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Differentiability measures how well a function can be approximated by affine
functions. Rectifiability likewise measures how well a set can be approximated
by planes. But both of these notions operate at infinitesimal scales; they deal
with the properties of limits. In these notes, we will study quantitative versions
of these notions that operate at local scales; scales that are small but bounded
away from zero. How well can a function or a set be approximated by affine
functions or sets at local scales? How often can a function or set fail to be ap-
proximated by an affine function or set? How can we use questions like these to
study the geometry and analysis of sets and functions?

1. COARSE DIFFERENTIATION OF CURVES

We’ll start with the simplest case: Let X be a metric space, say Rn , Hilbert
space, or a Banach space. How can we describe the infinitesimal and local struc-
ture of maps f : R→ X ?

For maps from R to R, the Lebesgue Differentiation Theorem says:

Theorem 1.1. If f : R→ R is an absolutely continuous map, then f is differen-
tiable almost everywhere. That is, for almost every x ∈ R, there is an f ′(x) such
that

lim
h→0

f (x +h)− f (x)

h
= f ′(x).

In particular, if f is Lipschitz, f is differentiable almost everywhere. But this
is an infinitesimal result – what about local? What’s the largest segment we can
expect to find where f is ϵ–close to affine?

To answer this, we need a notion of coarse differentiation (see works of Jones
[Jon90], Eskin–Fisher–Whyte [EFW12], Cheeger [Che99], et al.).

Date: June 10, 2025.

1



2 ROBERT YOUNG

Definition 1.2. Let X be a metric space and let f : R→ X . Let I = [a,b] be an
interval of length L, let ϵ= 1

n for some n ∈N. We say that f is ϵ–efficient on I if

n−1∑
i=0

dX ( f (a + (i +1)
L

n
), f (a + i

L

n
))| ≤ dX ( f (b), f (a))+ϵL.

If X = R, this is also called ϵ–monotone – the inequality implies that graph
can’t backtrack by more than about ϵ.

Then the following lemma is simple:

Lemma 1.3. Let f : [0,1] → X be 1–Lipschitz, let ϵ> 0, and let n = ϵ−1 ∈Z. There
is an interval I ⊂ [0,1] of length L > ϵn such that f is ϵ–efficient on I .

Proof. Let

ℓk =
ϵ−k∑
i=0

d( f (iϵk ), f ((i +1)ϵk )).

By the Lipschitz property, ℓk ≤ 1. Let xi ,k = iϵk . If Ii ,k = [xi ,k , xi+1,k ] is not ϵ–
efficient for any i , then for any i ,

n−1∑
j=0

d( f (xni+ j ,k+1), f (xni+ j+1,k+1)) ≥ d( f (xi ,k ), f (xi+1,k ))+ϵk+1,

and

ℓk+1 =
nk−1∑
i=0

n−1∑
j=0

d( f (xni+ j ,k+1), f (xni+ j+1,k+1)) > ℓk +ϵ.

By induction, ℓk > ϵk. When k > n, this is a contradiction, so f is ϵ–efficient on
some interval of length at most ϵn . □

The basic idea behind this proof is one that we’ll see again and again: If we
can break down some finite geometric quantity into contributions from many
different intervals, then there must be intervals that contribute less than ϵ. In
this case, we break the length of f into contributions

ℓi ,k = d( f (xi ,k ), f (xi+1,k ))−
n−1∑
j=0

d( f (xni+ j ,k+1), f (xni+ j+1,k+1))

associated with each interval. Intervals where f is ϵ–inefficient contribute a
nonzero quantity to the length of f , so the number of ϵ–inefficient intervals is
bounded in terms of the length of f .

Ideally, the quantity should be coercive: intervals on which the quantity is zero
should lie in some nice class, and intervals on which the quantity is ϵ should be
close to that class. The notion of ϵ–efficiency is mildly coercive: if X is a length
space and f : I → X is ϵ–efficient on every interval and for all ϵ, then f is a length-
minimizing curve parameterized monotonically. We can improve this by adding
a dimension.

For ϵ > 0, we say that f : I → Rk is ϵ–coarsely differentiable on I if there is an
affine function such that | f (t )−λ(t )| ≤ ϵℓ(I ) for every t ∈ I .
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Proposition 1.4. Let f : [0,1] → Rk be 1–Lipschitz, ϵ > 0. There is an interval
I ⊂ [0,1] such that f is ϵ–coarsely differentiable on I .

Proof. Consider the graph g : [0,1] → Rk+1, g (t ) = (t , f (t )). This is Lipschitz, so
for any δ> 0, there is an interval I on which g is δ–efficient. By the Pythagorean
Theorem, g (I ) is in the ∼p

δℓ(I )–neighborhood of a line segment L ∈ Rk+1, say
L = {(t ,λ(t )}, where λ(t ) = mt +b. Since f was 1–Lipschitz, we can take |m| ≤ 1.
Then d((x, y),L) ≈ |y −λ(x)|, so for t ∈ I , we have

| f (t )−λ(t )| ≈ d((t , f (t )),L)≲
p
δℓ(I ).

□

In fact, intervals like this are abundant. The notions of ϵ–efficient and ϵ–
coarse differentiable are scale-invariant, so Lemma 1.3 and Proposition 1.4 both
apply to a Lipschitz function on any interval. So any subinterval of [0,1] contains
a smaller interval on which f is ϵ–efficient or ϵ–coarse differentiable.

More quantitatively, f is ϵ–efficient on “most” subintervals of [0,1] in the fol-
lowing sense.

Definition 1.5. Let D ⊂ R×R+ be a measurable set. Let Dr = {x | (x,r ) ∈ D}. We
say that D is a (C -)Carleson set if there is a C > 0 such that for every bounded
interval I ⊂R of length L = |I |,

(1)
∫ L

0

∫
I

1D (x,r )dx
dr

r
=

∫ L

0
|Dr ∩ I | dr

r
=

∫ logL

−∞
|De t ∩ I |dt ≤C |I |,

where |Dr ∩ I | is the Lebesgue measure of Dr ∩ I .

In many cases, including the results below, D represents the set of intervals
on which a function f is poorly behaved, so that (x,r ) ∈ D if and only if f is
“bad” on [x − r, x + r ]. Equation (1) then says that for any interval I , f is “good”
on most subintervals of I (i.e., the set of “bad” subintervals has finite measure
with respect to dx dr

r ).

Exercise 1. Technically, the integral in (1) is computed over intervals centered in
I with radius at most L. Show that most of these intervals are subintervals of I .

Exercise 2. Let S ⊂ [0,1]. What are some conditions under which most subinter-
vals of [0,1] are disjoint from S?

Theorem 1.6. Let f : R→ X be 1–Lipschitz, ϵ> 0 and let Sϵ ⊂R×R+ be the set

Sϵ = {(x,r ) | f is not ϵ–efficient on [x − r

2
, x + r

2
]}.

Then Sϵ is Carleson.

We’ll see a number of theorems that look like this, and I suggest considering a
few examples. For example, f (x) = |x| fails to be ϵ–efficient on intervals contain-
ing 0, and one can check that the corresponding set {(x,r ) | |x| < r } is Carleson.
Similarly, for any ϵ > 0, there are 0 < a < b such that f (x) = sin x is ϵ–efficient
on intervals with length less than a or greater than b, and Sϵ ⊂ R× [a,b], which
likewise a Carleson set.
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Exercise 3. Check the details above for f (x) = |x| and f (x) = sin x.

By the Pythagorean theorem argument in Proposition 1.4, when X = Rk , we
can replace ϵ–efficient with ϵ–coarse differentiable:

Corollary 1.7. Let f : R→Rk be 1–Lipschitz, ϵ> 0 and let Dϵ ⊂ [0,1]×(0,1] be the
set

(2) Dϵ = {(x,r ) | f is not ϵ–coarse differentiable on [x − r

2
, x + r

2
]}.

Then Dϵ is Carleson.

Corollary 1.7 is an example of a weak geometric lemma. Weak geometric lem-
mas state that a function or set is well-behaved (up to error ϵ) except on a Cϵ–
Carleson set, where Cϵ depends on ϵ.

Proof of Theorem 1.6. By scale-invariance, it suffices to check the Carleson con-
dition for the interval [0,1].

First, the proof of Lemma 1.3 gives a discrete version of the Carleson condi-
tion. As before, let

ℓk =
ϵ−k−1∑

i=0
d( f (iϵk ), f ((i +1)ϵk )|.

Then, letting Sϵ = S f
ϵ ,

ℓk+1 ≥ ℓk +ϵk+1
ϵ−k−1∑

i=0
1Sϵ((i + 1

2
)ϵk ,ϵk ),

so

(3)
∞∑

k=0

ϵ−k−1∑
i=0

ϵk+11Sϵ((i + 1

2
)ϵk ,ϵk ) ≤ 1.

Let ft (x) = f (x + t ). Then (3) applies to ft , so

∞∑
k=0

ϵ−k−1∑
i=0

ϵk+11S t
ϵ
((i + 1

2
)ϵk ,ϵk ) =

∞∑
k=0

ϵ−k−1∑
i=0

ϵk+11Sϵ(t + (i + 1

2
)ϵk ,ϵk ) ≤ 1.

We integrate over t to get∫ 1

−1

∞∑
k=0

ϵ−k−1∑
i=0

ϵk+11Sϵ(t + (i + 1

2
)ϵk ,ϵk )dt

=
∞∑

k=0

ϵ−k−1∑
i=0

∫ 1

−1
ϵk+11Sϵ(t + (i + 1

2
)ϵk ,ϵk )dt ≤ 2.(4)

Let Sϵ,r = S f
ϵ,r = {x | (x,r ) ∈ Sϵ}. Then for any x0 ∈ [0,1] and r > 0,∫ 1

−1
1Sϵ(t +x0,r )dt = |Sϵ,r ∩ [x0 −1, x0 +1]| ≥ |Sϵ,r ∩ [0,1]|.
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Combining this with (4), we find

2 ≥
∞∑

k=0

ϵ−k−1∑
i=0

ϵk+1|Sϵ,ϵk ∩ [0,1]|

≥
∞∑

k=0
ϵ|Sϵ,ϵk ∩ [0,1]|.

A similar argument holds for rescalings. For ρ > 0, let f ρ(t ) = ρ−1 f (ρt ). Then
f ρ is 1–Lipschitz and

S f ρ

ϵ = {(x,r ) | (ρx,ρr ) ∈ Sϵ}.

It follows that
∞∑

k=0
|S f ρ

ϵ,ϵk ∩ [0,1]| =
∞∑

k=0
ρ−1|Sϵ,ρϵk ∩ [0,ρ]| ≤ 2ϵ−1

for all ρ > 0 and thus
∞∑

k=0
|Sϵ,ρϵk ∩ [0,ρ]| ≤ 2ρϵ−1.

Therefore, ∫ 1

0
|Sϵ,r ∩ [0,1]| dr

r
=

∞∑
k=1

∫ ϵk−1

ϵk
|Sϵ,r ∩ [0,1]| dr

r

≤
∫ ϵ−1

1

∞∑
k=0

|Sϵ,r ϵk ∩ [0,r ]| dr

r

≤
∫ ϵ−1

1
2r ϵ−1 dr

r

≤ 2ϵ−2.

□

Remark. These coarse differentiability results aren’t quite enough to imply that
f is genuinely differentiable. For example, Corollary 1.7 implies that for almost

every x, there is an affineλ and a sequence of radii rk such that
∥ f −λ∥L∞([x−rk ,x+rk ])

rk
→

0, but λ need not be unique.

Remark. It is natural to consider versions of Proposition 1.4 and Theorem 1.6 for
maps to other spaces, such as Banach spaces. When f : [0,1] → X is a map to a
Banach space, the coarse differentiability of f depends on the convexity of ∥·∥X .
For example, let f : [0,1] → L1([0,1]), f (t ) = 1[0,t ] be the map that sends t to the
characteristic function 1[0,t ] of [0, t ]. For s < t ,

∥ f (t )− f (s)∥1 = ∥1(s,t ]∥1 = |s − t |,
so f is a geodesic and thus δ–efficient for any δ, but f cannot be approximated
by an affine map on any interval. This arises partly from the fact that the unit ball
in L1 is convex but not strictly convex, so there can be many geodesics between
two points.
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2. CURVES, SURFACES, AND METRIC SPACES

We now pass from curves (maps from R to X ) to maps between metric spaces
(maps from X to Y ). The first case we consider is functions of multiple vari-
ables. In this case, Rademacher’s Theorem generalizes Theorem 1.1 to Lipschitz
functions f : Rk →R.

Theorem 2.1. If f : Rk → R is a Lipschitz map, then f is differentiable almost
everywhere. That is, for almost every x ∈R, there is a linear function D fx : Rk →R

such that

lim
h→0

f (x +h)− f (x)−D fx (h)

h
= 0.

Again, this is an infinitesimal result, but, as before, we can show that f is
coarse differentiable on “most” balls.

To formalize this, we first generalize the definition of a Carleson set to Rk .

Definition 2.2. Let D ⊂Rk ×R+ be a measurable set. Let Dr = {x | (x,r ) ∈ D}. We
say that D is a (C –)Carleson set if there is a C > 0 such that for every ball B ⊂ Rk

of radius r ,

(5)
∫ r

0

∫
B

1D (x, t )dx
dt

t
=

∫ r

0
|D t ∩B | dt

t
≤C |B |.

Similarly to Definition 1.5, D often represents the set of balls on which some
function f is “bad”, with (x,r ) ∈ D if and only if f is “bad” on Br (x). As before, if
D is Carleson, then for any ball B , f is “good” on most subballs of B .

We claim that Lipschitz functions f : Rk →R satisfy a weak geometric lemma.
For ϵ> 0, we say that f : Rk → R is ϵ–coarse differentiable on a ball Br (x) if there
is an affine function such that | f (v)−λ(v)| ≤ ϵr for every v ∈ Br (x).

Proposition 2.3 (Coarse Rademacher). Let f : Rk → R be 1–Lipschitz, ϵ > 0 and
let Dϵ ⊂Rk ×R+ be the set

Dϵ = {(x,r ) | f is not ϵ–coarsely differentiable on Br (x)}.

Then Dϵ is Carleson.

Our strategy to prove Proposition 2.3 has two parts. First, we use Corollary 1.7
to show that f is coarsely differentiable on “most” line segments inRk . Then, we
show that a function which is coarsely differentiable on “most” line segments is
coarsely differentiable on balls.

For the first part, we will need some lemmas on transformations and combi-
nations of Carleson sets. The first is straightforward and we omit the proof.

Lemma 2.4. Let ρ > 0 and suppose that D ⊂Rk ×R+ is a Carleson set. Then

D ′ = {(x,r ) ∈Rk ×R+ | (x,ρr ) ∈ D

is also a Carleson set.

The second is more subtle.
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Lemma 2.5. Let C > 0, let A be a set, and let µ be a probability measure on A. For
α ∈ A, let Dα ⊂Rk ×R+ be a C –Carleson set so that Dα depends measurably on α.

Let µ be a measure on A with µ(A) = 1. For any γ ∈ [0,1], the set

D ′ = {(x,r ) ∈Rk ×R+ |µ({α ∈ A | (x,r ) ∈ Dα}) ≥ γ}

is γ−1C –Carleson.

For example, if D1, . . . ,Dn are C –Carleson, we can apply Lemma 2.5 with A =
{1, . . . ,n}, µ the uniform measure on A, and γ = 1

n to show that
⋃n

i=1 Di is nC –
Carleson.

Proof. Let 1Dα
be the characteristic function of Dα and let

g (x,r ) =µ({α ∈ A | (x,r ) ∈ Dα}) =
∫

A
1Dα

(x,r )dµ(α).

Then D ′ = g−1([γ,1]), i.e.,

(6) 1D ′(x,r ) ≤ γ−1
∫

A
1Dα

(x,r )dµ(α).

Let B ⊂Rk be a ball of radius r . Integrating (6), we get∫ r

0

∫
B

g (x, t )dx
dt

t
≤ γ−1

∫ r

0

∫
B

∫
A

1D (x, t )dµ(α)dx
dt

t
≤ γ−1C |B |,

as desired, where the second inequality follows from Fubini’s Theorem and the
Carleson condition. □

Finally, we leave the following lemma as an exercise for the reader.

Lemma 2.6. Let S ⊂ Rk ×R+ be a C –Carleson set and let δ > 0. Then there is a
C ′ =C ′(C ,δ,k) such that

T = {(x,r ) ∈Rk ×R+ | |Br (x)∩Sr | > δ|Br (x)|}.

is C ′–Carleson.

Exercise 4. For x, v ∈ Rk and r > 0, let ηv (x,r ) = (x + r v,r ). Show that if S is C –
Carleson, then ηv (S) is also Carleson, with constant depending on C , k, and ∥v∥.
Use these sets and Lemma 2.5 to prove Lemma 2.6.

Proof of Proposition 2.3. Since f is Lipschitz, the restriction of f to any line is
Lipschitz. We thus consider foliations of Rk by lines. For any vector v ∈Rk , let

Dϵ,v ( f ) = {(x,r ) | f is not ϵ–coarsely differentiable on the line segment [x − r v, x + r v].

By Corollary 1.7 and Fubini’s Theorem, each set Dϵ,v is Carleson, with constant
depending on ∥v∥.

Letνbe the uniform probability measure on the unit sphere Sk−1. By Lemma 2.4,
Lemma 2.5 and Lemma 2.6, for any δ> 0, the set

Tδ( f ) = {(x,r ) |
∫

Sk−1

∫
B2r (x)

1Dδ,v ( f )(y,4r )dy dν(v) > δ|Br |}

is Carleson.
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If (x,r ) ̸∈ Tδ( f ), then f is δ–coarsely differentiable on all but a small fraction
of lines through the ball B2r (x). We claim that if δ is sufficiently small, then f is
coarsely differentiable on Br (x).

There are many ways to prove this, but the following argument by compact-
ness is particularly slick. Suppose by contradiction that there is an ϵ > 0 such
that for any n > 0, there is a 1–Lipschitz function fn : Rk →R such that (xn ,rn) ̸∈
T 1

n
( fn), but fn is not ϵ–coarsely differentiable on Brn (xn). After rescaling and

translating, we may suppose that xn = 0, rn = 1, and fn(0) = 0.
By the Arzelà–Ascoli theorem, we can pass to a subsequence so that fn con-

verges uniformly to a limit f . Furthermore, (0,1) ̸∈ Tδ( f ) for all δ > 0, which
means that f is affine on every line segment in B1. Such a function is affine on
B1. When n is sufficiently large, we have ∥ fn − f ∥L∞(B1) < ϵ, so fn is ϵ–coarsely
differentiable, which is a contradiction.

Therefore, for any ϵ > 0, there is a δ > 0 such that if (x,r ) ̸∈ Tδ( f ), then f
is ϵ–coarsely differentiable on Br (x). Since Tδ( f ) is Carleson, this proves the
proposition. □

2.1. Application: Embeddings of the Heisenberg group. These ideas work for
other spaces too, notably Carnot groups. Let H be the Heisenberg group and
consider a Lipschitz map f : H→Rk . Can f be a bilipschitz embedding?

Let X ,Y and Z be the standard left-invariant frame field of H, so that Z is
vertical and X and Y span the horizontal distribution ofH. Let

S1
H = {X cosθ+Y sinθ | θ ∈R}

be the set of unit horizontal vectors. Then for every left-invariant V ∈ S1
H , there

is a one-parameter subgroup generated by V , which we denote by 〈V 〉, and the
cosets of 〈V 〉 form a foliation of H by lines. These lines are horizontal curves, so
we call them horizontal lines. We write the elements of 〈V 〉 as V t , t ∈R

Every horizontal line L is embedded isometrically in H, so if f : H → Rk is
Lipschitz, then so is f |L . Hence, similarly to the proof of Proposition 2.3, for any
δ> 0, the set of (x,r ) such that∫

Bδ−1r (x)

∫
S1

H

1 f is δ–coarse diff on [yV 4r , yV −4r ] dV dy > δ|Br (x)|

is Carleson. Call this set Tδ.
As before, if (x,r ) ∈ Tδ for all δ > 0, then f is affine on Br (x), but this is a

little more difficult to prove. (To start, show that V f is constant for any V ∈ S1
H .)

Once this is shown, the same argument by contradiction used in Proposition 2.3
proves the following generalization of Proposition 2.3.

Proposition 2.7 (Coarse Pansu). Let f : H→ Rk be 1–Lipschitz and ϵ> 0. We say
that f is coarse Pansu-differentiable if there is a homomorphism λ : H→Rk and
a w ∈Rk such that | f (v)−w −λ(x−1v)| ≤ ϵr for every v ∈ Br (x).

Let Dϵ ⊂Rk ×R+ be the set

Dϵ = {(x,r ) | f is not ϵ–coarse Pansu-differentiable on Br (x)}.

Then Dϵ is Carleson.
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In particular, this implies that H does not have a bilipschitz embedding into
Rk . Suppose that f : H→ Rk is Lipschitz. Then for every ϵ > 0, there is some
ball Br (x) such that f is ϵ–coarse Pansu-differentiable on Br (x). Let w ∈ Rk and
let λ : H→Rk be a homomorphism such that | f (v)−w −λ(x−1v)| ≤ ϵr for every
v ∈ Br (x). Since Rk is abelian, we have [H,H] = 〈Z 〉 ⊂ kerλ. Therefore,

| f (x)− f (x Z
1

25 r 2
)| ≤ |w +λ(x)− (w +λ(x Z

1
25 r 2

)|+2ϵr = 2ϵr,

but
dH(x, x Z

1
25 r 2

) ≥ r

5
.

It follows that for any ϵ> 0, we can find g = x, g ′ = x Z
1

25 r 2
such that

| f (g )− f (g ′)| ≤ 5ϵdH(g , g ′),

i.e., f is not a bilipschitz map.

3. RECTIFIABILITY AND UNIFORM RECTIFIABILITY
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