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Abstract. We present an explicit formula for mean-variance optimiza-
tion in the context of APT models (also called multi-factor models), and
related generalizations with trading costs. Our explicit formula has two
desirable features:

(1) the solutions are well-defined and numerically stable in the presence
of approximate or exact colinearity in the design matrix, and

(2) the computational complexity is (manifestly) linear with respect to
the number of assets.

1. Markowitz Optimization and APT

1.1. APT. Many models for asset returns in empirical finance, following
Ross (1976), assume a linear functional form

(1) Rt+1 = Xtft + εt, E[ε] = 0, V[ε] = D

where Rt+1 is an n-dimensional random vector containing the cross-section
of returns in excess of the risk-free rate over some time interval [t, t+1], Xt is
a (non-random) n× p matrix that is known before time t, and εt is assumed
to follow a mean-zero distribution with diagonal variance-covariance matrix

(2) D := diag(σ2
1, . . . , σ

2
n) with all σ2

i > 0.

Eq. (2) entails that all significant sources of correlation are already captured
by factors, represented as columns of Xt. We henceforth suppress the im-
plicit time index since most of our discussions concern a single time interval.

The variable f in (1) denotes a p-dimensional random vector process which
cannot be observed directly; information about the f -process must be ob-
tained via statistical inference. Statistically estimated realizations f̂ are
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2 STABLE LINEAR-TIME OPTIMIZATION IN APT MODELS

called factor returns by practitioners (Menchero et al., 2008). We assume
that the f -process has finite first and second moments given by

(3) E[f ] = µf , and V[f ] = F.

The model (1), (2) and (3) entails associated reductions of the first and
second moments of the asset returns:

(4) E[R] = Xµf , and Σ := V[R] = D +XFX ′

where X ′ denotes the transpose. To use (4) in portfolio construction, esti-
mates of parameters (3) must be obtained by statistical inference, as dis-
cussed in the next section.

The functional form (1) is general enough to include the three-factor model
of Fama and French (1993), a wide class of models compatible with the
arbitrage pricing theory (APT) of Ross (1976) and Roll and Ross (1980),
the partially-predictable return-generating process of Gârleanu and Pedersen
(2013), and others. Models of the form (1) are also used at most large banks
and asset management firms, often as risk models. Connor et al. (2010),
Fabozzi et al. (2010), and Menchero et al. (2008) give examples of factor
models used in practice.

1.2. Identifiability. The model (1) is said to be identifiable if any of the
following equivalent conditions hold:

(a) rank(X) = p, ie. X is full rank,
(b) X ′X is invertible, where X ′ denotes the transpose
(c) The function `(f) = ‖R−Xf‖2 has a unique minimizer.
(d) The ordinary least-squares (OLS) estimator of f exists.

We call a model barely identifiable (or approximately collinear) if condi-
tions (b) or (c) are close to being violated; e.g. if X ′X has a very small
eigenvalue, or equivalently, if `(f) has a direction of near-zero curvature, or
the Hessian of `(f) is nearly degenerate. Identifiability might seem an im-
portant condition to require when building a factor model, but, in practice,
unidentifiable and barely identifiable models arise naturally and often.

Example 1. Consider a unified model for the European equity market. Signif-
icant drivers of asset return covariance include market beta, industry mem-
bership, country membership, and others. Define

Ni,j =

{
1, stock i is a member of industry j

0 otherwise



STABLE LINEAR-TIME OPTIMIZATION IN APT MODELS 3

with C defined similarly for countries. Let B denote an n×1 column vector
of market betas. The full design matrix is X =

[
B C N

]
and is of course

not identifiable.1

Example 2. Suppose we augment model (1) with two closely-related alpha
forecasts, which we call α1 and α2 (such as earnings yield with two different
types of earnings). Collect these into an n × 2 matrix A =

[
α1 α2

]
. The

augmented design matrix is then

X =
[
A B C N

]
We now have an approximate and an exact colinearity in the same model!

Our intended application is to models which generalize Example 2, and
hence fall outside of strong-form market efficiency by allowing for the exis-
tence of alpha factors. Many authors in in empirical finance either propose
examples of alpha factors (Asness et al., 2013) or discuss optimization in a
context where some alpha factors are given (Gârleanu and Pedersen, 2013).
This paper is of the latter type.

Identifiability is not necessary for the model (1) to be a correct descrip-
tion of the world. Referring to Example 1, there can, of course exist latent,
unobservable stochastic processes fj corresponding to industries and coun-
tries which drive returns according to eq. (1). However, lack of identifiability

complicates estimation of f̂ and by extension, µf and F .
If the model is identifiable, then reasonable estimates for the factor returns

are
f̂OLS = (X ′X)−1X ′R,

and µf can be estimated by the time-series mean of f̂OLS. In the uniden-

tifiable case, f̂OLS doesn’t exist, and in the barely identifiable case, f̂OLS
misleadingly contains large opposing coefficients for strongly-correlated fac-
tor pairs.

Several well-known methods exist for obtaining estimates of f̂ in the
unidentifiable case. Intuitively, when there are multiple solutions to the
first-order condition, some constraint or prior must be introduced to prefer
one solution over another. One may remove exact colinearities by impos-
ing p− rank(X) linear constraints on the coefficients. This restricted least
squares method (Greene and Seaks, 1991) is simple and classical, but ulti-
mately incomplete. It would handle Example 1 but not Example 2, and the
constraints must be decided arbitrarily. A more general class of inference

1An exact colinearity, such as in Example 1, can be rectified by choosing a basis for the
column space of X and replacing X with a (thinner) matrix having the elements of this
basis as columns. This is less than ideal for two reasons: it loses the economic meanings
of the factors, and doesn’t easily generalize to the case of approximate colinearity, ie.
barely identifiable models.



4 STABLE LINEAR-TIME OPTIMIZATION IN APT MODELS

procedures are provided by Bayesian regression, including the popular ridge,
lasso, and elastic-net estimators as special cases; see Zou and Hastie (2005).
Such procedures have the added benefit of providing an explicit model com-
plexity parameter to be used in cross-validation; see Friedman et al. (2001)
for details.

In particular, the ridge estimator is

(5) f̂λ = arg min
f

[
‖R−Xf‖2 + λ‖f‖2

]
= (X ′X + λI)−1X ′R, λ > 0.

For any λ > 0 and any real matrix X, f̂λ exists. Moreover, the limit

(6) lim
λ→0

f̂λ = X+R

also exists, where X+ denotes the Moore-penrose pseudoinverse of X; see
Albert (1972) for background. By a classical result, (6) is the minimum-
norm vector among all minimizers of the least-squares objective, and gives
yet another way of obtaining coefficient estimates in the unidentifiable case.

The above procedures provide a reasonable guide for coefficient estima-
tion and, by extension, to statistical inference and estimation of µf and F
in unidentifiable models. However our goals extend beyond coefficient es-
timation to portfolio optimization and hedging. To this end, we present
an explicit formula for Markowitz (1952) mean-variance optimization, and
extensions with trading costs, which has two important features:

(1) the solutions are well-defined and numerically stable in the presence
of approximate or exact colinearity in the design matrix, and

(2) the computational complexity is (manifestly) linear with respect to
the number of assets.

Our solution could be called “optimization in factor space,” meaning that
it first finds the risk and alpha factor exposures of the optimal portfolio,
before representing the optimal portfolio as a linear transformation of the
optimal exposures.

2. Optimization

The Markowitz (1952) mean-variance problem with moments (4) is

h∗ = argmax f(h) where(7)

f(h) = h′Xµf −
κ

2
h′XFX ′h− κ

2
h′Dh(8)

and where κ > 0 is the Arrow-Pratt constant absolute risk aversion. The
first two terms in (7) depend on h only through its exposures, defined by

(9) q := X ′h

In terms of (9) the first two terms in (7) can be written more simply as

q′µf − (κ/2)q′Fq
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Industry-standard terminology for the third term, h′Dh, is idiosyncratic
variance. A key insight is that at optimality, the third term can be written
as a function of q as well:

Intuition 1. An optimal portfolio h for (7) must minimize idiosyncratic
variance h′Dh among all portfolios with the same exposures q = X ′h.

With this intuition in mind to clarify the proof, we can now proceed to
the main result of the paper.

Theorem 1. The risk/alpha exposures of the portfolio optimizing (7) are q∗

and the optimal holdings are h∗, where

q∗ = κ−1[F + [X ′D−1X]+]−1µf(10)

h∗ = κ−1D−1/2(X ′D−1/2)+
[
F + (X ′D−1X)+

]−1
µf(11)

Proof. Let h∗(q) be the solution to

(12) h∗(q) = argminh h
′Dh subject to: X ′h = q.

Let

V (q) = h∗(q)′Dh∗(q)

be the minimum idiosyncratic variance (still subject to X ′h = q). Using
Intuition 1, the mean-variance objective can then be written entirely in
terms of q:

(13) max
q

{
q · µf −

κ

2
q′Fq − κ

2
V (q)

}
.

Finding V (q) will allow us to directly attack (13), hence we now devote
ourselves to this task. We show in due course that V (q) is quadratic and
can be written down explicitly.

Changing variables to η := D1/2h the problem (12) is

(14) min
η
‖η‖2 subject to X ′D−1/2η = q

Eq. (14) is a special case of a classical problem which has a beautiful solution
and deep connections to other areas of mathematics. The minimum norm
solution of a linear system Bx = q is given by x = B+q where B+ is the
pseudoinverse of B, in the sense of Moore (1920) and Penrose (1955).

Computation of B+ is straightforward given the singular value decompo-
sition: if B = UΣV ′ where U and V are orthogonal and Σ is rectangular-
diagonal, then

(15) B+ = V Σ+U ′
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where Σ+ is computed by inverting the non-zero diagonal elements and tak-
ing the transpose.2

Hence the solution to (14) is given by3

(16) η∗ = (X ′D−1/2)+q ⇒ h∗(q) = D−1/2(X ′D−1/2)+q

and therefore

V (q) = h∗(q)′Dh∗(q)

= [D−1/2(X ′D−1/2)+q]′D[D−1/2(X ′D−1/2)+q]

= q′[X ′D−1X]+q

The third term in (13) can thus be combined with the second term in (13)
to form a single quadratic term. The optimal q is then given by

q∗ = κ−1[F + [X ′D−1X]+]−1µf

and the optimal holdings h∗ are found by plugging q∗ into (16). �

Theorem 2. Let the number of factors, p, be a fixed constant. The computa-
tional complexity of finding the optimal exposures and holdings, Eqns. (10)–
(11), is linear-time in n, the number of assets.

Proof. Let p� n; the “economical” SVD of an n×p matrix can be computed
(Golub and Van Loan, 2012) in about

(17) 6np2 + 20p3 flops

This bounds the complexity of the pseudoinverse and actual inverse required
in (11), since the Moore-Penrose pseudoinverse is given in terms of the SVD
by (15). But if p is constant then (17) is linear in n. �

We now make several observations concerning the above which may be
useful to practitioners. We lose no generality in assuming that the outputs
from m distinct alpha models are stored in the first m columns in X, and
defining k = p−m as the number of risk factors, one has

(18) X =
[
Xα Xσ

]
∈ Rn×(k+m)

Several of the remarks below refer to the notation of (18).

2This provides an automatic way to ensure numerical stability: computing Σ+ is nothing
more than computing the multiplicative inverses of a sequence of real numbers; one should
treat those numbers as zero if they are within floating-point precision! More aggressive
regularization can be obtained by further increasing this threshold away from the floating-
point “epsilon.”
3Under certain conditions on matrices A and B, one has (AB)+ = B+A+ but none of
those conditions apply here, so the right-hand side of (16) can’t be simplified further.
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Remark 1. As stated above we do not assume X is of full rank. Thus
our method deals gracefully with approximate or exact colinearities among
the risk factors and alpha factors (or Xσ and Xα). This could arise if Xσ

contains indicator variables for two classifications, such as sector and coun-
try, if two or more alpha models were closely related representations of the
same model/dataset, or if some group of alpha factors were approximately
spanned by the risk factors. Eqns. (10)–(11) remain valid if there aren’t
any collinearities of course, so this approach allows one formula to cover all
cases.

Remark 2. The number of risk factors k, the number of alpha models m,
and hence the overall number of factors p = k+m is ultimately a modeling
choice, but since the complexity scales as p3 for fixed n, parsimonious mod-
els are more efficiently optimized. Parsimonious models are also preferred in
statistical model selection procedures according to the Ockham’s razor prin-
ciple (Jefferys and Berger, 1992). Accordingly, one can select the number of
factors (or model complexity) by splitting the full data into a training set,
and a testing (or out-of-sample) set, and setting the model complexity via
cross-validation within the training set. A full description of the procedure
is beyond our current scope, but an excellent treatment can be found in
Friedman et al. (2001, Chapter 7).

Remark 3. The technique above can be extended to include certain simple
trading cost models. For example, if we have a starting portfolio h0 and
quadratic trading costs4 given by

(19) (h− h0)′Λ(h− h0) where Λ = diag(λ1, . . . , λn).

then (7) becomes (with the shorthand α := Xµf )

f(h) = h′α− κ

2
h′XFX ′h− κ

2
h′Dh− (h− h0)′Λ(h− h0)(20)

= h′(α + 2Λh0)−
κ

2
h′XFX ′h− κ

2
h′(D +

2

κ
Λ)h(21)

The latter has the same mathematical structure as the original problem (7),
so Theorem 1 applies. Even if trading costs are not of the form (19), it is
still useful to be able to compute the Markowitz portfolio in linear time,
because the solution to the more complicated problem amounts to tracking
the Markowitz portfolio in a cost-efficient manner (Kolm and Ritter, 2015).

Remark 4. Gârleanu and Pedersen (2013) show that under certain assump-
tions on return predictability and trading costs, the dynamically optimal

4This trading cost model is too simple to be used in practice because the quadratic
structure tends to underestimate the cost of small trades.
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portfolio sequence is given by a linear combination of past optimal portfo-
lios and the “aim portfolio.” Aim portfolios are weighted sums of future
Markowitz portfolios over many horizons:

(22) aimt =
∞∑
τ=t

z(1− z)t−τEt[Markowitzτ ]

where Markowitzτ is Gârleanu and Pedersen (2013) notation for what we
call h∗, a solution to the problem (7). Theorem 1 and 2 imply that the aim
portfolio (22), after suitable truncation of the infinite sum, can be computed
with O(n) efficiency and stably in the presence of colinearities, ie. that the
computations implied by (22) are feasible even for large n.

Remark 5. If the alpha factors are statistically independent from the risk
factors, then F must have a block structure with blocks Fα and Fσ. A
portfolio neutral to all of the columns of Xσ (the risk factors), may be
obtained as the limit of h∗ as [Fσ]i,i → +∞ for all i = 1, . . . , k. This
limit exists, and is equivalent to solving the optimization with the k linear
constraints h′Xσ = 0. Under the independence assumption of alpha factors
and risk factors, the constrained factor-neutral portfolio will usually be close
to h∗, but not exactly the same since the constrained solution may have
higher idiosyncratic variance than other unconstrained solutions.

3. Conclusions

Theorem 1 is, primarily, a research tool, useful whenever “factor returns”
or “factor-mimicking portfolios” (Connor et al., 2010; Menchero et al., 2008,
for details) are useful. It can be generalized to include very simple transac-
tion cost models, and is also useful as an input to multiperiod frameworks
such as Gârleanu and Pedersen (2013). Our formula can be computed very
efficiently for large portfolios driven by a small number of factors, ie. when
p � n. It exhibits the optimal portfolio as a linear transformation of the
optimal factor exposures, and hopefully clarifies how Ross (1976) pricing
theory is the key to using Markowitz (1952) optimization when the number
of assets, n, is large.
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