
INTRODUCTION

Reinforcement Learning With
Continuous States
Gordon Ritter and Minh Tran

Two major challenges in applying reinforce-
ment learning to trading are: handling high-
dimensional state spaces containing both con-
tinuous and discrete state variables, and the
relative scarcity of real-world training data.
We introduce a new reinforcement-learning
method, called supervised-learner averaging,
that simultaneously solves both problems,
while outperforming Q-learning on a simple
baseline.

Introduction

Recently we showed that reinforcement learning can be
applied to discover arbitrage opportunities, when they
exist (Ritter, 2017). Under Ornstein-Uhlenbeck dynam-
ics for the log-price process, even with trading costs, a
reinforcement-learning algorithm was able to discover a
high-Sharpe-ratio strategy without being told what kind
of strategy to look for.

According to economic theory going back to Arrow
(1963) and Pratt (1964), optimal traders maximize ex-
pected utility of wealth, and not expected wealth. The
purpose of our previous work on this topic was primarily
to argue that, in light of the modern understanding of
utility theory, reinforcement learning systems for trading
applications should use reward functions that converge
to utility of wealth (or an equivalent mean-variance form
of utility). The simpler alternative, maximizing expected
wealth, cannot possibly maximize Sharpe ratio, nor can
it account for investors’ heterogeneous levels of risk tol-
erance.

The purpose of Ritter (2017) was not to investigate
the methodology of how reinforcement learning is accom-
plished; in fact, the simplest possible methodology (tab-
ular Q-learning) was used. Such methods represent the
action-value function by a lookup table, usually imple-
mented as a matrix. Advantages of this approach include
that it is very simple to implement, and the way the sys-
tem learns from new data is very easy to interpret. By the

theorem of Robbins and Siegmund (1985), the method is
known to converge under certain asymptotic bounds on
its parameters.

Nonetheless, tabular methods are severely limited by
the curse of dimensionality. Tabular methods require that
the state space S be finite, and standard implementa-
tions typically further assume that an array of length |S|
fits in computer memory, with similar requirements for
the action space. They require enough training time to
visit each state. If the state space is Rk with k large, or
even a discrete k-dimensional lattice, then those memory
requirements won’t scale as k increases, hence the term
“curse of dimensionality.”

We now explain in more detail the main application,
which is to multi-period trading problems with costs, and
argue that the curse of dimensionality will render tabular
methods inadmissible for all but the simplest problems.

In trading applications, the goal is usually to train an
agent to interact in an electronic limit-order-book mar-
ket. Each limit-order book for a given security has a tick
size, defined to be the smallest permissible non-zero price
interval between different orders.

The space A of available actions in the limit-order
book for a single security is limited to placing quotes at
one-tick intervals near, or inside, the current inside mar-
ket (best bid and offer). One could also consider differ-
ent order types as part of the action, but in any case A
is naturally a small finite set, easily stored in computer
memory. By contrast, the most natural representation
of the state space is an embedding within Rk where k is
moderate to large, as we now explain.

The term state, in reinforcement learning problems,
usually refers to the state of the environment. In trad-
ing problems, the “environment” should be interpreted to
mean all processes generating observable data that the
agent will use to make a trading decision. Let st denote
the state of the environment at time t; the state is a data
structure containing all of the information the agent will
need in order to decide upon the action. This will include
the agent’s current position, which is clearly an observ-
able that is an important determinant of the next action.

At time t, the state st must also contain the prices pt,
but beyond that, much more information may be consid-

May 23, 2018 1

VALUE FUNCTIONS

ered. In order to know how to interact with the market
microstructure and what the trading costs will be, the
agent should observe the bid-offer spread and liquidity of
the instrument. Any predictive signals must also be part
of the state, or else they cannot influence the decision.

This means that even a discretization of the true prob-
lem involves a k-dimensional lattice in Rk. Consequently,
any algorithm that needs to either visit a representative
sample of states, or to store a state vector as an array, is
intrinsically non-scalable, and will become intractable for
moderate to large k.

Further progress requires a method that allows many
real-valued (continuous and/or discrete) predictors to be
included in the state. Furthermore, the method must
handle non-linear and non-monotone functional forms for
the value function. Another desirable property is effi-
cient sample use, by which we mean, roughly, the ability
to converge to a useful model on relatively small training
sets. This is desirable when applying the model to real
data, or when training time is a bottleneck. A final desir-
able property is that the new method should outperform
Q-learning on the baseline problem presented by Ritter
(2017).

In this paper we present a reinforcement-learning
method, which we call supervised-learner averaging
(SLA), and show that it has all of the desirable properties
listed above. The method is likely to have broad applica-
bility to a wide range of machine learning problems, but
this paper is concerned primarily with the application to
trading of illiquid assets.

Value Functions

The key idea of reinforcement learning,
generally, is the use of value functions to orga-
nize and structure the search for good policies.

—Sutton and Barto (2018)

The foundational treatise on value functions was writ-
ten by Bellman (1957), at a time when the phrase “ma-
chine learning” was not in common usage. Nonethe-
less, reinforcement learning owes its existence, in part,
to Richard Bellman.

A value function is a mathematical expectation in
a certain probability space. The underlying probabil-
ity measure is very familiar to classically-trained statis-
ticians: a Markov process. When the Markov process
describes the state of a system, it is sometimes called a
state-space model. When, on top of a Markov process, one
has the possibility of choosing a decision (or action) from
a menu of available possibilities (the “action space”), with

some reward metric measuring how good your choices
were, then it is called a Markov decision process (MDP).

In a Markov decision process, once we observe the
current state of the system, we have the information we
need to make a decision. In other words, (assuming we
know the current state), then it would not help us (ie. we
could not make a better decision) to also know the full
history of past states which led to the current state. This
history-independence (or memoryless property) is closely
related to Bellman’s principle:

An optimal policy has the property that
whatever the initial state and initial decision
are, the remaining decisions must constitute
an optimal policy with regard to the state re-
sulting from the first decision.

—Bellman (1957)

Following the notation of Sutton and Barto (2018),
the sequence of rewards received after time step t is de-
noted Rt+1, Rt+2, Rt+3, The agent’s goal is to maxi-
mize the expected cumulative reward, denoted by

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . (1)

The agent then searches for policies which maximize
E[Gt]. The sum in (1) can be either finite or infinite.
The constant γ ∈ [0, 1] is known as the discount rate,
and is especially useful in considering the problem with
T =∞, in which case γ is needed for convergence.

There are principally two kinds of value functions in
common usage; at optimality, one is a maximization of
the other. The state-value function for policy π is

vπ(s) = Eπ[Gt |St = s]

where Eπ denotes the expectation under the assumption
that policy π is followed. Similarly, the action-value func-
tion expresses the value of starting in state s, taking ac-
tion a, and then following policy π thereafter:

qπ(s, a) := Eπ[Gt |St = s,At = a]

Policy π is defined to be at least as good as π′ if
vπ(s) ≥ vπ′(s) for all states s. An optimal policy is de-
fined to be one which is at least as good as any other
policy. There need not be a unique optimal policy, but
all optimal policies share the same optimal state-value
function v∗(s) = maxπ vπ(s) and optimal action-value
function q∗(s, a) = maxπ qπ(s, a). Also note that v∗ is
the maximization over a of q∗.

Let p(s′, r | s, a) denote the probability that the
Markov decision process transitions to state s′ and the
agent receives reward r, conditional on the event that the
Markov process was previously in state s and, in that

May 23, 2018 2

MODEL-BASED POLICY ITERATION

state, the agent chose action a. The optimal state-value
function and action-value function satisfy Bellman opti-
mality equations

v∗(s) = max
a

∑
s′,r

p(s′, r | s, a)[r + γ v∗(s
′)]

q∗(s, a) =
∑
s′,r

p(s′, r | s, a)[r + γ max
a′

q∗(s
′, a′)]

where the sum over s′, r denotes a sum over all states
s′ and all rewards r. In a continuous formulation, these
sums would be replaced by integrals.

If we possess a function q(s, a) which is an estimate
of q∗(s, a), then the greedy policy is defined as picking
at time t the action a∗t which maximizes q(st, a) over all
possible a, where st is the state at time t. Convergence
of policy iteration requires that, in the limit as the num-
ber of iterations is taken to infinity, every action will be
sampled an infinite number of times. To ensure this, stan-
dard practice is to use an ε-greedy policy : with probabil-
ity 1 − ε follow the greedy policy, while with probability
ε uniformly sample the action space.

Given the function q∗, the greedy policy is optimal.
Hence any iterative method which converges to q∗ con-
stitutes a solution to the original problem of finding the
optimal policy.

General Policy Iteration

Let π be any deterministic policy, not necessarily the op-
timal one. Let π′ be any other deterministic policy having
the property that,

qπ(s, π
′(s)) ≥ vπ(s) for all s ∈ S.

Then the policy π′ must be as good as, or better than, π;
this is called the policy improvement theorem.

Generalized policy iteration (GPI) generally refers to
a broad class of reinforcement-learning algorithms which
let policy evaluation and policy improvement processes
interact. Moreover,

...if both the evaluation process and the im-
provement process stabilize, that is, no longer
produce changes, then the value function and
policy must be optimal. The value function
stabilizes only when it is consistent with the
current policy, and the policy stabilizes only
when it is greedy with respect to the current
value function. Thus, both processes stabi-
lize only when a policy has been found that is
greedy with respect to its own evaluation func-
tion. This implies that the Bellman optimality
equation holds.

—Sutton and Barto (2018)

In what follows we shall describe a new kind of GPI in
which the action-value function is represented internally
by a model-averaging procedure applied to a sequence of
supervised-learning models.

Model-based Policy Iteration

We start with a given function q̂ which represents the cur-
rent estimate of the optimal action-value function; this es-
timate is often initialized to be the zero function, and will
be refined as the algorithm continues. We also start with
a policy π that is defined as the ε-greedy policy with re-
spect to q̂. Note the distinction between q̂, which denotes
our current estimate of the optimal action-value function,
and qπ which represents the true action-value function of
the policy π.

Let St be the state at the t-th step in the simulation.
An action At is chosen according to the policy π which is
ε-greedy w.r.t. q̂. Let Xt := (St, At) be the state-action
pair. The update target Yt can be any approximation of
qπ(St, At), including the usual backed-up values such as
the full Monte Carlo return or any of the n-step Sarsa
returns discussed by Sutton and Barto (2018). For exam-
ple, the one-step Sarsa target is

Yt = Rt+1 + γ q̂(St+1, At+1) (2)

Our q̂(s, a) is calculated by a form of model averaging.
There is a list L = {F1, F2, . . .}, initialized to be empty,
where the k-th element Fk is a model for predicting Yt
from Xt = (St, At). The precise form of this model, and
the methods for how to fit the model to a set of training
data, are independent of the rest of the algorithm. In
other words, almost any supervised learning setup can be
plugged into the procedure at the point where we fit the
Fj .

The working estimate of the optimal action-value
function is:

q̂(s, a) :=
1

K

K∑
k=1

Fk(s, a), where K = |L|. (3)

This averages the predictions of all the supervised-
learners in the model list L. For this reason, we name
the method supervised-learner averaging, or SLA. The full
algorithm is given below.

Initially, the model list is empty, and the initial esti-
mate of q̂(s, a) is zero. At the end of each batch, a new
model is added to L which implies that said new model
will be included in the model-averaging in definition (3)
for all subsequent calculations of q̂. In particular, q̂(s, a)

May 23, 2018 3

TRADING A VERY ILLIQUID ASSET

is only updated when a new model is added to L, and
this only happens at the end of a batch.

As mentioned above, various supervised-learning
methods may be used for the core estimation of the model
Yt ∼ F (Xt). For the applications below, we chose the M5’
model tree method due to Quinlan (1992), and with im-
provements due to Wang and Witten (1997). This choice
makes sense a priori for our examples because this fam-
ily of supervised learners is well-suited to functions which
are piecewise-smooth with relatively few breakpoints, and
also to mixtures of continuous and discrete variates.

Definition 1. For brevity, we shall refer to SLA as model-
tree averaging or MTA, when the supervised learner is a
model tree.

Algorithm: Supervised-Learner Averaging

This section describes the algorithm we call supervised-
learner averaging (SLA), and which is a member of the
family of algorithms known as generalized policy iteration
in reinforcement learning.

Initialize a list L to be empty. Repeat the following
steps until the policy has converged.

1. Interact with the environment (often a simulation)
for nbatch time-steps using the ε-greedy policy de-
rived from q̂, where q̂ is always computed as (3),
without changing the policy during the batch. Let
B denote the collection of all instances Xt and Yt
generated in the current batch, where Xt = (st, at)
and Yt is defined in (2).

2. Build a new supervised-learning model Fk suited for
the prediction problem Y = Fk(X), using only the
samples in B to construct training sets, test sets and
validation sets, using cross-validation (or pruning or
related model-selection technology) within B.

3. Add Fk to the list L and increment k. Return to
step 1.

After each policy update (each time L is augmented),
the new policy is evaluated by estimating the cumulative
reward in simulation. The algorithm terminates when the
policy’s estimated cumulative reward stabilizes.

Quinlan (2014) discusses the use of committees in a
supervised-learning setup. In the context of building a
classifier, this is directly analogous to the human con-
cept of committee: each “committee member” classifies
the instance, which is taken as a “vote” for which cate-
gory it belongs to. In the context of predicting a con-
tinuous variable, the use of committees can be consid-
ered roughly analogous to the model-averaging method

described above, but Quinlan is working in a supervised-
learning setup whereas we have adapted the concept to
reinforcement learning. In reinforcement learning, one is
naturally driven to the use of committees because gener-
alized policy iteration (GPI) produces a sequence of data
sets, and each data set can potentially be used to im-
prove the policy by adding one new committee member,
and each new member is actually trained on a new policy.

Trading a Very Illiquid Asset

As a numerical example to elucidate model-based policy
iteration, we study the same simulated market as in Rit-
ter (2017), but we change the cost function to simulate
a very illiquid asset. This allows us to better illustrate
some interesting features which are artifacts of high trad-
ing cost, eg. the no-trade zone, defined to be a region in
price space over which, starting from zero, it would never
be optimal to trade.

Fifty-five years of theory since Arrow (1963) suggest
that we train the learner to optimize expected utility of
final wealth, maxE[u(wT)] for an increasing, concave util-
ity function u : R → R. By mean-variance equivalence
for elliptical distributions, in the examples below it is a
mathematical fact that for some κ > 0, we can equiva-
lently maximize the mean-variance quadratic form

E[wT]− (κ/2)V[wT]. (4)

The parameter κ is a local representation of the trader’s
risk aversion around the current wealth level. In the ex-
amples below κ = 10−4.

For a reinforcement learning approach to match (4)
we need Rt to be an appropriate function of wealth incre-
ments, such that the following relation is satisfied:

E[Rt] = E[δwt]−
κ

2
V[δwt]

One such function is,

Rt := δwt −
κ

2
(δwt − µ̂)2 (5)

where µ̂ is an estimate of a parameter representing the
mean wealth increment over one period, µ := E[δwt].

Definition 2. In the examples that follow, we refer to out-
of-sample annualized Sharpe ratio of profit/loss (P&L)
after costs as the performance metric.

We could equivalently use sample estimates of (4)
as the performance metric, but strategies maximizing
(4) also maximize Sharpe ratio subject to constraints on
volatility, and the Sharpe ratio is easier to interpret and
to connect to other investment problems.

May 23, 2018 4

TRADING A VERY ILLIQUID ASSET

In what follows, learning methods will be compared
using the performance metric. Each computation of the
performance metric is done using a monte carlo simula-
tion with 500,000 time steps–enough so that the estima-
tion error of the performance metric itself is very low.

To create a testing environment for various learning
methods, we make the (somewhat unrealistic) assumption
that there exists a tradable security with a strictly posi-
tive price process pt > 0. This “security” could itself be
a portfolio of other securities, such as a hedged relative-
value trade. There is an “equilibrium price” pe such that
xt = log(pt/pe) has dynamics

dxt = −λxt + σ ξt (6)

where ξt ∼ N(0, 1) and ξt, ξs are independent when
t 6= s. This is a standard discretization of the Ornstein-
Uhlenbeck process, and it means that pt tends to revert
to its long-run equilibrium level pe with mean-reversion
rate λ.

An action is simply to trade a certain number of
shares; the action space is then a subset of the integers,
with the sign of the integer denoting the trade direction.
For illustration purposes, we take the action space to be
limited to round lots of up to 200 shares in either direc-
tion:

A = 100× {n ∈ Z : |n| ≤ 2} .

A real-world system would not have so restrictive a limit,
but this contributes to ease of visualization; see the fig-
ures below.

The space of possible prices is:

P = TickSize · {1, 2, . . . , 1000} ⊂ R+

We do not allow the agent, initially, to know anything
about the dynamics. Hence, the agent does not know λ, σ,
or even that some dynamics of the form (6) are valid.

The agent also does not know the trading cost. For a
trade size of n shares we define

cost(n) = multiplier× TickSize× (|n|+ 0.01n2); (7)

where in the examples below, we take multiplier = 10.
This is a rather punitive cost function: to trade

n = 100 shares costs 2,000 ticks, or 200 dollars if
TickSize = 0.1, or 2 dollars per share traded. Hence if
we buy at pe − 4 and sell at pe, we net zero profit after
costs. Hence a rough estimate of the no-trade zone is
[pe − 4, pe + 4], in agreement with Figure 2. In any case,
with these cost assumptions, we expect that the Sharpe
ratio of a model based on a pure-noise forecast will be
strongly negative. More generally, we expect most sim-
ple/naive strategies to have negative Sharpe ratio net of

costs, both here and in reality.
The state of the environment st = (pt, nt−1) will con-

tain the security prices pt, and the agent’s position, in
shares, coming into the period: nt−1. The agent then
chooses an action at = δnt ∈ A which changes the posi-
tion to nt = nt−1 + δnt and observes a profit/loss equal
to

δvt = nt(pt+1 − pt)− cost(δnt),

and reward Rt+1 = δvt+1 − 0.5κ (δvt+1)
2. We take

pe = 50.0, TickSize = 0.1, λ = log(2)/5 (5-day half-life),
σ = 0.15, max holding = 1,000 shares, α = 0.1, γ = 0.99.

The goal of this procedure is to discover the optimal
policy, not the value function itself (and hence, the esti-
mated value function q̂(s, a) is only a tool for estimating
the policy π). Even so, we find it useful to visualize the
value functions produced by our learning methods. For
example, we may identify the no-trade zone is by plotting
the action-value function as a function of price, for each
of the available actions; we shall then see the prices for
which the optimal action is zero.

More generally, denoting the state s by a pair consist-
ing of prior holding and current price s = (h, p), we may
then consider the h = 0 slice of the action-value function
as a collection of |A| functions p → q̂((0, p), a), for each
a ∈ A. For each price level, the action which would be
chosen by the greedy policy can be found by considering
the pointwise maximum of the functions shown.

−4000

−2000

0

2000

4000

0 25 50 75 100

price

q
.h

a
t

action

−100

−200

0

100

200

Tabular Q−Learning Value Function

Figure 1: Value function p→ q̂((0, p), a), where q̂ is esti-
mated by the tabular method.

We run a sequence of 10 batches of 250,000 steps each,
and also run a standard tabular Q-learning (TQL) setup
for the same the total number of steps, 2.5 million. Af-
ter these runs, each learner has seen precisely the same
training data, so if the two methods were equally effec-

May 23, 2018 5

EFFICIENT SAMPLE USE

tive, we should expect the respective greedy policies to
achieve similar performance.

The tabular method estimates each element q̂(s, a) in-
dividually, with no “nearest neighbor” effects or tendency
towards continuity, as we see in Fig. 1.

In this example, the optimal action choice has a natu-
ral monotonicity, which we now describe intuitively. Sup-
pose that our current holding is h = 0. Suppose that for
some price p < pe, the optimal action, given h = 0, is to
buy 100 shares; it follows that for any price p′ < p, the
optimal action must be to buy at least 100 shares.

For large price values, the tabular value function
seems to oscillate between several possible decisions, con-
tradicting the monotonicity property. This is simply an
aspect of estimation error and the fact that the tabu-
lar method hasn’t fully converged even after 2.5 million
iterations. The tabular value function also collapses to
a trivial function in the left tail region, presumably due
to those states not being visited very often – a property
of the Ornstein-Uhlenbeck return process – whereas the
model-tree method generalizes well to states not previ-
ously visited.

−1000

0

0 25 50 75 100

price

q
.h

a
t

action

−100

−200

0

100

200

Model−Tree Averaging Value Function

Figure 2: Value function p → q̂((0, p), a) for various ac-
tions a, where q̂ is estimated by MTA, and each model
in cL is formed by the M5 model-tree method of Quinlan
(1992).

Referring to Fig. 2, the model-averaging value func-
tion is easier to interpret than the tabular value function.
The relevant decision at each price level (assuming zero
initial position) is the maximum of the various piecewise-
linear functions shown in the figure. There is a no-trade
region in the center, where the green line is the maximum.
There are then small regions on either side of the no-trade
zone where a trade n = ±100 is optimal, while the max-

imum trade of ±200 is being chosen for all points suffi-
ciently far from equilibrium. The optimal action-choice
displays the monotonicity property discussed above, and
the optimal value function (the maximum of the functions
in Fig. 2) is piecewise-continuous.

Our testing indicates that the model-averaging
method not only produces a value-function estimate that
is piecewise-continuous, but also outperforms the tabu-
lar method in the key performance metric, Sharpe ratio.
Running each policy out of sample for 500,000 steps, we
estimate Sharpe ratio of 2.78 for TQL, and 3.03 for MTA.
The latter is better able to generalize to conditions unlike
those it has already seen, as evidenced by the left-tails in
Figs. 1–2. For smaller training sets, the difference is even
more dramatic, as we discuss below.

Efficient Sample Use

In the previous example, we took advantage of the
simulation-based approach and the speed of the training
procedure to train the model on millions of time-steps. In
the analysis of real financial time series, it is unlikely we
will ever have so much data, so it is naturally of interest
to understand the properties of these learning procedures
in data-scarce situations.

This is related to the notion in statistics of sample ef-
ficiency, by which we mean the typical improvement of
the performance metric per training sample. In this con-
text, one reinforcement-learner is said to display greater
sample efficiency than another, if it needs fewer train-
ing samples to achieve a given level of performance. We
will show that the model-tree averaging (SLA) method
introduced in this paper displays more efficient sample
use than a tabular Q-learner (TQL).

For this exercise, we consider a single “experiment” to
be nbatch = 6 batches, each batch of size 5,000, for a total
of 30,000 samples. We train a tabular Q-learner (TQL)
on the full set of 30,000 samples, and simultaneously up-
date an SLA; the latter adds a new model to the list L
after each batch of 5,000.

We consider two SLA methods, where the supervised-
learner Fk for the prediction problem Y = Fk(X) takes
one of two possible forms:

1. The M5’ model tree method of Quinlan (1992) with
improvements by Wang and Witten (1997).

2. Bootstrap aggregating, where each of the base
learners (ie. learners trained on bootstrap replicates
of the training set) is an M5’ model tree.

In the second variant, we further improve the M5’
models via bootstrap aggregation (Breiman, 1996),
which was given the acronym “bagging” by Breiman. The

May 23, 2018 6

CONCLUSIONS

latter builds an ensemble of learners by making bootstrap
replicates of the training set, and using each replicate to
train a new model; the actual prediction is then the en-
semble average. Breiman (1996) points out that bagging
is especially helpful when the underlying learning method
is unstable, or potentially sensitive to small changes in the
data, which is the case for most tree models.

For each learning method, we are interested in the
sampling distribution (over training sets of the given size)
of the performance metric. We estimate this distribution
by collecting values of the performance metric from 500
experiments, and plotting a nonparametric kernel density
estimator.

Observe from Figure 3 that Q-learning with this sam-
ple size completely fails to overcome trading cost in all
500 experiments – all sharpe ratios are negative.

0

5

10

−0.45 −0.40 −0.35 −0.30

value

d
e
n
s
it
y variable

TQL

Distribution of performance metric

Figure 3: Distribution of the performance metric over
500 experiments, each with 30,000 samples, using TQL.
This method completely fails to overcome trading cost in
all 500 experiments that we ran – all sharpe ratios are
negative.

0

1

2

3

−2 −1 0 1 2 3

value

d
e
n
s
it
y variable

MTA

BAG

Distribution of performance metric

Figure 4: Distribution of the performance metric over 500
experiments, each with 30,000 samples, using SLA where
the base learner is either an unbagged M5 model tree
(MTA) or bagging an ensemble of M5 learners (BAG).

The MTA method generally does overcome t-costs,
even with a scarcity of data, as Figure 4 shows, but there
is relatively high variance in the performance metric. The
best method of all is SLA where each model Y = F (X) in
step 2 of the algorithm is a bagged ensemble of M5 model
trees. With SLA using bagged M5s, the Sharpe ratio is
rarely below 2.0 for these experiments.

Conclusions

Motivated by trading applications, we have introduced a
form of reinforcement learning, SLA, in which the inter-
nal representation of the action-value function is a model-
averaging procedure:

q̂(s, a) :=
1

K

K∑
k=1

Fk(s, a), where K = |L|

where L is a list of models. The individual models in the
list are built from batches, where each batch is run using
the ε-greedy policy based on q̂(s, a) with the previously-
learned models. Each batch generates a data set in which
the output target

Yt = Rt+1 + γ q̂(St+1, At+1) (8)

is associated with the state-action pair Xt := (St, At)
that generated it. The next model is trained on this data
set and added to L.

The SLA family of reinforcement-learning methods
solves two significant problems at once: it can make ex-

May 23, 2018 7

CONCLUSIONS

tremely efficient use of small samples, and it can op-
erate on high-dimensional state space containing both
continuous and discrete state variables and predictors.
It essentially inherits both of these properties from the
supervised-learners used to estimate Y = F (X) in step
two of the algorithm. Ensembles of M5 model trees work
very well as the supervised-learners. Like deep neural net-
works, they are universal function approximators, but for
the types of problems we consider, they converge more
quickly and require no specialized hardware. The SLA
technique thus overcomes the curse of dimensionality and
is generalizable to high-dimensional problems, while si-

multaneously outperforming tabular Q-learning on the
baseline problem (trading an illiquid mean-reverting as-
set).

This research opens up a path to handle arbi-
trary numbers of continuous and discrete predictors in
the reinforcement-learning approach to trading. This
should dramatically expand the range of optimal-
trading problems that can be fruitfully approached us-
ing reinforcement-learning techniques. Another possible
application is to automatic hedging: given a position in
a derivative contract, can a machine learn to hedge the
position?

References

Arrow, Kenneth J (1963).
Liquidity preference, Lecture
VI in “Lecture Notes for Eco-
nomics 285, The Economics
of Uncertainty”, pp 33-53. In:

Bellman, Richard (1957).
Dynamic Programming.

Breiman, Leo (1996). Bag-
ging predictors. In: Machine
learning 24.2, pp. 123–140.

Pratt, John W (1964). Risk
aversion in the small and in

the large. In: Econometrica:
Journal of the Econometric
Society, pp. 122–136.

Quinlan, J Ross (2014).
C4. 5: programs for machine
learning. Elsevier.

Quinlan, John R (1992).
“Learning with continuous
classes”. In: 5th Australian
joint conference on artificial
intelligence. Vol. 92. Singa-
pore, pp. 343–348.

Ritter, Gordon (2017). Ma-
chine Learning for Trading.
In: Risk 30.10, pp. 84–89.
URL: https : / / ssrn . com /
abstract=3015609.

Robbins, Herbert and David
Siegmund (1985). “A conver-
gence theorem for non nega-
tive almost supermartingales
and some applications”. In:
Herbert Robbins Selected Pa-
pers. Springer, pp. 111–135.

Sutton, Richard S and An-
drew G Barto (2018). Re-
inforcement learning: An
introduction. Second edi-
tion, in progress. MIT press
Cambridge. URL: http : / /
incompleteideas.net/book/
bookdraft2018jan1.pdf.

Wang, Yong and Ian H Wit-
ten (1997). “Inducing model
trees for continuous classes”.
In: Proceedings of the Ninth
European Conference on Ma-
chine Learning, pp. 128–137.

May 23, 2018 8

