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Abstract: We give a mathematically rigorous construction of the moduli space and
vacuum geometry of a class of quantum field theories whichNare- 2 supersym-
metric Wess-Zumino models on a cylinder. These theories have been proven to exist
in the sense of constructive quantum field theory, and they also satisfy the assumptions
used by Vafa and Cecaotti in their study of the geometry of ground states. Since its in-
ception, the Vafa-Cecotti theory of topological-antitopological fusiornibgeometry,

has proven to be a powerful tool for calculations of exact quantum string amplitudes.
However,tt* geometry postulates the existence of certain vector bundles and holomor-
phic sections built from the ground states. Our purpose in the present article is to give a
mathematical proof that this postulate is valid within the context of the two-dimensional
N = 2 supersymmetric Wess-Zumino models. We also give a simpler proof in the case
of dimensional reduction to holomorphic quantum mechanics.

1. Introduction

The purpose of this paper is to provide a mathematically rigorous version of the physical
theory oftt* geometry, valid within constructivd = 2 quantum field theories.

In the setting of topological string theory, Witten [1] has shown that a partial un-
derstanding of background independence may be obtained from the geometry of theory
spaceit* geometry [2] is the theory of bundles, metrics, connections, and curvature
over theory space. For Calabi-Yau spaces, this subject was studied by Strominger [3]
and by Greenet al.[4] in the context ofspecial geometrywhich refers to the target-
space geometry oV = 2 supersymmetric vector multiplets, possibly coupled to su-
pergravity. Moreover, the seminal work [5] shows the importancig‘ofjeometry as a
powerful tool for calculations of exact quantum string amplitudes.

The ground state metric, originally introduced as a generalization of special geome-
try which is valid off-criticality in RG space, is a Hermitian metric on a complex vector
bundle. The base space of this bundle is formed from suitable collections of coupling
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constants for the theory, while the fiber over a point in moduli space is built from the
ground states of the associated quantum field theory. For the supersymmetric theories
we study, the fibers may also be described as BRST cohomology of the supercharge
operator.

One goal of this paper is to provide detailed descriptions of the coupling constant
spaces relevant to th¥ = 2 Wess-Zumino model on a cylinder. Verification of the
vector bundle axioms in these models is a quantum field theory version of the problem
of continuity inx of the Schédinger operator A + xV/, thus existence of the vacuum
bundle as a vector bundle in the rigorous sense requires analytic control over operator
estimates. We also discuss the mathematical prerequisites necessary to define the metric
and connection oft* geometry. A further mathematical question is the existence of a
special gauge in which the anti-holomorphic components of the connection vanish.

1.1. Constructive Quantum Field Theorwe work with a class of quantum field theo-
ries which are two-dimensional Euclidedh= 2 Wess-Zumino models, making some
technical assumptions which ensure that cluster expansion methods are valid. These
interactions are also frequently called “Landau-Ginzburg” as the simplest bosonic self-
interaction occurs in Landau and Ginzburg’s study of condensed matter (see [25] for
background).

We begin by defining the theory and recalling some known results. This is a theory of
one complex scalar field and one complex Dirac fermion. The formal Hamiltonian
is given by

whereH, is the free Hamiltonian for a boson and fermion with unit massiéidz) =

)\*2W(>\x). The cluster expansion is known to converge under the following condi-
tions:

(A) W' must haver — 1 distinct zero€y,...,&,_1, wheren = deg W, and
B) (W"(&)|=1foralli=1,...,n—1.

The bosonic potentiaﬂ[/l&(qﬁ)\2 has minima at the zeros &%’ and scaling\ — 0
increases the depth and the separation of the potential wells. Thus for sufficiently small
A, semiclassical analysis is valid.

The technical restrictions on our class of superpotentials make the theory amenable
to cluster expansion methods, which have led to proofs of the existence of the infinite
volume limit [7], and a vanishing theorem [8, 10] for fermionic zero modes in the finite
volume theory.

No new phenomena are expected for sufficiently small perturbations of the mass=1
condition (B). Moreover, for the present study, this condition must be removed; with
condition (B) in place, the space of admissible potentials is not an open subset of the
natural Euclidean space into which it is embedded.

As observed by Janowslet al. [8], the relevant cluster expansions all continue to
hold unchanged for small polynomial perturbations

Wi(z) — A72W(A2) + A Bw(Az) )
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wherew € CJ[z] is a polynomial of degree andj is a small parameter. This breaks
any artificial symmetry due to the mass restriction, and enlarges the space of admissi-
ble superpotentials. Our approach to eliminating the mass restriction is to analyze this
symmetry breaking in detail, and to show that the symmetry breaking perturbation (2)
results in the replacement of the closed condition (B) with a condition thati®&cl; )
must lie in an appropriately small open neighborhood of the unit circle. See Sec. 5.1 and
in particular, Theorem 6.
Imbrie et al. [9] studied the cluster expansion for the Dirac operaps m(z)
with a space-dependent mass, which is a toy model for the infinite volume multiphase
N = 2 Wess-Zuming theory. The appendix to [9] gives a method for removal of
the |m(z)| = 1 restriction for the space-dependent Dirac operator, which assumably
generalizes to the full Wess-Zumino model, giving a second method for removal of (B).
Integrating out the fermions gives the formal partition function

7= / dp(oye T (WROF ) it | S (Y (WE(6) — 1), ()

z 0
(0 Z*)
wheredy(¢) is the normalized Gaussian measure with covarignred + 1)71. S is

a fermionic propagator defined &= ~o(if) + 1)~ wherep = 779, and~* are
Euclidean gamma matrices defined by

. 0-1 02
7170:7(1)?:(1 O)a ’YF:(Z' 0)

The formal expression (3) is not well-defined without normal ordering. The normal-
ordered partition function is

with
Y(2)

7 = / d,u(d))e_'f/‘(:lw)/‘(wf:_:|¢‘2:)dwdet3[l +K(¢)]€7R
whereK (¢) = Syoxa(Y (W{(¢)) — 1) andR is a counter-term given by

2 2 1
R= /Adw [W3@) = IR @) : = [0l +: 191 :] + 5 Te(K(6)) — Tr K (9)
Supersymmetry of the theory implies that the counter-t&ns finite, which means
that if we regularizeR then the limit as the regularization is removed is well-defined.
In finite volume this theory was constructed in [22] and [23] with no restriction on the
superpotential. The infinite volume limit is treated via cluster expansions in [7] and
[24].

1.2. Supersymmetric Lagrangian$he transformation properties of the Wess-Zumino
model under supersymmetry become especially transparent when it is written in terms
of a manifestly supersymmetric action,

SiﬁmK@@+/fﬁW@+/fWW@) (4)
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where® is a superfield.
Typically in constructive field theory one restricts attention to ttéhl€r form

(—19°9)

arising from a flat metric, since some work is required to generalize the cluster expan-
sion to more generak. We hope to address this question in a separate paper, but for
the present we also use the flalder form.

Expanding the superfields in lightcone coordinates and eliminating auxiliary fields
from the Lagrangian density (4) using their equations of motion, one obtains

n 1 . 1 . »
L=> <§8+%‘ O-pi+ 50-9;0rpi — 0, (9)” + i} ;011
=1
it Db — (O s ;00 W () +he)), (5)
j=1

It is clear that the Hamiltonian (1) is of the type obtained by applying a Legendre
transformation to the on-shell Lagrangian (5).

1.3. Topological TwistingOne may couple a Landau-Ginzburg theory to an arbitrary
U(1) gauge fieldA,,, so that the correlatd [ O) of an arbitrary product of local oper-
atorsO depends o, as well as the spin connectian,. This coupling introduces an
extra term into the Lagrangian, given by

A () (=)i + A=) (¥4 )i (6)

WhenA is set equal tc% times the spin connection, a field which previously had spin
and fermion charge will now have spins — %q. In particular,@ . which had spinl /2
and fermion numbe#-1 becomes a scalar.

With operatorsO set equal to chiral primary fields and with, ~ Jw,,, the corre-

lator
(o),

is a topological invariant. In particular one computes from (6) that gauging with the
connection

poWy

Az:_%wm AE:+%WZ

has the effect of modifying the stress energy tensor,
1
Ty — T(;b =T — 55(1680']1) (7)

The new stress energy tensor is BRST exact, in the sensé that such thatl,, =

{Q, Au}, whereQ = Q. + Q_. Observables in the topological theory are identified
with BRST exact objects. Any theory in which the action is supersymmetric and the
stress-energy tensor isG@commutator is topological, since by definition the stress-
energy tensor generates metric deformations.



Vacuum Geometry of thé&/ = 2 Wess-Zumino Model 5

1.4. Thett* Equations. Physical observables of @i = 2 SCFT are associated with
chiral superfields, with components

—(1)

D = (6" (2,2), 6\ (2,2),8; (2,2), 6.7 (2,7)) 8)

where

6P ={Q7,[Q o)} 9

We define a deformed theory parameterized by the coupling consgtants as
follows
L(t;, 1) = £Y=2 +Zti/ ¢ +Z@—./ P (10)
i z i ¥

This deformed theory can be transformed into a TFT by the twisting mechanism. If
some of the non vanishing coupling constants correspond to relevant deformations, then
the theory defined by (10) will represent a massive deformation of\the 2 SCFT
defined byC{=2.

Let |7,t,¢; 8) be the state defined by inserting on the hemisphere the dietthd
projecting on a zero energy state by gluing the hemisphere to an infinitely long cylinder
of perimeters. This corresponds to using a mettic= e®dzdz with 5 = e?. Let us
now introduce a set of connection forms, A;. These connections are defined by

(k|o; — Aslj)y =0 (11)

with |k) the antiholomorphic basis. An alternate definition is in terms of the hemisphere
states,

Or,14,t, T B) = Ak, t,T; 8) + QT -exact
05,1, .1 8) = AL, [k, 1.5 5) + QT -exact (12)

The connection (11) is related to (12) by

k Tk
A = Az‘ng
with ¢g** the inverse of the hermitian metrig; = (7).
Therefore the covariant derivatives are given by

Di=0i—A;, D;=0:—A (13)

Using the functional integral representatior}t, t) and interpreting the partial deriva-
tive 0; as the insertion and integration over the hemisphere of the opejﬁﬁ%owe can
conclude by contour deformation techniques thayJ, ¢, ¢; 3) is also a physical state
andA% = 0.
Defining now

Aijre = (k|03]7) = AL e (14)
for n;, the topological metric, standard functional integral arguments give curvature
equations for the connections. In particular,

0;AY, = 31 C;, Cr 1k (15)
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with 3 the perimeter of the cylinder, arid are chiral ring structure constants. Equation
(15), first derived by Cecotti and Vafa [2], together with

[Di, Dj] = [Dg, D3] = [Di, C5] = [D3, C5] = 0

[D:,Ci] = [D;,Cil . [D7,C5] = [D5,C4)

which can be deduced by similar techniques, are known ag’tleguations. To contract
the indices of the topological and antitopological structure constants, one must use the
metricg,; of the physical Hilbert spack.

2. Holomorphic Analysis in Banach Spaces

We now begin the mathematically rigorous portion of the paper. We briefly review
classical theory of analytic mappings between (possibly infinite dimensional) Banach
spaces and some aspects of 8diimger operators, and prove results which are a gener-
alization of Kato-Rellich theory. We then present a treatment of vacuum bundle theory
for Schivdinger operators, which is a new way of analyzing this class of operators.

2.1. Holomorphic Families of Unbounded Operatois.family of bounded operators

T(x) € B(X,Y) between two Banach spaces is said tdhhbemorphicif it is differ-
entiable in norm for ally in a complex domain. For applications, it is not sufficient to
consider bounded operators only, and the notion of holomorphy needs to be extended
to unbounded operatorB)( - ) denotes the domain of an operator, aid) denotes the
resolvent set.

Definition 1. A family of closed operatorF () : X — Y defined in a neighborhood
of x = 0, whereX, Y are Banach spaces, is said to belomorphic aty = 0 if there
is a third Banach spacg€ and two families of bounded operatd’¥x) : Z — X and
V(x) : Z — Y which are bounded-holomorphic gt= 0 such that/ () is a bijection
of Z onto D(T(x)), andT (x)U(x) = V(x)-

An equivalent condition which is easier to check in some cases involves holomor-
phicity for the resolvent in the usual sense of bounded operators. We have [18]:

Theorem 1.LetT(x) be a family of closed operators on a Banach spacdefined in
a neighborhood ok = 0, and let¢ € p(7T'(0)). ThenT(x) is holomorphic aty = 0 if
and only if for ally in some small ball¢ € p(T(x)) andR(¢, x) :== (T(x) —¢)~tis
bounded-holomorphic. In this situatioR((, x) is jointly bounded-holomorphic in two
variables.

An interesting variant of this (which will arise in the case of interest for this paper)
is the following.

Definition 2. A familyT () of closed operators fronX to Y defined fory in a domain
2 in the complex plane is said to @lomorphic of type (A)f

1. The domainD := D(T(x)) is independent of € (2.
2. For everyu € D, T'(x)u is holomorphic fory € (2.
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A family that is type (A) is automatically holomorphic in the sense of Definition 1,
taking Z to be the Banach spade with the norm||u||, := |Ju|| + [|T°(0)u|. We now
consider analytic perturbations of the spectrum. The following Theorem from Ref. [18]
will be used in the proofs of our main results.

Theorem 2.Let X be a Banach space arifi(y) € C(X) be holomorphic iny near

x = 0 and letX(0) = X(T(0)) be separated into two part&”’(0), X" (0) in such

a way that there exists a rectifiable simple closed curvenclosing an open set con-
taining X in its interior and X in its exterior. In this situation, foty| sufficiently
small, ¥(T'(x)) is also separated by’ into two partsX’(T'(x)) U X" (T(x)), and X
decomposes as a direct sukh= M’(x) & M"(x) of spectral subspaces Moreover,
the projection onM’ () along M" () is given byP(x — 5= ¢, R(¢, x)d¢ and is
bounded-holomorphic near = 0.

Remark on Lemma Zhe projectionP () is called theRiesz projectionand this pro-
jection being bounded-holomorphic is equivalent to the statement that the subspaces
M’ (x) andM" () are holomorphic in their dependence gn

2.2. Perturbation TheoryConsider a family of closed operatdf§ depending on a
parameter € B.(0) for somes > 0, with a common domai® in a Hilbert spacé+,
and such that each, has a nonempty resolvent set. Wrfie = T; + Ver(x), where
Vert(x) := T, — Ty is called the effective potential.

Definition 3. A discrete eigenvalug of T, is said to bestablewith respect td/g if

1.3r > 0s.t. Fr = {Iz - )\| =1} C p(Ty) for all || sufficiently small, and
2. P(x) = —55 $r, (T — ¢)~'d¢ converges taP(0) in norm asy — 0.

The notion of stability arises in the following rigorous statement of degenerate per-
turbation theory, which is adapted from results of Kato. Her€)) denotes multiplicity
of eigenvalue\.

Theorem 3 (Degenerate Perturbation Theory).Let T, be a Type (A) family near
xo = 0. Let)\, be a stable eigenvalue @§. Then there exist families (x), { =1...r,
of discrete eigenvalues @f, such that

1. X(0) = Ao and_,_; m(Ae(x)) = m(Ao).
2. Each \,(x) is analytic inx!/? for somep € Z, and if T, is self-adjointvy € R,
then,(x) is analytic in.

3. The Vacuum Bundle for Schibdinger Operators

The free Schidinger operatoP? = — A in d space dimensions is self-adjoint on the
domainD(P?) = H?*(R?), and hagCg°(R?) as a core. Our goal in this section is to
consider perturbations, of H, which depend analytically on (coupling) parameters

x, and to show that under certain reasonable classes of such perturbations, the total
Schidinger operato®? + V,, remains self-adjoint and has the appropriate spectral
splitting condition to apply holomorphic Kato theory. Ultimately this leads to the rig-
orous construction of a vacuum bundle for quantum mechanics, which is used later for
vacuum estimates in the more complicated Wess-Zumino field theory model.
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There are a number of conditions on a poteritiavhich guarantee that the Séiinger
operatorP? + V will be essentially self-adjoint. An example &? of one such condi-
tion is the following. LetR denote the famin of potentials(x) onR? obeying

/'f z)l |f dxdy < 00.
|z -yl

ThenV € L>*(R3) + R = P? + V is essentially selfadjoint [17].

Definition 4. We will refer to a function spacé” as aspace of admissible potentials
vV f € W, the Schodinger operatorP? + f is essentially self-adjoint.

Standard self-adjointness theorems for ®dimmger operators generically tend to
have the property that the spdé€of all admissible potentials is a locally convex space.
A locally convex topological vector space is the minimal structure which is necessary
for the traditional definition of “holomorphic map” to remain valid with no modifica-
tions. Amapl’ : U — W from a domainy/ C C into a locally convex spacl’ is said

to beholomorphicatzy € U if lim,_, w exists. These definitions allow us

to speak of a holomorphic mdp from a Complex manifoldV/ into a spacéV of ad-
missible potentials. This generalizes to a geometric setting the notion of a perturbation
which depends on a number of coupling parameters; in our case coordinaté saie

the role of generalized couplings.

Theorem 4.LetU C X be an open connected set in a Banach spdEcand letH be

a Hilbert space. LetH, be a closed operator on a dense dom@inC H. Fix a map
V : U — Op(H), and forr € U, defineH (r) = Hy + V(7), which we assume has
nonempty resolvent set. Assuliie V' (7) has Hy-bound smaller than one, and that
V(7)% is analytic int, for anyy € D. ThenH( -) is analytic.

Proof of Theorem 4. By the Kato stability theorem [18]H (1) is closed for allr.
SinceV (7) is Hyp-bounded D(H (7)) = D(Hy) N D(V (7)) = D(H,). It follows that
the family H( - ) is type (A), and hence analytic.C]

Our assumptions in Theorem 4 are sufficiently general to allow the domain of the
mapV to be an arbitrary manifold.

If we assumé, to be a selfadjoint operator on a dense donfia L?(R"), and
we letV; for i € N be a sequence of uniformly bounded operatorsL.8(R"™) and
T € £>°(C), then Theorem 4 implies that the Hamiltonian

T) = Hp +ZTiVi
i=1

is analytic in the coupling parametets

In order to apply the Remark following Lemma 2, we need to work in a scenario
where the lowest eigenvalue of the Saflinger operator is an isolated eigenvalue. This
is by no means guaranteed; in fact it is typically false/81R"™) whenV () is contin-
uous andim,. ., V(z) = 0. However, this spectral gap is guaranteed given a compact
manifold and some very generic conditions¥nand on a noncompact manifold such
asR? whenV () grows at infinity. We discuss both the compact and non-compact cases
since the non-compact case is usually studied in quantum mechanics, but quantum field
theory is frequently studied on a compact manifold.
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Lemma 1. DefineH = —A+V (z) on L?(X) for a compact Riemannian manifol,

and assume that’ € L?(X) with V(z) > 0. ThenH has purely discrete spectrum in
which the eigenvalues are not bounded above, and all eigenvalues have finite algebraic
multiplicity.

The proof of Lemma 1 uses standard methods along the lines of Griffiths and Harris’
proof of the Hodge theorem [15]. Lemma 1 implies a spectral gap between the lowest
eigenvalue (ground state) &f and the first excited state eigenvalue on a compact man-
ifold.

Generally, if the resolvenRy (2) is compact, thew (Rg(2)) is discrete with 0 the
only possible point ir..s. Hence one would expect that has discrete spectrum with
only possible accumulation point ab, and this impliesr.ss(H) = (). This reasoning
shows that ift/(z) > 0, V is in C(R™) or L} (R"), andV (z) — oo as||z| — oo,
thenH = —A + V has purely discrete spectrum aA(R%).

If zo € 0(1p) is anN-fold degenerate eigenvaluetif, then generically a perturba-
tion will break the degeneracy, and thereforél ifis a holomorphic perturbation @i,
we expect, as in Theorem 3, a number of eigenvalue curves which flow awayfrom
It follows that we have a vacuum bundle only in the special cases when the degeneracy
N is not broken byl for all x lying in some complex manifold. Physics intuition sug-
gests the only way this can happen is in the presence of additional symmetry, such as
supersymmetry. In the latter case, the Witten index [12], which counts the ground states
weighted by(—1)¥, equals the index of the Dirac operator and this does not change for
all effective superpotentials of the same degree.

The following is the main theorem of Section 3. It asserts the existence of the vacuum
bundle for a Sctirdinger operator.

Theorem 5.Let M be either a finite dimensional complex manifold or an infinite-
dimensional complex Banach manifold, andXebe a finite dimensional real manifold
with a Riemannian metric. Lé&f be a linear space whose elements are complex-valued
functions onX, such that for anyf € Y,

1. The multiplication operatoy on L?(X) is P?-bounded withP”?-bound< 1.
2. P? + f has spectral gap between first and second eigenvaluds k).

LetV : M — Y be holomorphic, and for ¢ M let H, := P? + V, have lowest
energy\o(7) with eigenspacer, (7). If dim Ey(7) is constant, therEy, — M is a
holomorphic vector bundle.

Proof of Theorem 5. SinceV (7) is P?-bounded withP?-bound < 1, the Kato-
Rellich theorem implies that for any € M, H(r) = P? + V(1) is self-adjoint on

D = D(P?). Fory € D, V(r) has the form off (1, )¢ (x) as a function o € X,
where f (7, ) is analytic inT by assumption. We conclude by Theorem 4 tHdtr)

is analytic. To show that the ground state subspace is analytic, we work with operators
having discrete spectrum with spectral gap (see Lemma 1 and the discussion thereafter).
We may therefore apply the Remark following Lemma 2. Sidiee Fy(7) is constant,

it follows that we may choos& holomorphic functions;(7),i = 1...N s.t.Vr,

{v;(7)} form a linearly independent spanning setf(r). O

Remark 1 The spac&” has to be tuned to the spadeso that conditions 1 and 2 in
the theorem are satisfied. For exampleXif= R?, thenY can consist of elements of
C(R%) or L} (R?) that blow up at infinity. IfX is a compact manifold, then we can

loc
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takeY = {f € L*(X) : f(z) > 0Vz € X}. This suggests a general class of new
problems in functional analysis. Given, the problem is to determine the largest space
Y which is tuned taX in the sense of Theorem 5.

4. The Wess-Zumino Model, the Dirac Operator on Loop Space, and Vanishing
Theorems

4.1. The Wess-Zumino Model on a Cylindbr.a fundamental paper [21], Jaffe, Lesniewski,
and Weitsman present rigorous results for supersymmetric Wess-Zumino models by
generalizing index theory of Dirac operators to an infinite dimensional setting; we now
give a concise introduction to the results of [21] and recall a number of facts from
constructive field theory which will be needed in later sections.

We study self-adjoint Hamiltoniang defined on the Hilbert spade = H, @ Hy,
whereH; and?; are, respectively, the symmetric and antisymmetric tensor algebras
over the one-particle spad® = W, & W_, whereW_, and W_ represent single
particle/antiparticle states respectively, dnd. = L2?(T'). The Hamiltonian is that
corresponding to one massive complex (Dirac) fermion figldf massm, and one
complex boson field> with the same mass as the fermion field, defined on a circle of
length?. The interactions are parameterized by a holomorphic polyndriia), known
as thesuperpotential The free Hamiltonian in second-quantized notation is written as

Hoy= Y w(p) (a}(p)a;j(p) +b;(p)b;(p)) .

j==, pelt

wherea; satisfy canonical commutation relations for bosonic oscillators pasdtisfy
the corresponding Fermion algebra.
We can write the superpotential B$y) = me? + P(y), separating out the mass

term. The energy density of the bosonic self interactiof®1s(,)|?, a polynomial of
degree2n — 2. The boson-fermion interaction is known as a generalized Yukawa inter-
action, and has the form

PALPOPV + Y A_P(D*V)*,

where /.. are projections onto chiral subspaces of spinor$> K 0, this interaction
reduces to a free mass termy.
Define operatorsV, ¢, ry by

Nep= Y w@)d(pap), Neg= D w(p)bp)bip).

j==+,peTt j=%,pel?

Then the family of operatord, = N, , ® I + 1 ® N, s interpolates between the total
particle number operata¥, and the free Hamiltoniav;. We write Ny for Ny . A
selfadjoint unitary operator that is not the identity necessarilythaand—1 eigenval-
ues, and is thereforeZ;-grading.I” = exp(inN;) is self-adjoint and unitary, hence
the Hilbert space splits into a direct suth= H, ¢ H_ of the+1 eigenspaces af,
and thus naturally inherits the structure of a super vector space.

The following bilinear form ovef is known as thesupercharge

Q= % dz 1 (m — 01" — 10V () + b2 (7" — O1p — i0V (9)") + h.c. (16)
2 )
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where the superpotenti®d () = %mg&z + 2?23 aj¢’ is a holomorphic polynomial
with n > 3, a, # 0, andm > 0. With appropriate regularization and limiting proce-
dures, we havél = Q?, whereH is the full interacting Hamiltonian.

Define D(T*) as the space of smooth maps — C, with topology defined by
uniform convergence of each derivatiZ@(7 ) is an infinite-dimensional Echet man-
ifold known asloop spaceand(@ has the structure of a Dirac operator on loop space.
The proof that the bilinear form (16) defines an operator requires careful analysis, which
has been done in [21]. The strategy is to split the expression (16) foto a free part
and an interacting part, and to further regularize the interacting part by convolving the
fields p(x), ¥, (x) with a smooth approximation to the periodic Dirac measure, which
implements a momentum space cutoff.

To obtain the desired approximation to periodic Dirac measure, we use a cutoff
function x satisfying: 0 < x € S(R), [* x(z)dz =1, x(-z) = x(x),
X(p) 2 0, supp X(p) C [-1,1], and x(p) >0 for |p[ <1/2. We set

Yul@) = & 3 x(k(x - n0))

ne”Z

wherex > 0. Regularized (cutoff) fields are defined by taking convolution withon
T,
@ﬁ(m) = Xk * 90(7:)7 wu,fi(m) = Xk * ¢u($) .

The result of this procedure is a regularized superch@@e = Qo + Q; .. A priori
estimates [22] establish a homotopy betwékno) and@(0) with i(Q(x)) constant.
Explicit calculation[21] shows tha®{ + Q , is the supercharge of the model§f= 2
holomorphic quantum mechanics considered in [20] and this paper. Existence of a holo-
morphic vacuum bundle for the quantum mechanical supercligfgeq); o follows by
dimensional reduction from Theorem 7. However the holomorphic quantum mechanics
model is sufficiently simple that the desired vacuum bundle estimates can be established
directly using methods of classical ODEs, as we show in Section 7.

It was shown in [20] tha€(0) has only bosonic ground states, ixe.(Q(0)) = 0.
We say that a Hamiltonian has tlianishing propertyf n_ = 0.

4.2. N = 2 Wess-ZuminpVanishing TheoremWe recall the vanishing theorem for
N = 2 Wess-Zuming models, independently proven by Janowsky and Weitsman [8],
and by Borgs and Imbrie [10], which is crucial for later sections. Consider superpoten-
tials of the form .

AW (Az) + A Hw(Ax) 17)

whereW andw are polynomials of degree W’ hasn — 1 distinct zeros, antiv”’| =
1 at each zero. Thé&v = 2 Wess-Zumino quantum field theories corresponding to
superpotentials of type (17) have no fermionic zero modes\fand ¢ sufficiently
small, where\ is a parameter that controls the depth and spacing of the potential wells,
and¢ measures the strength@f which represents a small perturbation away from the
unit mass condition.

To see this, we note that results of [22,23] imply thaf 7 is trace class for all
7> 0andind(Q) = tr(I'e""#) = deg(V) — 1. It follows that

dimker H = ﬂlim Tr(e ),
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and given the assumptions arand¢, cluster expansion methods [8] show that for
sufficiently large,

1

|Tr(Fe_ﬁH) - Tr(e_ﬁH)‘ <3

Now Q is selfadjoint,H = Q2 > 0 and [23] shows that—? is trace class, hence

(18)

dimker H = Tr(e ?) 4+ O(e7%)
for 8 > 1 and for some > 0. It now follows from (18) that
|dimker H — ind(Q)| < 1.

In this situationdim ker H# andind(Q) are integers differing by less than one, hence
they are equal. It follows that for superpotentials as in (A7), H) = 0.

4.3. Other vanishing theorem&ome care is required, as the term ‘vanishing theorem’
can take on other, perhaps contradictory, interpretations. For examplasi& compact

spin manifold with a nontriviab'-action, Atiyah and Hirzebruch [14] have shown that
Ind(D) = A(M) = 0, whereD is the Dirac operator oft/. In a situation more closely
related to quantum field theory, Witten [13] formally applied the Atiyah-Bott-Segal-
Singer fixed point formula to the Dirac operatB¥ on loop spaceé M, with the result

that, with M as above and under suitable assumptions on the first Pontryagin class, the
Witten genudnd(D%) = 0. In the present contexind Q = 0 entailsn_ (Q) = n.(Q)

and does not imply that the zero modes are purely bosonic, so the Janowsky-Weitsman
theorem is a qualitatively different result from Witten'’s vanishing theorem, applied with
Q playing the role of a Dirac operator.

We will show that the vacuum bundle exists fr = 2 models with the vanishing
property. A large class of Wess-Zumino models (precisely those with superpotentials of
the form (17)), are known to have the. = 0 property. We conjecture that a vanishing
theorem stronger than [8] holds, and that’éll= 2 Wess-Zumino models on a cylinder
satisfyn_ = 0.

It is interesting to note that the vanishing theorem of Janowsky-Weitsman [8] and
Borgs-Imbrie [10] is expectedot to hold for the correspondingy = 1 Wess-Zumino
models. In [20], a quantum mechanics version of thé = 1 Wess-Zumino field
theory is considered. Supersymmetry is broken or unbroken depending on the asymp-
totics of the superpotential at infinity, and is characterized by its degig@: ) =
+ deg V(mod 2). In the unbroken case, there is a unique ground state; it belongs to
Hi (ng =1, n_=0) orto H_ (ny =0, n_ = 1), according to the addition&
symmetry of the superpotential. In the case of broken supersymmetry, there are exactly
two ground states anch, = n_ = 1. Similar results are true in the corresponding
d = 2 quantum field models in a finite volume [21].

Thus the vanishing property is an aspeci\of= 2 supersymmetry, as is the theory
of the ground state metri¢t* geometry, and the CFIV index [6,2].

4.4. The Vacuum Bundle and Atiyah-Singer Index Thebgt.C(H) denote the space
of closed unbounded operators on Fock spice- H, ® Hy. Suppose that we have
identified the appropriate moduli spagé of coupling constants for a supersymmetric
guantum field theory with superchar@eand Hamiltonian/ . For example, the space
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JW introduced our construction of the vacuum bundle is such a space (although not
the largest) folV = 2, n_ = 0 Wess-Zumino theories.

In view of the theory developed in Sections 4 and 5.1, quantum field theory provides
a map from the total moduli spacef into C(H), given by associating the supercharge
operatorQr to any set of coupling constans € M. Composing this map with the
squaring function gives the Hamiltonian of the theory also as a wap— C(H),
defined byZ — (Q7)? = Hy. This induces a map froom — Gr(H) given by
associating” — ker Hy, whereGr(H) denotes the Grassmannian of closed subspaces
of H, with topology given by identifying closed subspaces with projectors and imposing
a standard operator topology.

The vanishing property is the statement that

dimker Hr|,, =0 forall 7 e M

where’H_ denotes the-1 eigenspace (diermionic subspaqgeof the Z,-grading oper-
atorI".

Let D : I'(E) — I'(F) be an elliptic operator and It and F' be vector bundles
over a closed manifold/. The Atiyah-Singer Index Theorem states that

Ind D := dim Ker D — dim Coker D = (P(M, o4op (D)), [M]) .

The quantity on the right is a characteristic number built from the topology aind
topological information contained in the top order symbolof

Atiyah and Singer also proved the Families Index Theorem, which applies to a fam-
ily of elliptic operatorsD,, for n ranging in a compact manifolt¥. The Families Index
Theorem identifies the Chern character of the index buhdléD) in H*(N; Q) with a
characteristic class aN built from the topology ofV and the pushforward of the sym-
bols of the operator®,,. The index bundle is a virtual bundle whose fiber for generic
n € N is the formal differenc&er(D,,) — Coker(D,,), i.e.

IndD = Ker(D) — Coker(D)

In our framework,N is identified with M, the moduli space of theories, and each
theoryn € N has a supercharge,,. Coker(D,,) is then identified with the fermionic
zero modes. Therefore, in supersymmetric quantum field theories with the vanishing
property,Coker(D,,) = 0 for all n € M and index bundle ifnd(D) = Ker(D) which

is the vacuum bundle.

The Families Index Theorem suggests that the vacuum bundle exists for supersym-
metric theories whenever the following conditions are satisfied: (a) a compact manifold
M can be identified with (possibly a subset of) the Moduli space, (b) the vanishing
property holds at every poiff € M, and (c) the superchar@gs is a closed, densely
defined Dirac-type elliptic operator witff)7)? = Hr. We give an existence proof in
the next section that does not rely directly on the index theorem.

5. Construction of the Vacuum Bundle

In this section we give the ground states of the Wess-Zumino models considered above
a geometrical structure, by first constructing the moduli space of admissible superpo-
tentials (thebase spacef the vector bundle), and then proving that the ground states
vary holomorphically over this space.



14 Gordon Ritter

5.1. The Base Spacén this section we give a detailed description of the Janowsky-
Weitsman moduli space, showing it to be a differentiable manifold, and therefore of
suitable character to function as the base space for a vector bundle.

The polynomial superpotential &, (z) = A~2W (Az), with the assumptions
(A) W’ must have: — 1 distinct zeros, where = deg W, and
(B) ‘W” = 1 at each zero ofi”’.

The first condition is motivated by the fact that the bosonic potetitigl(¢)|*> has

minima wherelV’ has zeroes. Scaling — 0 increases the distance between and the
depth of the potential wells. Roughly speaking, the moduli space of theories we will
consider is the space of potentials satisfying (A) and (B). Such potentials exist; a one-
parameter family with degre®’ is given forg3 € (0,1) by

n'—1 -1 n . / . ’
N k (Z _ eZ‘n’zk/n )(Z _ 6277%(k:+ﬁ)/n )
Wh(z) = (2 sin W)
[3( ) I]_;[l n 1<:1;[1 9sin Tr(li;rﬁ)

The existence of such families suggests that the space of superpotentials is a topological
space containing continuous paths. In fact, the space of potentials satisfying (A) has a
very natural geometry; and the restriction (B) will be removed by a mass perturbation
which we will analyze.

We let C[X],, denote the set of all polynomials of degreen one variable over
C. We let Z,, ;, denote the space of g(X) € C[X],, s.t. p has exactlyk distinct
zeros. Also letP(n, k) denote the number of partitions ofwith length%k and no zero
entries. Foll < k < n, the spaceZ, ;, hasP(n, k) distinct connected components, but
for k = n (the case of our interest), the polynomial is uniquely determined by.the
distinct zeros, together with an overall scaling factor. Therefore,

Zn}n:(Cx{(zl,...,zn):zi;«ézjw,j} (29)

In particular, (19) shows the,, ,, is C" ™! minus a closed set, and therefore a differen-
tiable manifold.

In the case of the Janowsky-Weitsman space, we need to characterize the set of
possibleW € C|z],, such thatW’ € Z,_1,_1. Quite generally, ifS c C[z] is a
finite-dimensional manifold, we define the notation

/s = {f(2) €C2]: f(x) € S} . (20)

Then there is a bijective mappingS «— C x S given by mapping the pair, g(z)) €

Cx Stothe ponnomiabJrfOZ g(w)dw. The spacq S inherits the structure of a differ-

entiable manifold in the natural way by declaring that this bijection is a diffeomorphism.
We conclude that condition (A) is equivalent to the statement:

W S /Zn—l,n—l .

The second condition (B) is more problematic because it state$thptl” (z;) €
S1, andS? is a closed set if. This problem is resolved by noting that the results of
Janowsky-Weitsman are invariant under perturbations of the form

Wi(z) = A7 2W(Az) + A tew(Ax) (21)
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wherew is also a polynomial of degree ande is a small parameter. This breaks any
artificial symmetry due to the mass restriction (B). We wish to analyze this symmetry
breaking and the effect on the masses in greater detail. In order to do this, we establish
that adding a small perturbation to a polynomial with its zeros separated causes each
massiV”’(z;,) to be perturbed within a similarly small neighborhood of its unperturbed
value. We call thidine tuningof the zeros.

Consider the problem of defining a functioan= f(z) by solution of the algebraic
equationG(w, z) = 0 whereG is an irreducible polynomial i andz. If G is arranged
in ascending powers af, this equation can be written

go(2)+ () w+ -+ gm(z)w™ =0 (22)

If we imagine a particular valug, to be substituted for, we have an equation i

which, in general, will haven distinct root3w(()1)7 w(()2), . ,wém). An exception takes
place if and only if

() gm(20) = 0, in which case the degree of the equation is lowered, or
(i) G(z,w) = 0 has multiple roots.

The second case can occur if and only if the discriminant, which is an entire rational
function of the coefficients, vanishes.d(z, w) is irreducible, then the discriminant
D(z) does not vanish identically but is a polynomial of finite degree. Thus the excep-
tions (i) and (ii) can occur for only a finite number of special valueszpfvhich we
denote byuy, as, ..., a,., and which we caléxcluded points

By the implicit function theorem, for any non-excludeg] there are: distinct func-
tion elementsuy, ..., w, such that

G(z,wj(z)) =0. (23)

If we continue one of these function elementsto another non-excluded poiat,

we get another function element (ovan) that satisfies (23). In this way, the equation
G(z,w) = 0 defines a multi-valued function, or Riemann surface; we state this as a
lemma.

Lemma 2. In the punctured plane
H=C\{a1,...,a,}
the equatiorG(z, w) = 0 defines precisely one-valued regular functionv = F'(z).

Lemma 2 and the discussion preceding it apply to the special case in which all but
one of the functiong;(z), defined in eq. (22), are constant,

gi(z) = {Ci’ ka ¢ €C

z, 1=k’

Away from the excluded points:, } associated to this choice, the zero39f' | g; (z)w’
are distinct and vary as analytic functions of the coefficientbf Repeating this pro-
cedure for eaclk = 1...m, we conclude that away from excluded points, the zeros
depend holomorphically on each coefficient.

We now reformulate this result in a way that is relevant to quantum field theory,
which we state as Theorem 6. For a polynonaiét) = 3 a7, we defing|w(z)|* =
> |a;)?, which givesC|z],, the topology of Euclidean space.
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Theorem 6 (Fine Tuning). Consider a fixed polynomial superpotent%(x). Let\
be a neighborhood di in the spaceC[z],, U {0}. LetZ = {&4,...,&,} be the zero

set ofW’(x), which we assume is nondegenerate, andZlgtdenote the zero set of
%(W(m) + w(x)). For N sufficiently small, we assert that the unig) . ,, Z., takes
the form(J!"_, £2; where for each, (2; is an open neighborhood ¢f and 2; N (2, = 0
if i # j. Givene > 0, there exist9 > 0 such thatmax; [£2;| < ¢ whenevefN| < §
(an absolute value sign denotes the diameter in the natural metric).

This analysis shows that a differentiable manifold of potentials which allow for the
convergence of cluster expansions is given by the integral, in the sense of (20), of the
set of all degree — 1 polynomialsf with all zeros¢; distinct, and such that' (¢;) € £2;
for all 7, wheref2; are nonoverlapping open sets. We denote this manifolddy

5.2. The Fibers of The Vacuum Bundi€he following theorem is an analytic statement
about the variation ofer(H) as we change the base point in the manifold of coupling
constants. As the vectors ier(H) are identified with physical ground states (also
calledvacug, Theorem 7, together with our characterization of the moduli spate

of admissible potentials, implies the existence of a vector bundle built from the vacua,
as predicted by Cecotti and Vafa [2]. We propose that results of this type be termed
vacuum bundle estimates

Theorem 7.Let M be a complex manifold and 1&V : M x C* — C be a function
which is holomorphic in its dependence @nc M and in its dependence ane C™.
Assume thatV (m, z) is polynomial in thez variable withdeg W equal to a constant
function onM, and for eachm € M, the N = 2 Wess-Zumino Hamiltonia®ly,
defined by choosing’ (m, z) as polynomial superpotential satisfies (Hy ) = 0. Let
V(m) denote the ground state subspace of the Wess-Zumino model defifigahy),
i.e.V(m) = ker(Hy (mm,~)). ThenV is a holomorphic vector bundle ovar.

Proof of Theorem 7. We wish to show holomorphicity of the ground state vector space;
by the vanishing propertyn(. = 0), we may restrict our considerations to bosonic
ground states. Writé{;, = H< ® H~ whereH< is spanned by states of the form
R(2, with R ranging over all finite polynomials in creation operatatsp) for [p| <
(n — 1)k. Our strategy is to first show the desired result for a theory with an infrared
cutoff, and then show that the desired property is preserved in the limit as the cutoff is
removed. We refer t@/ astheory space

The bosonic, cutoff Hamiltonian takes the form

Hpp(k) = Hp,S@T+1® Hy” (24)

where Hy” contains no interacting modes, aifl, < is equivalent to a Schdinger
operator—A + V,,, acting onL?(R™) with polynomial potentiall,,,. Here,x is the
momentum space cutoff.

As m € M changes holomorphically, it follows from well-known results of con-
structive field theory (see for example Arthur Jaffe’s PhD thesis) that thed@iciger
operators—A + V,,, meet the conditions of Theorem 5. We conclude that each of the
operators appearing in eq. (24) depends holomorphically on the parameitetseory
space. Since none of our results depend on the global geometry or topoldgyveé
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are free to choose, once and for all, a pgim M and a sek = (z1, ..., 2,) of com-
plex coordinates near. We choose the origin of the coordinate system sohat0 in
C™ corresponds tp € M, and prove that the relevant operators are holomorphic in
aty = 0.
We may conclude thaH, ;(x) is holomorphic in the complex parametgr in
the generalized sense for unbounded operators. This implies that the cutoff resolvent
R(k,x,¢) = (H(k,x) — ¢)~! is bounded-holomorphic iry. Jaffe, Weitsman, and
Lesniewski have shown that the cutoff resolvent is norm continuossaimd moreover

Tim (H(k,x) = Q)7 = (H(x) = )"
We need to show that the norm linfit(, ¢) is also bounded-analytic ip. One way to
see this is to show that the derivative with respegt t the cutoff resolvents converges,

in the limit as the cutoff is removed, to the derivative(éf (x) — ¢) .
SinceH (k, x) is the perturbed cutoff Hamiltonian, we have

1

-2 Jo

g(H(md +¢O)7 (H(k, X))+ Q)7 (X = x)2dx (25)

Ix
whereC' is a circle in the complex-plane around the point of holomorphicity (in
this casex = 0). The limit of the derivative of the resolvent as— oo is the limit
of the |.h.s. of (25), which must equal the limit of the r.h.s. Sidtés compact, the
integrand is uniformly continuous, and hence the— oo limit can be interchanged
with §.. Moving the limit inside, we use the fact that the resolvetif§r, x) + ¢) "
converge in norm to the resolvent of the limiting the¢®(x) + ¢)~*. So the limit of
the derivative of the resolvent as— oo is

i (1000407 ) = 5 [ (B + 070 = 02y
k—oo \ O 2mi Jo
which equals the derivative of the resolventfy). It now follows by Theorem 1 that
the Hamiltonian of the limiting theory is holomorphic jin

The HamiltonianH (x = 0) has a spectral gap above the ground state eigenvalue (in
fact it is essentially self-adjoint with trace class heat kernel, so the spectrum consists en-
tirely of isolated points). Therefore we can apply Lemma 2: specifically, we choose the
rectifiable Jordan curve required by the Lemma to be a circle enclosing only the ground
state eigenvalue. In the notation of Lemma 2, the vacuum states are basis vectors for the
subspacé/’(x) and Lemma 2 implies that/’(x) is holomorphic in a neighborhood
of x = 0. This completes the proof.]

6. Thett* Connection

In this section we present a rigorous construction of a connection on the vacuum bundle.
The connection which we construct was originally discovered in a physics context by
S. Cecaotti and C. Vafa [2]. This is a generalizatiomto= 2 Wess-Zumino field theory
of the representation of Berry’'s geometrical phase in ordinary quantum mechanics as
the holonomy of a connection on a princiga{1) bundle.

The WZ Hamiltonian in the limit as the cutoff is removed is well defined on the
tensor product = H; ® H;y (this is the main theorem of [21]). The result holds for
a wide class of superpotentials, thus the fixed Hilbert sgéadbat will be necessary
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to define theft* connection exists. The result on the existence of the vacuum bundle
shows that there is indeed a subspl¢e:) in this fixed Hilbert spacé{ for eachm in
the parameter spacet of superpotentials.

A covariant derivativeon a vector bundlé’ — M is a differential operator

V:I'(M,E) - I'(M, T"M Q E)

satisfying the Leibniz rule: if € I'(M, E) andf € C>(M) thenV(f-s) =df ® s+
fVs. A covariant derivative so defined automatically extends to give a map

V:0Q2°(M,E)— 2T (M, E).

Consider a coordinate chait ¢ M with local coordinate§z®), a = 1...n. Let
V — M be the vacuum bundle. The restrictigy; of a sections € I'(M, V') can be
identified via the coordinatgs:*) with a function onR™ taking values irt{, which we
denote bys(x!, ... 2"). We writed, s for the partial derivativés(x!, ... z")/0x".

Suppose that the states(z);), ¢ = 1,...,rank(V) form an ON basis oV (x) for
eachxz € U, and vary smoothly in their dependence anEquivalently, thela(z);)
form a local orthonormal frame fdr'. Consider a curve. — = mapping(0, 1) into
U. We note that in the difference quotient

% o)) = ;ii%%(la(x,\%)) - ‘a(:@\»)’

la(zatn)) and|a(zy)) represent vacuum states of different Hamiltonians, and hence
the differencgda(zxr)) — |a(xy)) is not a ground state, and even if the spac¢s)
are closed, the partial derivativg s of a sections can lie outside of/.

We define a covariant derivative dhby the equation

(Vs)m = PV(m) (aas)m dxa

sothatVs € I'(M, T*M®V'). Py (., denotes the projection onto the vacuum subspace
V(m) C H. A sum over each index appearing in both upper and lower positions is
implied. ThusV s is a one-form with coefficients i, i.e. a section of2} (M) @ V.
Since the statelgy(x) ;) are locally a basis of’, we can determine the matrix f&f
in this basis: 4
Vlei) = |o)w;
wherew = (w?;) is a matrix-valued one-form. By the definition ©f,
Py ,|a;) dz® = \aj>wji
Taking the inner product witkwy | yields an expression for the connection forms

0
) 9z
We now show that for the purposes of computing the connection forms, it is not neces-

sary to insert the projection operatBy . Since the statelsy(x);) are a local frame for
V', we can write

a(z);) = (a(z)rlog)w’; = wi;

((@)k| Py (2

Py = Z (@) ;) ()|
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It follows that

(@I Py la(@)s) = ol Y la(@))a(); |5 o))

= Z (5jk<a($)j ‘ %m@‘)ﬁ

= (a()el pglae);)

These considerations do not depend in an essential way on the intended applica-
tion to (2, 2) supersymmetric QFT’s. The above discussion in fact proves the following
general existence theorem:

Theorem 8.LetV : M — Gri(H) be a smooth map fromf into the Grassmannian
of k-dimensional closed subspaces of a fixed Hilbert sgdc@hen under a suitable
local condition on the transition functions, the association~ V(x) gives rise to a
C* vector bundleEZ —— M, whereE = J, ., V(z). This bundle inherits a natural
Hermitian structureg from the Hilbert space inner product, defined by(¢,v) =
(¢p|v), whereg, 1 € E,. The Levi-civita connection corresponding to this Hermitian
structure is given explicitly by the formula

(V8)m = Py(m)(0as)m dz® for se I'(E)

In a specific choice of a local orthonormal frame, the connection fasmsare given
by

Whi = <a(m)k’% a(m)j>daz“

6.1. Application: The CFIV IndexThe ground state metric arises in calculations of the
CFIV index [6], as well as in other important calculations. The infinite volume theory
entails degenerate vacua at +/- spatial infinity, and what is actually well defined is the
traceTr(, ;) over the(a, b) sector, where: andb are indices which label the different
ground states. Physicists calculate [6] that for a cylinder of lefigimd radius3, the

CFIV indexQqp, = iBL ! Tr(, ) (—1)" Fe~#H is given by

Qab = _(6gaﬁg_1 + n)ab (26)

wheren is the number of fields in the Landau-Ginzburg theory gnd the ground
state metric. Thus the calculation of the CFIV index in tleb) sector is reduced

to calculating the metrig. In principle this is done by integrating the¢* differential
equation whicly satisfies, however these equations are complicated. One simplification
is to transform to a special gauge in which tiheequation becomes

9;(90ig™") = B*[Ci,9Clg ™" (27)

whereC~ is the structural tensor for the chiral ring.

Eq. (27) is anN x N matrix of differential equations involving the components of
g, whereN is the number of ground states, or chiral fields. These equations are inte-
grable, and in certain cases equivalent to classical equations of mathematical physics,
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which are generally Toda systems. Therefore (27) determines the ground state metric
non-perturbatively. Using the resulting solution in (26) gives the CFIV index. Other
tt* equations include a flatness condition for the connectibn, D;] = 0 and the
integrability condition for the tensat;, i.e. D;C%, = D;C,.

Results of this paper show that the structures (vacuum bundle, metréed in the
above heuristic argument do exist. Thus our results are basic for any rigorous study of
the CFIV invariant in infinite volume.

7. Holomorphic Quantum Mechanics

We describe a model af = 2 quantum mechanics with interactions parameterized by
a holomorphic superpotentidl’ (z). The coupling constant space is usually taken to be
Cm*! (a vector inC™ corresponds to a coefficient vector for a polynonialof degree
n), although many of the results generalize to the situation in which we replaceby
an arbitrary Stein manifold [19]. For this reason the model is also chtdmimorphic
guantum mechanics

The Hamiltonian is a mathematically well-defined generalization of the Hamilto-
nians of various phenomenological systems. Application of this model to a system of
interacting pions is described in [20]. We prove that the vector space of ground states
varies continuously in the Hilbert Grassmannian, under suitable perturbations. This is a
special case of the fundamental vacuum bundle estimate which was introduced as The-
orem 7, however th&/ = 2 quantum mechanics model is sufficiently simple that it is
possible to understand the vacuum bundle estimate in an elementary way.

The model we will study is the one-dimensional versiombf= 2 supersymmetric
Landau-Ginzburg quantum field theory. In this mod¢t) denotes one bosonic degree
of freedom, and), 1, are fermionic degrees of freedom. The Lagrangian

L= 27 + i1 + Gathn) + G118V + P2 (9?V)* — |V

is parameterized by (z), a holomorphic polynomial of degreein z. In supersym-

metric models, the Hamiltonian may be expressed as the square of a supercharge. The
latter is computed from the supersymmetry transformations and the Noether theorem.
The result of that calculation gives:

H = Q%= —00 — Y111 0°V — hathy(9°V)* + |0V |?

This is motivated by the application to a quantum theory \tk= (2, 2) supersymme-
try, in which we study the space of ground states:

V={la)en:Qla)=Qla)=0}

We define amapy : M — Gr(H), i.e. from the moduli spaca1 of admissible super-
symmetric qguantum theories into the Hilbert Grassmannidri,afalled thevacuum

m — ker H(m)

In order to define the vacuum map explicitly, we first review the results of [20].
Every zero mode arises from a pdif, g) of L?(C) functions, wheregy satisfies the
differential equation

(=00 + |0V [*)g + (8*V/aV ) g = 0 (28)
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and f satisfies the complex conjugate equation. We refer to (28) asupercharge-
kernel equationForV = A\z", (28) becomes
—90g + (n —1)z7'og + |n)\z”*1 |2 g=0 (29)

Representing in polar coordinate$r, §) and writingg(r, #) as a Fourier series in the

angular variable
9(r.0) = 3 un(r)e™
meZ

yields an ODE for the radial functions:

2n —3 m(m — 2n + 2)

—u!! + 5 > Uy, = 0 (30)

ul, + (4n2)\2r2"_2 + -

This equation takes the general form (31); we study regularity of such objects in Lemma
3.

Lemma 3. Solutions of equations of the type
w4+ Ar~t 4+ (BN + Cr?)u =0 (31)

display regularity in the parameteY, whereA, B, andC' are nonzero real constants.

Proof of Lemma 3. A generic second-order initial value problem of the form (31) can
be transformed into a system of equations of first order. Such systems are equivalent to
vector integral equations of Volterra type

x

y(i\) = glaid) + YN (32)

Herez andt are always real, but, k, andy may be complex-valued. More than one
real or complex parameter is allowed, idec R™ or C™. Theorem 13.111 in [16] shows
that the solutiory to an equation of the form (32) is holomorphic in the paramater
O

Lemmad4.Letf,..., f, be continuous maps from a topological spaciato a Hilbert
spaceH such thafl’(\) := Span{fi(A),..., fn(A)} is n-dimensional for any\. Then
A — V(A) is a continuous map int6:r(H). Moreover, ifA is a complex manifold
and eachf; is holomorphic, then so iB(\).

Proof of Lemma 4. For eachp € H, let Ny(A) = ||A¢||. The collectionr{ N, | ¢ €
‘H} is a separating family of seminorms @#{*), and the associated topology is the
strong operator topology. Now suppdse- 1 (t) is a continuous map from to the unit
ball of /. Then the projector onto the ray containing) is Py = |(t) )((t) |, and

| Pyt || = {2 (t) | ¢)], which is continuous in; thus the Lemma is proved far= 1.

In casen = dim V (t) > 1, we have|| Py )¢ < Y7 [Py, oll = Dory [(wa(t) | 9)],
and the desired result follows by an/f argument.” The proof of holomorphicity is
similar. O

Lemma 3 and Lemma 4 together imply the following
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Theorem 9. The vector space of vacuum states of Me= 2 Landau-Ginzburg model

of quantum mechanics varies holomorphically in the Hilbert Grassmannian over a
moduli space of coupling parameters diffeomorphi€tox (C — {0}), and determines

a vector bundle of rankn — 1).

Proof of Theorem 9. We can write down the zero modes as explicit functions, and thus
there aren — 1 linearly independent zero modesrif= deg V. Let C[z],, denote the
space of polynomials with complex coefficients of degree exactiphenC|z],, is the
spaceofy")_ arz"* such thati,, # 0, and is therefore isomorphic to the open subman-
ifold C x (C—{0}) of C**1. By Lemma 3, each of the— 1 linearly independent zero
modes is holomorphic as a function of the parametess. . . , ax) € C™ x (C — {0}).

O

8. Directions for Further Research

Let the coupling constant space of a family of Wess-Zumino modelsthand let the
vacuum bundle b&’ — M. The ground state metrig;- is a Hermitian metric oV,
and therefore it defines a geodesic flow bt in situations when the vacuum bundle
can be identified with the tangent bundld. Renormalization also gives a flow on the
moduli spaceM of theories, but in this case there is a preferred vector fieldhich
serves as the dynamical vector field of the flow, known as the beta function.

In a Euclidean quantum field theory defined by an acfiog, a) = [ o(g,a,z)dz
whereg = (g%, ¢2,...) is a set of coupling constants aads a UV cutoff, we assume
there exists a one-parameter semi-grdtypof diffeomorphisms onM such that the
theory S(R.g, e'a) is equivalent to the theor§/(g, a) in the sense of correlators being
equal at scales > c'a. The 3 function is defined bylg’ = 3¢(g)dt, thus the vector
field 8 generates the flow.

Zamolodchikov defined a metri@;; on M which schematically takes the form

Gij = x4<¢i(x)¢j(0)>|x2:m2 where &, () o(g,a,x).

= o
Up to singularities, the flow lines determined by acting on a single pomtM with
R, for all t € R coincide with geodesics df;;.

It would be of fundamental importance to develop a mathematically rigorous version
of the renormalization group for the constructive Wess-Zumino model considered in
this paper, and then in those cases when the ground state metr@nputes lengths of
vectors in the tangent bundiéM, to prove an exact relationship between the ground
state metrigj;; and Zamolodchikov's metri¢:; ;.

A second important unsolved problem is to determine the largest possible moduli
space for two-dimension&y = 2 Wess-Zumino theories in which the vanishing prop-
erty holds. The cluster expansion is one of the most refined estimates known for stabil-
ity of such theories, and yet the cluster expansion is certainly weaker than the optimal
bound. For these reasons, we expect that the moduli space we have used in this paper is
a submanifold of the optimal moduli space for the vacuum bundle.

A new research direction in functional analysis is suggested following Theorem 5.
Moreover, it is likely that additional new mathematics would be found in a further
exploration of the interplay between the geometry of the vacuum bundle and the infinite-
dimensional analysis of constructive quantum field theory.
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