We can break the disc into wedges like so:
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The area of the triangle on the right is at most 1
2‖γ(θ)−γ(∗)‖‖γ′(θ)‖, and, since

γ has length L, ‖γ(θ)−γ(∗)‖ ≤ L
2 . Therefore,

areaβ≤ 1

2

∫
S1
‖γ(θ)−γ(∗)‖‖γ′(θ)‖dθ

≤ L

4

∫
S1
‖γ′(θ)‖dθ ≤ L2

4
,

as desired. �

Thus δRn (L) ≤ L2

4 . Conversely, the circle of radius r has length 2πr and area
πr 2; it follows that

δRn (L) ≥π(
L

2π
)2 = L2

4π
.

Thus L2

4π ≤ δRn (L) ≤ L2

4 – we say that δRn (L) ≈ L2.

1.2. Example: δX (L) = ∞. Note that δX need not be finite. For example, con-
sider a space X constructed by starting with the plane R2 and cutting a hole of
radius 1

4 around each point (n,0). We glue a cylinder of height n to the hole
around (n,0), and cap it off with a disc. The resulting space X is homeomorphic
to R2, but δX (1) = ∞, because the boundary of each hole has length at most 1
and area ≈ n.

We’ll see later that this can’t happen when X is more symmetric:

Proposition 1.2. Suppose that X is a Riemannian manifold or simplicial com-
plex with bounded degree that admits a cocompact action by isometries. (An ac-
tion of G on X is cocompact if the quotient X /G is compact. Equivalently, there
is a fundamental domain which is contained in a compact set.) Then δX (L) <∞
for all L.
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In particular, if K is compact and K̃ is its universal cover, then δK̃ is finite.

1.3. Example: Hn . Another example: letHn be hyperbolic space. We will not go
into hyperbolic geometry too much, but a key feature of hyperbolic space is that
geodesics in Hn diverge at an exponential rate. That is, a circular are in Hn with
angle θ and radius r has length θ sinhr ; in particular, the circle in the hyperbolic
plane has circumference 2πsinhr ≈ er when r is large.

Another way to look at this: if γ and λ are two unit-speed geodesics that start
at the same point x0 and the angle θ =∠(γ,λ) is small, then d(γ(t ),λ(t )) can be
small for a long time, i.e.,

d(γ(t ),λ(t )) ≈ θ sinh t ≈ θe t

for 1 < t <− logθ. But then, around t =− logθ, we have d(γ(t ),λ(t )) ≈ 1, and the
exponential growth kicks in. When t >− logθ, the length of the arc from γ to λ is
growing quickly. Since λ and γ are unit-speed, d(γ(t ),λ(t )) grows more slowly;
in fact, d(γ(t ),λ(t )) = 2(t −| logθ|)+O(1) for t >− logθ.

This affects the asymptotics of the Dehn function, as we see in the following
proposition.

Proposition 1.3. δHn (L). L

Proof. We again use a straight-line homotopy. For p, q ∈Hn , let λp,q : [0,1] →Hn

be the geodesic from p to q . Using polar coordinates as before, let

β(r,θ) =λγ(∗),γ(θ)(r ).

This is a Lipschitz disc filling γ, and we can break the disc into wedges again, but
the shape of the wedges is different:

Since the geodesics making up the sides of the wedge diverge exponentially, they
also converge exponentially — the distance between the sides of the wedge is
like e−t‖γ′(θ)‖, where t is the distance from γ(θ). The wedge then has area

≈
∫ d(γ(∗),γ(θ))

0
e−t‖γ′(θ)‖dt . γ(θ),

and the disc has area

areaβ.
∫

S1
‖γ′(θ)‖dθ = `(γ),

as desired. �
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1.4. Next time. Next time, we’ll see:

Proposition 1.4. If K is a compact, simply-connected Riemannian manifold or
simplicial complex, then δK (L).K L.

This gives us a variety of examples (Rn , Hn , and simply-connected compact
spaces) where the Dehn function is small. Part of the reason for this is that these
spaces are easy to navigate – in Rn and Hn , there’s a unique geodesic between
any two points and that geodesic varies continuously. In a compact space, there
need not be a unique geodesic, but the space itself can’t be too complex. But in
general, the Dehn function can be much larger.

Proposition 1.5. There is a compact simplicial complex K such that

δK (L) ≥ eeeeL

for all sufficiently large L.

Proposition 1.6. For all sufficiently large n, there is a compact simplicial 2–complex
Kn with at most n vertices, edges, and faces such that

δKn (3) ≥ eeeen

.

In fact, in both cases, the Dehn function grows faster than any computable
functions. To see this, we’ll need to link filling area to computability, which we’ll
do next week.

2. LECTURE 2: 2022-02-01 (NOTES BY YONGHAO YU)

In the first lecture, we have seen some elementary example of δX (L). To go
further, we need some general results, which are given by the following lemma.

Lemma 2.1. Let X be a simplicial complex or Riemannian manifold. If X is
equipped with an isometric G–action s.t. there exists a compact K ⊂ X s.t. GK =
X , (for instance, X can be a universal cover of a compact space), then

(1) There exists ε> 0 s.t. if γ : S1 → X and l (γ) < ε, then γ∼∗.
(2) If γ : S1 → X is Lipshiitz and γ∼∗, then there exists a Lipschitz extension

β : D2 → X s.t. β|S1 = γ.
(3) δX (L) <∞ for every L > 0.

Proof. (1) This follows from the standard fact that the injectivity radius of a
Riemannian manifold is a continuous positive function.

(2) We know that every continuous map f : D2 →Rn is Lipschitz on ∂D2 can
be approximated arbitrarily closely by a Lipschitz map.

One can generalize this result to a Riemannian manifold: Suppose γ :
S1 → X is Lipschitz and γ ∼ ∗, then there exists β : D2 → X s.t. βS1 = γ,
γ(∗) ∈ K .

Sinceβ is a continuous map with compact domain, β(D2) is compact.
Then β(D2) is a subset of some bounded sub-manifold M . By Whitney
embedding theorem, there exists an embedding i : M → Rn . By tubular
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neighborhood theorem, there exists a neighborhood U of i (β(D2)) and
a smooth retraction r : U → M . Then one can approximate i ◦β by a
Lipschitz map B : D2 → Rn . Then r ◦B : D2 → i (M) is a Lipschitz map
and i−1 ◦ r ◦B : D2 → M is a Lipschitz extension of γ.

(3) Because of the G–action, WLOG, we assume that γ : S1 → X is a Lipschitz
curve with l (γ) ≤ L, γ(∗) ∈ K ⊂ X .

Now we will apply the limit method for this problem. Let {γi }i∈N be a
sequence of closed curve in X s.t. l (γi ) ≤ L, δX (γi ) → δX (L) and γi (∗) ∈
K . Then γi ⊂ NL(K ) where L is some neighborhood of K , and we can
reparametrize the γi ’s as maps γi [0,L] → X with constant speed ≤ 1.
By the Arzela–Ascoli theorem, there is a subsequence γi j that converges
uniformly to some curve α.

Hence when j is sufficiently large, |α(t )−γi (t )| < ε
10 , where ε is the

constant in part 1. Now subdivide the annulus into squares of length ≤ ε.
Each square can be extend into a disc, which gives a homotopy between
α and γi j . In particular, we have α∼ γi j ∼∗.

So δX (α) < ∞ and δX (γi j ) ≤ δX (α) + 10L
ε δX (ε) < ∞. Then δX (L) =

lim j→∞δX (γi j ) <∞, as desired.
�

Now we have enough tools to show Proposition 1.4, i.e., that the Dehn-function
of a compact simply connected simplicial complex or Riemannian manifold can
be bounded by a linear function.

Proof. For every u, v ∈ X , let γu,v be a shortest path from u to v . Then l (γuv ) ≤
di m(X ). Let D = di m(X ). Given a curve α : S1 → X of length L, let n be the
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natural number s.t. L ≤ n ≤ L +1. Reparametrize α as a map α : [0,n] → X with
constant speed ≤ 1, so that d(α(i ),α(i +1)) ≤ 1.

We can then decompose α into wedges ∆i = γα(0)α(i )α[i ,i+1]γα(i+1)α(0). Be-
cause π1(X ) = 0, ∆i ∼ ∗, l (∆i ) ≤ 2D +1, so δX (∆i ) ≤ δX (2D +1) <∞. Moreover,
δX (α) ≤ nδX (2D +1) ≤ (L+1)δX (2D +1).

�

2.1. Computable functions. Now we will show Proposition 1.5: There exists a
compact simplicial complex K s.t. δK (L) is larger than any computable func-
tion. Before constructing such a K , we need some discussion on computable
functions.

Definition 2.2. A computable function f : N→ N is a function s.t. there exist
some deterministic computer program (algorithm) to compute f (n) for every n.
For instance a Python program that does not include random number, internet
and referencing outside source.

Note that there are only countably many computable functions, as a program
is a finite string of bits. We identify the finite strings of bits with the natural
numbersN. We define fi (n) to be the function obtained by treating the i th finite
string as a python program and running it on n. Note that fi (n) is only defined
when the program fi terminates on input n after outputting an integer. Then we
have another definition for computable function:

Definition 2.3. fi is a computable function iff fi (n) ∈N for all n ∈N.

Note also that there is a program (the Python interpreter) that takes i ,n as
inputs and outputs fi (n).

Now comes the question, can we find a computer program to determine whether
or not fi (n) is defined for all i and n?

The answer is negative, as Alan Turing proved in 1936 that such computer
program does not exists:

Theorem 2.4. Let Halt(i ,n) be the Halting function which determine whether
fi (n) is well-defined or not. It outputs 1 if fi (n) exists and outputs 0 if fi (n) doesn’t
exists. Then the function Halt(i ,n) is not computable.
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Proof. Suppose the Halting function is computable. Then one can define a pro-
gram T which takes the natural number n as input.

Define T so that for any input n, if Halt(n,n) = 1, the program T loops infin-
itely. Else the program T outputs 0.

As program T is a finite string of bits, T = fN for some N . Now consider
T (N ) = fN (N ). Then if fN (N ) halts, Halt(n,n) = 1 and T (N ) does not halt, which
is a contradiction. If fN (N ) does not halt, then Halt(n,n) = 0 and T (N ) = 0,
which is also a contradiction. Hence the halting function cannot be computable

�

Corollary 2.5. As a consequence, there is no computable function L s.t. if fn(n)
halts, then it halts in at most L(n) steps

Proof. Suppose such an function L exists, then consider the following program
H : given input n, run program fn for L(n) steps. If fn terminated in L(n) steps,
output 1; else output 0. Then H(n) computes Halt(n,n), one reach a contradic-
tion.

Equivalently, one can define a function L(n) as the longest number of steps
that fm(m) takes before terminating for m ≤ n. Then we just shown that L(n) is
larger than any computable function f (n).

�

2.2. Group presentations. A group presentation is an expression 〈g1, · · · , gn |r1, · · · ,rs >
where g1, · · ·gn denotes the set of generators and r1, · · ·rs denote the set of rela-
tions. Each ri is a formal product (word) of gi ’s and g j ’s.

Let F (g1, · · · , gn) be the free group generated by the gi ’s, i.e., the quotient of
the set of words under the equivalence relations w gi g−1

i w ′ ∼ w w ′, and w g−1
i gi w ′ ∼

w w ′. Then a group presentation is the quotient

〈g1, · · · , gn〉 = F (g1, · · · , gn)/〈〈r1, · · ·rs〉〉
= words/w g±1

i g∓1
i w ′ ∼ w w ′, wr±1

i w ′ ∼ w w ′

= F (g1, · · · , gn)/Πd
i=1wi r±1

ji
w−1

i

2.3. Example: 〈x, y |y x−1 y−1〉 = Z2. Since y x ∼ (x y x−1 y−1)y x ∼ x y , and sim-
ilarly one can shown that x y−1 ∼ y−1x, x−1 y−1 ∼ y−1x−1, then every word is
equivalent to xa yb for unique a,b ∈Z. Hence 〈x, y |y x−1 y−1〉 =Z2

Theorem 2.6 (Novikov–Boone). There is a group with unsolvable word problem.
In other words, a group G s.t. there is no algorithm to determine whether two
words w and l are equivalent or not.



10 NOTES ON QUANTITATIVE TOPOLOGY

Indeed, simple groups can be computationally hard word problem. For in-
stance, consider the group BS1,2 = 〈a,b|aba−1b−2〉. We have

anba−n = an−1aba−1a−n+1

= an−1b2a−n+1

= (an−1ba−n+1)(an−1ba−n+2)

= b2n
,

so words of length 2n +1 in BS1,2 “expand” to words of length 2n .

3. LECTURE 3: 2022-02-08 (NOTES BY MOHAMMED MANNAN)

Definition 3.1. A van Kampen diagram D is a finite planar 2-complex embedded
in R2 such that

• D is connected.
• D is simply-connected.
• Each edge is oriented and labeled by a generator.
• The boundary of each 2-cell is a relation.

Proposition 3.2. Let G = 〈g1, . . . , gn | r1, . . . ,rs〉 be a finitely presented group. Then
w =G 1 if and only if w is the boundary of a van Kampen diagram.

Proof. (⇐) Deleting a cell adjacent to the boundary word creates a new bound-
ary word that represents the same group element. By consecutive deletion, we
see that the boundary word =G 1.

(⇒) If w ∈ F (g1, . . . , gn) is such that w =G 1, then w ∈ 〈〈r1, . . . ,rn〉〉, so w =F∏d
i=1 wi r±1

ji
w−1

i = q . There’s a van Kampen diagram for q that looks like:

If q contains a substring g±1g∓1, then two consecutive edges in the boundary
have the same label but opposite orientations. These can be folded together to
get a new van Kampen diagram whose boundary word is a free reduction of q .
Since q can be freely reduced to w , there’s a sequence of folds that turns the
diagram for q into a diagram for w .

�

For a group G = 〈g1, . . . , gn | r1, . . . ,rs〉, let XG be the 2–complex given by the
figure below, with one vertex, n edges, and s 2–cells, each glued according to one
of the ri ’s. An edge path in XG is a path made up of edges. For each word w ∈
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(g±1
1 , . . . , g±1

n )∗, let λw be the corresponding edge path. Note that π1(XG ) = G ;
indeed, the natural isomorphism identifies each element w with the homotopy
class of λw .

A van Kampen diagram for G is naturally equipped with a map to XG . This
gives an alternative proof of the (⇐) direction of the proposition, since if w is
the boundary word of a van Kampen diagram, then the van Kampen diagram
gives a null-homotopy of λw .

Conversely, suppose λw is null-homotopic. Then λw extends to a disc, but
that disc need not be a van Kampen diagram. Regardless, we can always ap-
proximate the disc by a van Kampen diagram.

Lemma 3.3. Let w =G 1. Let β : D2 → XG be a Lipschitz map such that β|S1 =
λw . Then there is a van Kampen diagram D with boundary word w such that
area(D). area(β).

We define area(D) to be the number of 2-cells in D .

Proof. Without loss of generality we may suppose that β is smooth on the inte-
rior of every cell. By the co-area formula

area(β) =
∫

XG

#β−1(y)d y = ∑
σ∈F 2(X )

∫
σ

#β−1(y)d y

where F 2(X ) is the set of 2-cells in X . By Sard’s theorem almost every y ∈ σ is a
regular point (that is, Dβx is nonsingular for every x ∈ β−1(y)). In particular, we
can define the degree of β on σ. Pick a regular point y ∈σ, then define

degy (β) = ∑
x∈β−1(y)

sign(detDβx ).

Let yσ be a regular point such that

#β−1(yσ) ≤ 1

area(σ)

∫
σ

#β−1(y)d y <∞.

Because yσ is regular, the inverse function theorem applies. There is a neigh-
borhood Uσ 3 yσ such that β−1(Uσ) consists of finitely many disjoint discs, each
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containing one element of β−1(yσ), and each sent diffeomorphically to Uσ by β.
Let m = minσarea(σ). Then

#β−1(yσ) ≤ 1

m

∫
σ

#β−1(y)d y,

so ∑
σ

#β−1(yσ) ≤ 1

m
area(β).

Let r : XG → XG be a map which sends each Uσ to σ and sends σ \ Uσ to ∂σ.
Consider r ◦β. Draw lollipops going around the Uσ. The image of the lollipops
under r ◦β is in X (1)

G . The boundary curve is homotopic to r ◦β|S1 = β|S1 . Call

the boundary curve γ : S1 → X (1)
G . Then γ is homotopic to β|S1 ∼ λw by a ho-

motopy in X (1)
G . Straighten out γ to be an edge path λq where q is of the form

q = ∏d
i=1 wi r±1

ji
w−1

i (where r ji is the relator bounding the cell that the i th lol-

lipop is sent to).
Then q admits a van Kampen diagram with

∑
σ#β−1(yσ) 2–cells, and λq ∼ γ∼

β|S1 ∼ λw by a homotopy in X (1)
G . Therefore, q =F w , so we a can fold the van

Kampen diagram for q to get a van Kampen diagram for w . �

Proposition 3.4. There is a 2-complex X such that δX (L) > ee ...e
L

for sufficiently
large L.

Theorem 3.5. (Novikov–Boone) There is a finitely presented group G such that
there is no algorithm to decide whether w =G 1.

Corollary 3.6. With G as in Novikov–Boone, there is no computable function f
such that if w =G 1 and `(w) ≤ L, then there is a VKD for w with area ≤ f (L).

Proof. Suppose that such an f exists. Consider the algorithm, on input w , which
attempts to construct a VKD for w with area ≤ f (`(w)). If one is found, then
w =G 1. Otherwise w 6=G 1. �

Corollary 3.7. There is no computable f such that δXG (L) ≤ f (L)) for all L (with
G as in Novikov–Boone).

Proof. We have seen that if wG = 1, then there is a VKD for w with. δXG (λw ) 2-
cells. Thus, for every computable f , there are words w of arbitrarily large length
such that w =G 1 and any van Kampen diagram for w has area > f (`(w)). It
follows that δXG (λG )& f (`(w)). �

4. LECTURE 4: 2022-02-15: FILLING PROBLEMS IN HIGHER DIMENSIONS AND

SINGULAR LIPSCHITZ HOMOLOGY (NOTES BY ZHENGJIANG LIN)

An example of a group with unsolvable word problem can be found at https:
//en.wikipedia.org/wiki/Word_problem_for_groups#Examples; it has 10
generators and about 30 relators. Which invites the question:

Question. If the presentations of groups with unsolvable word problem are so
complicated, why can’t we just avoid them?

https://en.wikipedia.org/wiki/Word_problem_for_groups#Examples
https://en.wikipedia.org/wiki/Word_problem_for_groups#Examples
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First, the unsolvability of the word problem implies the unsolvability of other
problems through the following lemma (part of the Adian–Rabin theorem):

Lemma 4.1 (1-Embedding Lemma). Given G = 〈g1, g2, . . . , gn | r1, . . . ,rs〉, w ∈
F (g1, . . . , gn), we can add generators and relations to G to get Gw , s.t. Gw

∼= {1}
if and only if w =G 1.

This lemma implies that the triviality problem (given a group G , decide whether
G is the trivial group) is unsolvable. Hence, for an arbitrary manifold X , deciding
whether π1(X ) is trivial is unsolvable. More generally, calculating π1(X ) in any
effective sense is unsolvable.

Moreover, this applies to manifolds, not just complexes.

Lemma 4.2. Given a group presentation, there is a 4-dimensional closed mani-
fold MG such that π1(MG ) =G.

One can consturct such a manifold by embedding the presentation complex
XG of G into R5 and finding a neighborhood U of XG that defomation retracts to
XG . Then π1(∂U ) ∼= G and we can choose U such that ∂U is a manifold. Thus,
classifying 4-dimensional manifolds in an effective sense (i.e., in a way that you
can recognize whether a manifold is simply-connected) is impossible.

In higher dimensions, we can make a stronger statement:

Theorem 4.3 (Novikov). The homeomorphism problem for n–manifolds is un-
solvable if n ≥ 5.

This theorem implies that determining whether an n-complex is a manifold is
unsolvable for n ≥ 6. And if we can’t recognize S6, then there must be Riemann-
ian manifolds diffeomorphic to S6 but the diffeomorphism is uncomputably
complicated.

Theorem 4.4 (Nabutovsky-Weinberger). Let

R(S6) = {Riemannian metrics on S6 with |K | ≤ 1}.

Consider diam : R(S6) → R. Then the function diam has infinitely many local
minima. In fact, for any computable function F , there are infinitely many local
minima M of depth ≥ F (diam(M)).

4.1. Filling problems in higher dimensions. We return now to filling problems.
The basic question in higher dimensions is the following:

Question. Given an n-dimensional surface in X , what is the smallest (n + 1)-
volume needed to fill it? That is, we want to find FV n+1(α) ≡ inf∂β=αmeasure(β).

Let’s formulize this question in simplicial topology first. One can see Hatcher’s
Algebraic Topology as a reference.

Let X be a simplicial complex.

F n(X ) = {n-dimensional simplices} = {〈v0, . . . , vn〉 ⊆ X }.
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We fix a total order on the vertex set of X and we write simplices with vertices in
ascending order so that there’s a canonical way to write any simplex. Let

Cn(X ) = {formal sums of n- simplices} =
{ k∑

i=1
aiδi | ai ∈Z, δi ∈ F n(X )

}
.

And we define ∂ : Cn(X ) →Cn−1(X ) to be the linear map such that

∂(〈v0, . . . , vn〉) =
n∑

i=0
(−1)i 〈v0, . . . , v̂i , . . . , vn〉.

We also set Bn(X ) ≡ ∂Cn+1(X ) = n-boundaries and Zn(X ) ≡ {T ∈ Cn(X ) | ∂T =
0} = n-cycles ⊇ sums of oriented simplicial n-surfaces. A direct calculation shows
that ∂2(〈v0, . . . , vn〉) = 0. Hence, Bn ⊆ Zn . But generally, Bn 6= Zn and Hn(X ) ≡
Zn(X )/Bn(X ) is not a trivial group. For example, a two dimensional torus has
the H1 equaling to Z2.

Now, let X be a simplicial complex. We define

mass(
k∑

i=1
aiδi ) ≡

k∑
i=1

|ai |.

And for an α ∈ Bn(X ), we define FV n+1(α) ≡ inf∂β=αmass(β) and FV n+1(V ) ≡
supα∈Bn (X ),mass(α)≤V FV n+1(α). We are interested in how to calculate FV k+1

Rn for
k < n.

First, we expect that FV k+1
Rn (V ) ∼V (k+1)/k . The reason is direct. Say, in Rn , we

have a 2-dimensional surface α with vol(α) = V . We rescale α by V −1/2 and get
α̂ with volume equaling to 1. We fill α̂ with a 3-chain β̂ with volume ≤ FV 3(1).
Then we scale β back by V 1/2 to get β such that ∂β = α and mass(β) ≤ FV 3(1) ·
V 3/2. Therefore, FV 3

Rn (V ) ≤ FV 3
Rn (1) ·V 3/2. But the problem here is that we do

not know whether FV 3
Rn (1) is finite. Hence, we need more tools.

4.2. Singular Lipschitz Homology. We first define the set of singular Lipschitz
chains as the following:

C Lip
n ≡

{ k∑
i=1

ai [σi ]
∣∣∣ ai ∈Z,σi :∆n → X is Lipschitz

}
.

(We use square brackets to distinguish the map σi from the chain [σi ].) Here,
∆n = 〈e0, . . . ,en〉, and we define the boundary map as

∂[σ] =
n∑

i=0
(−1)i [σ|〈e0,...,êi ,...,en〉].

If X is a simplicial complex and δ ∈ F n(X ), then there is a canonical map σδ :
∆n → δ. This will induce an inclusion map Cn(X ) ,→ C Lip

n (X ). For any Lip-

schitz map f : X → Y , there is a push-forward map f# : C Lip
n (X ) → C Lip

n (Y ),
f#(

∑k
i=1 ai [σi ]) =∑k

i=1 ai [ f ◦σi ]. A standard theorem in topology guarantees the
following:

Theorem 4.5. Let H Lip
n (X ) ≡ Z Lip

n (X )/B Lip
n (X ), then H Lip

n (X ) ∼= Hn(X ).
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We then define the mass on singular Lipschitz chains by mass(
∑k

i=1 ai [σi ]) ≡∑k
i=1 |ai |vol(σi ). As before, we define

FV n+1
X ,Lip(α) ≡ inf

∂β=α
mass(β)

and
FV n+1

X ,Lip(V ) ≡ sup
α∈B Li p

n (X ), mass(α)≤V

FV n+1
X ,Lip(α).

Then the following approximation theorem holds:

Theorem 4.6 (Deformation Theorem, Federer-Fleming). Let X be a simplicial
complex with standard metric (each simplex is isometric to unit simplex) or with
a metric which is bi-Lipschitz equivalent to the standard metric. Then, for any
n > 0, there is a C > 0, such that for any A ∈ C Lip

n (X ), there are P (A) ∈ Cn(X ),
Q(A) ∈C Lip

n+1(X ), and R(A) ∈C Lip
n (X ), such that A = P (A)+∂Q(A)+R(A) and

mass(P (A)) ≤C ·mass(A),

mass(Q(A)) ≤C ·mass(A),

mass(R(A)) ≤C ·mass(∂A).

Further, if ∂A = 0, then R(A) = 0 and A = P (A)+∂Q(A).

Here, P (A) is a simplicial chain approximating A, R(A) connects ∂A to the
simplicial chain ∂P (A), i.e.,

∂R(A) = ∂A−∂P (A)−∂2Q(A) = ∂A−∂P (A),

and Q(A) is like a homotopy from A to P (A). In particular, if A is a cycle (i.e.,
∂A = 0), then ∂P (A) = ∂A−∂2Q(A) = 0, so P (A) is a cycle too.

5. LECTURE 5: 2022-02-22: ISOPERIMETRIC INEQUALITY IN EUCLIDEAN SPACE

(NOTES BY DAN SIMON)

5.1. The Federer–Fleming theorem. Last time, we talked about simplicial chains
and singular chains. It’s a classic theorem in topology that these give you the
same homology (we get homology by modding cycles (the kernel of the bound-
ary map) by boundaries (the image of the one-dimension-higher boundary map)).

We can give a quantitative version of this. Let C Lip
n be the space of Lipschitz n–

chains and let C∆
n be the space of simplicial n–chains.

Theorem 5.1 (Federer-Fleming). Let X be a finite-dimensional simplicial com-
plex, or bi-Lipschitz to a simplicial complex. There exists c > 0 (depending on the
dimension of X , or on the bi-Lipschitz constant if we’re in the “bi-Lipschitz to a
simplicial complex” case) such that for all A ∈ C Lip

n (X ), there exist P (A) ∈ C∆
n (X ),

Q(A) ∈C Lip
n+1(X ), and R(A) ∈C Lip

n (X ) such that:

(1) A = P (A)+∂Q(A)+R(A),
(2) mass(P (A)) ≤ cmass(A),
(3) mass(Q(A)) ≤ cmass(A),
(4) mass(R(A)) ≤ cmass(∂A).
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If ∂A ∈C∆
n−1(X ), then we can choose R(A) = 0.

Note: Only P (A) is simplicial here; Q(A) and R(A) generally aren’t.
Here is a picture with a one-dimensional A:

Proof. Suppose ∂A ∈ C∆
n−1(X ) (the general case uses similar tools). Proceed by

induction. Base case: supp(A) ∈ X (n). To handle the base case, we want to show:

Lemma 5.2. If A ∈C Lip
n (X (n)) (that is, A ∈C Lip

n (X ) and supp(A) ⊂ X (n)) and ∂A ∈
C∆

n−1(X ), then there exists B ∈C Lip
n+1(X (n)) such that ∂B = A− Â where Â =C∆

n (X ).

In general A and Â may not be the same – since A is a Lipschitz chain, it can
have cells that are bigger or smaller than the simplices of X .
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In the above picture (which should be thought of as part of a line), A is a line
segment, but in the cell complex on X there’s no single line segment A; it’s di-
vided into two parts. So Â needs to be the combination of those parts, and we
can find B ∈ C Lip

n+1(X (n)) with ∂B = A − Â and with mass(B) = 0 (since B is an
(n +1)–chain in an n–dimensional complex).

In fact, Â can be written in terms of degree:

Â = ∑
δ∈F n (X )

degδ(A) ·δ,

where degδ(
∑

aiσi ) = ∑
ai degxδσi for generic xδ. (Since ∂A lies in X (n−1), the

degree is independent of the choice of xδ.) As a consequence of this formula,
mass(Â) ≤ mass(Â). (Note that backtracking along reused parts of simplices,
such as curves, can occur in A but not in Â, so this is not guaranteed to be an
equality.)

We omit the proof of this lemma for lack of time.
Having dealt with the base case, we will move on to the inductive case. Sup-

pose supp(A) ⊂ X (k) where k > dim(A). For every cell complex simplexδ ∈ F k (X ),
choose a point xδ ∈

∫
(δ). Define ρ(δ) : δ \ {xδ} → ∂δ by radial projection. This is

continuous on δ \ {xδ} and fixes ∂δ pointwise. Define R : X (k) \ {xδ}δ → X (k−1)
so that R fixes X (k−1) and R|δ = ρδ for all δ ∈ F k (X ). If xδ 6∈ supp(A) for all δ
then we let Ak−1 = Rk (A). Further, R is homotopic to the identity, say by Ln :
X (k) \ {xδ}δ× I → X (k).

(We need linearity to do radial projection. There are sort of three options
here. One is to pull back along maps from simplices in Euclidean space, do radial
projection there, and push forward. Another is to embed into high-dimensional
Euclidean space where all cells are linear, and do it there. A third is to embed our
simplicial complex in the infinite-dimensional simplex, and do it there.)

Let Qk−1 = h#(A × I ) ∈ C Lip
n+1(X (k)). ∂Qk−1 = A − Ak−1. Let d = dim X and let

Ad be original A. Radially project to get a sequence A = Ad , A = Ad−1, . . . , An

and a sequence Qk such that ∂Qk = Ak − Ak−1. Then by the lemma, there is a

simplicial Â and a B ∈ C Lip
n+1(X (n)) such that ∂(B) = An − Â. Let P (A) = Â and let

Q(A) =Qd +Qd−1 + . . .+Qn+1 +B. Then P (A) is simplicial and

∂Q(A) = (A− Ad−1)+ (Ad−1 − Ad−2)+ . . .+ (An+1 − An)+ (An − Â) = A−P (A).
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This handles the qualitative issues, but what about the quantitative issues?
The main quantitative issue is the part of each simplex with large Lipschitz con-
stant for the projection R, which is the part near each xδ. If we choose xδ ran-
domly from a region in int(δ), then the expected mass of rδ(A) is E[massrδ(A)] ≤
cmass(A). Then there is some xδ with massrδ(A) ≤ cmass(A). Choose one of
these in each simplex. Then mass(Ak−1) ≤ cmass(Ak ). So mass(P (A)) ≤ cd mass(A).
(There are at most d steps involved.) This completes the proof.

(Note: the existence of such a c uses the bi-Lipschitz equivalence of our met-
ric to the standard isometric simplicial metric. We can do the same thing for
simplices that aren’t equilateral, but the constant depends on the shape of the
simplex, so if the simplices degenerate, the constant can blow up.) �

5.2. The isoperimetric inequality for Euclidean space. How can we use this?
First, we can bound the filling volume function for Rn and show that

FVk+1
Rn (C )/V (k+1)/k FVk+1

Rn (1).

Give Rn the structure of a subdivision of the unit grid, so that each simplex is
bi-Lipschitz equivalent to the standard simplex. Let

m = minδ∈F k (Rn )vol(δ).

(Minimal cell volume.) Let c be as in Federer–Fleming. Let A ∈C Lip
k (Rn), ∂A = 0.

Let mass(A) =V.
We rescale A to have small volume. Define s :Rn →Rn , s(x) = (

(m/2cV )1/k
)

x.
Then

masss(A) = m

2cV
mass(A) ≤ m

2c

Let Â = s(A). Then massP (Â) ≤ m
2 . But P (Â) is a sum of simplices, and each sim-

plex has volume at least m, so P (Â) = 0. Since ∂Â = 0, Federer–Fleming implies
that

Â = P (Â)+∂Q(Â)+R(Â) = ∂Q(Â)

and massQ(Â) ≤ cmass(Â) ≤ m
2 .

Scaling back, we have ∂(s−1(Q(Â))) = A, and

mass(s−1(Q(Â))) ≤ (2cV /m)(k+1)/k
(m

2

)
/V (k+1)/k .

This is the bound we wanted on the mass of A.
To summarize the idea of this proof, we rescale to make everything smaller

so that when we apply Federer-Fleming, everything will be smaller than the cell
size. This means that our rescaled A is entirely the Q term, which increases by
roughly a factor of V (k+1)/k when we scale it back.

5.3. The Heisenberg group. We define the Heisenberg group as

H=


1 x z
0 1 y
0 0 1

 |x, y, z ∈R
 .
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Recall that the commutator of a and b is defined as [a,b] = aba−1b−1. Let HZ
be the subgroup of H with entries in Z rather than in R. It can also be written as
〈X ,Y , Z |[X ,Y ] = Z , [X , Z ] = 1,[Y , Z ] = 1〉. By matrix calculations, [H,H] is matri-

ces of the form

1 0 z
0 1 0
0 0 1

 and [[H,H],H] = 1.

We can identify H with R3 so that (x, y, z) is identified with

1 x z
0 1 y
0 0 1

. The

elements ofHZ are the lattice points and the Cayley graph ofH looks like this:

The way that the lines tilt as you go from left to right reflects how the multiplica-
tion works; if you multiply (x, y, z) by X (on the right), the x coordinate increases
by 1. If you multiply by Z , the z coordinate increases by 1. If you multiply by Y ,
the y coordinate increases by 1, but the z coordinate also increases by x. Note
that this is noncommutative: [X ,Y ] = Z .

How can we write elements of this group? We can swap Z and Z−1 with other
stuff to put them at the end of the word. We can swap powers of X with powers
of Y , but [X ,Y ] = Z , so this creates powers of Z , which we can push to the end.
So we can write any element in the form X i Y j Z k for integer i , j ,k. It’s not that
hard to see that these i , j ,k are unique for a given element of the Heisenberg
groups.

So how does the Dehn function of the Heisenberg group behave?
On one hand, there are curves in H that are hard to fill. For instance, we can

see that X nY n X −nY −n = Z n2
. So an isomorphism of this group will have to scale

different axes differently, in a sense. Also, since Z commutes with anything,
[X n , Z n2

] = 1, so the length-10n word [X n , [X n ,Y n]] is equal to 1. But reducing
it to 1 in a naive way requires resolving things like [X n , Z n2

] = 1, which requires
pushing n things past n2 things and so takes n3 steps. Is this within a constant
factor of being optimal? (Yes; we’ll see a quick argument today.)

On the other hand,Hk is the group of matrixes with ones on the diagonal, and
all other entries 0 except for the topmost row and rightmost column. It can be
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written H = 〈X1, . . . , Xk ,Y , . . . ,Yk , Z |[Xi ,Yi ] = Z , all other pairs commute〉. The
only pairs that don’t commute are Xi and Yi , where the subscripts match. We
have [X n

i ,Y n
i ] = Z n2

and [X n
i , [X n

i ,Y n
i ]] = 1. But when k ≥ 2, there’s a reduction

with roughly n2 steps.
So why do these differ? Today, we’ll see a quick argument for why the Dehn

function of H is cubic; next time, we’ll see why the Dehn function of Hn is qua-
dratic when n ≥ 2.

First, why does it take n3 steps to reduce [X n , [X n ,Y n]] in H? The multiplica-
tion formula forH is

(x, y, z) · (x ′, y ′, z ′) = (x +x ′, y + y ′, z + z ′+x y ′).

There are three left-invariant vector fields on H, as follows: X(x,y,z) = (1,0,0),
Y(x,y,z) = (0,1, x), Z(x,y,z) = (0,0,1) (corresponding to the different colors of edges
in the figure). We define a Riemannian metric by d g 2 = d x2 +d y2 + (d z − xd y)2

so that these fields are orthogonal.
Consider wn = X nY n X −nY −2n X −nY n X n as a path in the Cayley graph. This

is a non-intersecting closed curve inH. It has filling area n3. Indeed, if we project
it into the y z-plane, it looks like a triangle with area n3. But the map that projects
surfaces into the y z-plane is, crucially, area-decreasing (because, with respect to
the orthogonal basis X , Y , Z , the projection is an orthogonal projection followed
by a map with determinant 1). So any filling has area at least n3 in the projection
and so actually has area at least n3.

Note that we only get this area-decreasing property when projecting to the
Y Z -plane, not to the X Y -plane. So we’d like to find some more general way to
do this, which we’ll discuss next time.

6. LECTURE 6: 2022-03-01: ISOPERIMETRIC INEQUALITIES IN THE HEISENBERG

GROUPS (NOTES BY HARI NATHAN)

Last time, we discussed the Heisenberg groupHwith multiplication (x, y, z)(x ′, y ′, z ′) =
(x + x ′, y + y ′, z + z ′) and the Dehn function of this group. We saw that the word
γn = X nY n X −nY −2n X −nY n X n makes a loop in the Heisenberg group:

This loop projects to a figure-8 in the x y–plane and a triangle in the y z–plane.
Since the projection π(x, y, z) = (y, z) is area decreasing and π(γn) is a triangle
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with area n3, any filling of the original loop γn has area at least n3. Today, we will
look at this using differential forms.

6.1. Differential forms. LetΩk (Rn) the the set of k–forms, i.e., alternating mul-
tilinear functions that take k tangent vectors at a point to a real number. Let ω
be the area form in the y z–plane:

ω= d y ∧d z ∈Ω2(R2)

ω((y1, z1), (y2, z2)) = y1z2 − y2z1 = det

(
y1 y2

z1 z2

)
Note that ω is closed (i.e., dω= 0), since dω is a 3–form, and Ω3(R2) = 0.
Recall

Theorem 6.1 (Stokes). If M ⊂ Rn is an oriented manifold with boundary and
ω ∈Ωk−1(Rn) then: ∫

M
d w =

∫
∂M

w

(This generalizes the usual fundamental theorem of calculus: when M is a
curve from p to q (and so d M = q −p) and f ∈Ω0(Rn) is a real valued function
of a point), we have∫

M
d f =

∫
M
∇ f ·d x = f (q)− f (p) =

∫
∂M

f = f (q)− f (p)

Likewise, the curl theorem; if f : D2 → M parametrizes M , then∫
M

curl(V ) ·d A =
∫

D2
curl(V ) · ∂ f

∂u
× ∂ f

∂v
du d v =

∫
∂M

V ·d x.

Here, the 2–form is (X ,Y ) 7→ curl(V ) ·X ×Y . The divergence theorem is left as an
exercise.)

Stokes’ theorem generalizes to Lipschitz singular chains: if A = ∑
i aiσi (ai ∈

R,σi :∆2 →R2) is a Lipschitz 2–chain we define:∫
A
ω=∑

i

(
ai

∫
σi

ω

)
=∑

i

∫
∆2
ω

(
∂σi

∂s
,
∂σi

∂t

)
d s d t

Then, by Stokes’ theorem, for any ω ∈Ωk (Rn) and B ∈C Lip
k+1(Rn):∫

∂B
ω=

∫
B

dω.

And we can use this to define the signed area of A ∈C Lip
2 (R2) as

sarea(A) =
∫

A
d y ∧d z.

If ∂A = ∂B then ∂(A −B) = 0. Since H∗(R2) = 0, ∃C s.t. ∂C = A −B . By Stokes’
Theorem:∫

C
d(d y ∧d z) =

∫
A−B

d y ∧d z ⇒
∫

C
d 2 y ∧d z −d y ∧d 2z =

∫
A

d y ∧d z−
∫

B
d y ∧d z
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⇒
∫

C
0 = sarea(A)− sarea(B) ⇒ sarea(A) = sarea(B)

So if ∂A = ∂B , then sarea(A) = sarea(B). That is. the signed area depends only
on the border, not the filling. More generally, ifω ∈ΩK (Rn) is closed (i.e. d w = 0)

and if A,B ∈C Li p
k (Rn) s.t. ∂A = ∂B then:∫

A
ω=

∫
B
ω

Now we apply this to the Heisenberg group.

6.2. The Heisenberg Group. Recall that we define three left invariant vector
fields:

X(x,y,z) = (1,0,0) Y(x,y,z) = (0,1, x) Z(x,y,z) = (0,0,1)

and give H the Riemmanian metric such that these are orthonormal. Then, for
any U ,V ∈ {X ,Y , Z } and any vectors S,T ,

|π∗(ω)(U ,V )| ≤ 1 ⇒∃c > 0 s.t . |π∗(ω)(S,T )| ≤ c · ‖S ∧‖g

⇒
∣∣∣∣∫

A
π∗(ω)

∣∣∣∣≤ c ·mass(A)

i.e. π∗(ω) is bounded. Let γn = X nY n X −nY −2n X −nY n X n be the curve from the

beginning of the section. If A ∈C Li p
2 (H) s.t. ∂A = γn then ∂π#(A) =π◦γn . So:∫

A
π∗(ω) =

∫
π#(A)

ω= sarea(π#(A)) = n3 = area of π◦γn

Since π∗(ω) is bounded,

mass(A) ≥ c−1
∫

A
π∗(ω) ≥ c−1n3.

6.3. Homological lower bounds on filling area. This gives us a general approach
to finding lower bounds on filling volume:

(1) find a bounded closed form µ ∈Ωk (X )
(2) find a (k −1)–cycle M and an A s.t. ∂A = M
(3) if

∫
Aµ is large, then for any B s.t. ∂B = M we have (1)

∫
Aµ= ∫

B µ; and (2)
mass(B)& |∫Aµ| = |∫B µ| is large.

If the space is a group equipped with a left-invariant metric, it’s convenient to
take left-invariant forms. We define left-invariant 1–forms dual to X ,Y , and Z
by

ωX = d x ωY = d y ωZ = d z −x d y.

(Recall that d f is the 1–form corresponding to the gradient of f . d x is the gradi-
ent of the first coordinate function x : R3 → R, i.e., d x(v) is the x–coordinate of
v .) And one can check that:

π∗(d y ∧d z) =ωY ∧ωZ = d y ∧ (d z −xd y) = d y ∧d z −xd y ∧d y = d y ∧d z
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is a left-invariant closed 2-form, so it gives a lower bound on filling area. Like-
wise,ωX ∧ωZ = d x∧d z−xd x∧d y is a closed bounded 2-form, so it gives a lower
bound on filling area.

6.3.1. Scaling H. We can see what lower bounds ωX ∧ωZ and ωY ∧ωZ produce
by looking at scalings of H. One can check that for all t > 0, the map st :H→H,
st (x, y, z) = (t x, t y, t 2z) is an automorphism. In addition:

(st )∗(X ) = t X (st )∗(ωX ) = tωX

(st )∗(Y ) = tY (st )∗(ωY ) = tωY

(st )∗(Z ) = t Z (st )∗(ωZ ) = tωZ

So ωY ∧ωZ and ωX ∧ωZ both grow cubically, i.e.:

(st )∗(ωY ∧ωZ ) = tωY ∧ t 2ωZ = t 3ωY ∧ωZ

Thus, if A ∈C Li p
2 (H):∫
(st )#

ωY ∧ωZ =
∫

A
(st )∗(ωY ∧ωZ ) = t 3

∫
A
ωY ∧ωZ .

So if
∫

AωY ∧ωZ 6= 0, then ∂A has cubic filling area. Thus the Dehn function of
the Heisenberg group grows cubically.

6.4. 5-dimensional Heisenberg group (H2). Similar to H (which we write as H1

from here on in to distinguish it fromH2), we can constructH2 via matrices like:
1 x1 x2 z
0 1 0 y1

0 0 1 y2

0 0 0 1


so:

(x1, x2, y1, y2, z) · (x ′
1, x ′

2, y ′
1, y ′

2, z ′) = (x1 +x ′
1, · · · , y2 + y ′

2, z + z ′+x1 y ′
1 +x2 y ′

2).

As above we define fields and 1–forms:

X1 = (1,0,0,0,0) ωX1 = d x1

X2 = (0,1,0,0,0) ωX2 = d x2

Y1 = (0,0,1,0, X1) ωY1 = d y1

Y2 = (0,0,0,1, X2) ωY2 = d y2

Z = (0,0,0,0, Z ) ωZ = d z −x1d y1 −x2d y2

Here, ωY1 ∧ωZ is still bounded and has cubic growth, but unlike withH1:

d(ωY1 ∧ωZ ) = dωY1 ∧ωZ −ωY1 ∧dωZ

= 0−d y1 ∧ (−d x1 ∧d y1 −d x2 ∧d y2)

= d y1 ∧d x1 ∧d y1 +d x1 ∧d x2 ∧d y2

= d y1 ∧d x2 ∧d y2 6= 0.

So the argument we used before won’t work.
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So the question is, why does H2 have quadratic Dehn function? The reason
is that the scaling limit has more surfaces. That is, let d(v, w) be distance in H2

and for r > 0 let:

dr (v, w) = 1

r
·d(sr (v), sr (w)).

As r →∞, this converges to a metric d∞; H equipped with this metric is called
the scaling limit ofH.

We can write dr in terms of a Riemannian metric gr . Recall that d g 2 =ω2
X1

+
·· ·+ω2

Y2
+ω2

Z . So, dr corresponds to:

d gr = s∗r (d g 2) · 1

r 2 = 1

r 2 (r 2 ·ω2
X1

+·· ·+ r 2 ·ω2
Y2
+ r 4 ·ω2

Z )

=ω2
X1

+·· ·+ω2
Y2
+ r 2ω2

Z .

This is the Riemannian metric where the X ’s and Y ’s and Z are orthogonal
and the X ’s and Y ’s have norm 1 but Z has norm r . In the limit, vectors in
ker (ωz ) = 〈X1, X2,Y1,Y2〉 have finite length and the other vectors have infinite
length. This is a sub-riemannian metric.

If γ[0,1] → H2 and γ′(t ) ∈ ker (ωz ) we say γ is horizontal and `(γ) = ∫ ‖γ′‖ =∫ ‖γ′‖gr = `r (γ).

Theorem 6.2 (Chow). Any two points in H1 or H2 are connected by a horizontal
curve.

You can go from a point p to a point with the same first four coordinates as
q by using lines parallel to X1, ...,Y2. Then follow a commutator [X1,Y1] to move
up or down. In fact, if we let:

d∞ = lim
r→∞dr ,

then

d∞(0, (x1, ..., y2, z)) ≈ |x1| · · · |y2|+
√

|z|.
So (H2,d∞) has Hausdorff dimension 6 (one for each of X1, ..., Y2 and two for Z ).

The length of a horizontal curves scales linearly under sr : `(sr ◦γ) = r`(γ), and
we say that a surface σ : ∆2 → H2 is horizontal if σ′(T∆2) ⊂ ker (ωZ ). Then the
big difference between H1 and H2 is that H1 has no nondegenerate horizontal
surfaces:

Proposition 6.3. Horizontal surfaces inH are degenerate, i.e. σ′ is never injective,

butH2 has plenty, as we’ll see in the next section.

6.5. Horizontal Subgroups. H2 has a large number of horizontal subgroups. To
see this, we note that the Lie Algebra ofH2 is:

h2 = 〈X1, X2,Y1,Y2, Z :[X1,Y1]L = [X2,Y2]L = Z ,

[X1, X2]L = [X1,Y2]L = [Y1, X2]L = [Y1,Y2]L = 0〉
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where [·, ·]L refers to the Lie Bracket. Abelian subgroups of H2 correspond to
abelian sub-algebras of η2 e.g. 〈Y1,Y2〉 is an abelian subgroup so Y1,Y2 generate
an abelian subgroup: 


1 0 0 0
0 1 0 a
0 0 1 b
0 0 0 1

= Y a
1 Y b

2

∼=R2

and this is horizontal (tangent to Y1 and Y2). The same is true for the other pairs
of X ’s and Y ’s where [·, ·]L is zero and even for some combinations:

[Y1 −X2,Y2 −X1]L = [Y1,Y2]L − [Y1, X2]L − [X2,Y2]L + [X2, X1]L = Z −Z = 0.

And these fit together to fill horizontal curves. For example, the word [X1,Y1][X2,Y2]−1

is a horizontal closed curve, and we can combine these subgroups to fill it as fol-
lows:

So the curve corresponding to [X1,Y1][X2,Y2]−1 bounds a horizontal disc of area
5. By rescaling, [X n

1 ,Y n
1 ][X n

2 ,Y n
2 ]−1 bounds a horizontal disc of area 5n2.

Thus, we can fill [X n
1 , [X n

1 ,Y n
1 ]] quadratically as follows:

[X n
1 , [X n

1 ,Y n
1 ]] →

∼n2 steps
[X n

1 , [X n
2 ,Y n

2 ]] →
∼n2 steps

1

7. LECTURE 7: 2022-03-08: HEISENBERG GROUPS AND QUANTITATIVE

HOMOTOPY THEORY (NOTES BY JULIAN CORTES)

7.1. Dehn function of H2. Last time we showed that there are many horizontal
discs in the five dimensional Heisenberg group. We’ll start today by showing how
to use these to bound the Dehn function of the Heisenberg group. 1

Recall from last time that [X1,Y1][X2,Y2]−1 bounds a horizontal disc of area
A ≤ 10. When we scale the Heisenberg group, horizontal discs scale with it, i.e.
[X n

1 ,Y n
1 ][X n

2 ,Y n
2 ]−1 bounds a horizontal disc of area A ≤ 10n2.

So: how can we use this to fill arbitrary curves? First, we note the following
presentation forH2:

(1) H2 =
〈

X1,Y1, X2,Y2

∣∣∣[X1,Y1][X2,Y2]−1, [X1, X2], [Y1,Y2], [X1,Y2], [Y1, X2]
〉

1There are many other proofs of this fact - Gromov [3] sketched the first, using microflexibility;
Ol’shanskii–Sapir [5] gave a combinatorial proof; and Allcock [1] gave a proof using symplectic
geometry.
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Every relation in (1) bounds a horizontal disc, so any word in X1,Y1, X2,Y2 that
represents the identity bounds a horizontal disc. But note that the area of the
disc depends on the length of the word – since there are only finitely many
curves of length L, for any L, there is a A > 0 such that any word of length L
bounds a horizontal disc of area at most A.

Theorem 7.1. δH2(L) ≤ L2

Proof. It suffices to take L = 2k , k ≥ 0. Let γ : [0,L] →H2 be a unit speed closed
curve. We construct a sequence of horizontal approximation of γ as follows,

Let X be the Caley graph of H2 generated by X1, X2,Y1,Y2. Every edge is hori-
zontal of length 1. On the other hand, take i ≥ 0 and let Xi = s2i (X ), namely the
scaling by a factor of 2i . We still have that every edge is horizontal and of length
2i and Xi+1 ⊂ Xi .

Now let pi : H2 → X (0)
i be the nearest point projection and let γi be the edge

path on Xi connecting pi (γ(0)), pi (γ(2i )) . . . pi (γ(2k−i · 2i ). This gives us a rela-
tively nice curve.

Note that γi consists of 2k−i edge paths of length ∼ 2i each consisting of ∼ 1
edges in Xi . When i = k, we have pk (γ(0)) = pk (γ(2k )) so γk is constant.

So this is a sequence of horizontal curves, all of about the same length, that
approximate γ more and more coarsely. We can construct a null-homotopy of γ
by constructing a homotopy from γ to γ0 to γ1 and so on until we reach γk which
is constant.
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We find a homotopy from γi to γi+1 by connecting each point γi+1( j 2i+1) to
γi ( j 2i+1) by an edge path in Xi . Each of these paths has length ≈ 2i , and these
paths subdivide the region between γi and γi+1 into 2k−i−1 closed curves. Each
curve is an edge path in Xi of length ≈ 2i , so each curve is a scaling of a word of
length ≈ 1. Therefore, each curve bounds a horizontal disc of area ≈ 22i .

So, in all, we use:

γ0 → γ1 : ∼ 2k discs of area ∼ 1, total ≈ 2k ·1

γ1 → γ2 : ∼ 2k−1 discs of area ∼ 22, total ≈ 2k−1 ·22 ...
...

γk−1 → γk : ∼ 1 disc of area ∼ 22k , total ≈ 1 ·22k

This adds up to ≈ 22k = L2. �

In general if G is Carnot and there are enough horizontal discs to fill arbitrary
edge paths, the previous method can be applied to G .

The converse is trickier – if the Dehn function is quadratic, what does that
imply about horizontal discs?

Theorem 7.2 (Wenger [6]). If G is a Carnot group and δG (L) ≤ L2, then any hori-
zontal curve can be filled by a limit of horizontal discs.

Conversely, if there are not enough horizontal discs in G to fill all horizontal
curves then δG (L) is strictly greater than L2 (i.e., there is no C such that δG (L) <
C L2 for all L > 0.)

Open question: Find a better lower bound!

7.2. Quantitative homotopy theory. Homotopy theory studies homotopy classes
of maps X → Y . We can try to quantify this in a couple of ways:

• We can ask what classes of maps from X to Y can be realized by L–
Lipschitz maps?
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• Suppose f , g : X → Y are homotopic. How big is the homotopy from f to
g ? (For example, if Lip( f ), Lip(g ) ≤ L, what is the best Lipschitz constant
of the homotopy?)

Let’s try to address the first of these questions.

Definition 7.3. Let X be a space. Let α ∈πn(X ),n ≥ 2 For L > 0, let

Gα(L) = Growth of α = largest k such that αk can be realized by an L-Lipschitz map.

7.2.1. πn(Sn) and degree. For example, take πn(Sn) ∼= Z = 〈e〉. Let e : Sn → Sn

be a generator; we can take e to be the identity map. Recall that the degree of a
map f is the number of preimages of a regular point of f counted with orienta-
tion. Degree is well defined on homotopy classes; in fact, the degree map is an
isomorphism from πn(Sn) to Z.

But degree can also be computed using differential forms. Let ω ∈Ωn(Sn) be
a volume form. Then for f : Sn → Sn ,∫

Sn
f ∗(ω) =

∫
Sn

degx ( f )dx = vol(Sn) ·deg( f ).

If f is L-Lipschitz, then ‖ f ∗(ω)‖∞ ≤ Ln . This means that∣∣∣∣∫
Sn

f ∗(ω)

∣∣∣∣≤ Ln vol(Sn),

so deg( f ) ≤ Ln .
This inequality is sharp – we can see this by drawing an n–dimensional cube

D on the surface of an n–sphere and dividing it into an L×·· ·×L grid.

Let β : [0,1]n → Sn be a degree–1 map such that β(∂[0,1]n) = ∗. Let f : Sn → Sn

send Sn \ D to ∗ and let f restrict to β on each grid cell. Then Lip( f ) ∼ L and
deg( f ) = Ln so Ge (L) ∼ Ln .
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FIGURE 1. Hopf Fibration. Source: Wikipedia

7.2.2. π3(S2) and the Hopf fibration. The Hopf fibration is a map from S3 → S2

that generates π3(S2). If we write

S3 = {(z, w) ∈C2
∣∣∣|z|2 +|w |2 = 1}

and
S2 =C∪ {∞},

it is given by h(z, w) = z
w .

Note that: ∀a ∈C∪ {∞}

h−1(a) = S3 ∩ {z = w a} is a circle.

If S1 is the unit circle in C, then

h−1(S1) = {|z| = |w | = 1p
2

.

The isomorphism fromπ3(S2) toZ is given by the Hopf invariant H :π3(S2) →
Z. Suppose f : S3 → S2 is smooth and let a,b ∈ S2 be regular points. We define

H( f ) = Linking # of f −1(a) and f −b
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That is, f −1(b) is a 1–cycle. Let B be a 2-chain such that ∂B = f −1(b). Then
the linking number of f −1(a) and f −1(b) is the number of intersections of B
and f −1(a), counted with multiplicity. Then, like the degree, H is constant on
homotopy classes. One can show that H is an isomorphism from π3(S2) to Z
and that the circles h−1(a) and h−1(b) have linking number 1, so h generates
π3(S2).

Now we ask the same a question as before. How well can we realize the Hopf
fibration and powers of the Hopf fibration as Lipschitz maps?

Whitehead gave a calculation of H via differential forms.

Theorem 7.4 (Whitehead). Let ω1,ω2 ∈Ω2(S2) such that
∫

S2 ωi = 1. Consider the
pullback f ∗(ω2) ∈Ω2(S3). Then d f ∗(ω2) = f ∗ (dω2) = 0. Since H 2(S3) = 0, there
must be a primitive for f ∗(ω2), i.e, an α ∈Ω1(S3) such that dα= f ∗(ω2). Then

H( f ) =
∫

S3
α∧ f ∗(ω1)

Idea of proof. Consider the caseω1 is supported on a neighborhood of a andω2

on a neighborhood of b. Then the primitive can be constructed to be supported
on a neighborhood of B , where ∂B = h−1(b) as above. �

This gives us an upper bound on GL(L).
Let f : S3 → S3 be L–Lipschitz. Suppose ω1,ω2 are bounded , ‖ω1‖∞,‖ω2‖∞ ≤

1. Then

‖ f ∗(ω2)‖∞ ≤ L2

‖ f ∗(ω1)‖∞ ≤ L2

We can take (this requires some work) α ∈Ω1(S3) such that ‖α‖∞ . ‖ f ∗(ω2)‖∞
and dα= f ∗(ω2). Then

H( f ) =
∫

S3
α∧ f ∗ (ω1)

and since each of the terms in the integrand have norm L2 we can conclude that

|H( f )| ≤ L4.

Now for the lower bound. Let fL : S2 → S2 be an L–Lipschitz map with degree
L2. Then H( fL ◦h) = L4 and Lip( fL ◦h) ∼ L.

More generally: Sullivan’s rational homotopy theory proves that:

Theorem 7.5 (Sullivan). Let X be simply connected , let n ≥ 2 and let F :πn(X ) →
R be a homomorphism. Then F can be computed by a formula involving differ-
ential forms on X , primitives, and wedge products.

Gromov used this to show:

Theorem 7.6 (Gromov [4]). Let X be simply connected, let α ∈ πn(X ) of infinite
order. Then there is a d depending on α such that Gα(L) ≤ Ld .
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The question that arises is whether this bound is sharp. Recent results show
that it need not be.

Theorem 7.7 (Berdnikov–Manin [2]). Take the connected sum of 4 copies ofCP 2×
S2 and remove a point. This is a 6–dimensional manifold with non trivial π5. Let
α be the class of the puncture. Then rational homotopy theory says that Gα ≤ L6

– but in fact this inequality is strict – for any c > 0, Gα(L) < cL6 whenever L is
sufficiently large.
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