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ABSTRACT

The Black-Litterman model is one of the most popular models in quantitative finance,

with numerous theoretical and practical achievements. From the standpoint of investment

theory, the Black-Litterman model allows a seamless incorporation of Bayesian statistics

into the portfolio optimization process. From a practical standpoint, it provides portfolio

managers with a structured approach to express subjective views, thereby freeing their

investment processes from a total reliance on backward-looking historical data. In this

article, the authors provide an overview of the original Black-Litterman model and its

various extensions and enhancements addressing issues in real-world trading and investment

management.

TOPICS

Bayesian statistics; Black-Litterman; Factor investing; Investment management; Portfolio
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Transaction costs; Views.

KEY FINDINGS

• The authors provide an overview of the original Black-Litterman model and its

various extensions and enhancements addressing issues in real-world trading and

investment management.

• Particular emphasis is given to the extensions of the Black-Litterman model of signifi-

cant practical relevance to today’s investors and portfolio managers, including choice

of priors, view generation, transaction costs, factor models, model misspecification,

non-normality and multiperiod Black-Litterman portfolio optimization.
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Bayesian approaches to portfolio selection have become increasingly popular over the

years, primarily because they allow investors to break away from a complete reliance on

historical data by incorporating their subjective views, thereby obtaining more forward-

looking portfolios. Probably the most popular Bayesian approach to portfolio selection

is the model developed by Black and Litterman [1990] and Black and Litterman [1991].

The Black–Litterman model (BL) provides a natural and intuitive Bayesian framework

for portfolio selection, building on the familiar mean-variance optimization (MVO) model

first introduced in Markowitz [1952].

A key defining feature of BL is that it gives investors the ability to incorporate their

proprietary views into the inputs to the portfolio optimization process. Therefore, BL

presents an advantage over the classical MVO model by freeing investors from total

reliance on historical information during portfolio construction, providing more intuitively

allocated portfolios and avoiding “corner solutions.” An assumption underlying the BL

model is that when an investor does not have a view on the market then the inputs should

be consistent with the CAPM market equilibrium. As a result, an unconstrained investor

with no views on the market should hold the market. In short, the BL model is a Bayesian

approach that “blends” market implied expected returns with the investor’s views.

The BL model is perhaps more relevant today than ever. If we consider that the most

significant recent market event, the global coronavirus pandemic, was impossible to predict

on the basis of time series data, it becomes readily apparent that the real-time adjustment

of portfolio positioning via investor views is critical to navigating the modern market

landscape. That said, given the many considerations in portfolio construction, it is not

sufficient to simply form views in real-time. Rather, a rigorous and structured framework

is needed to address the numerous factors that serve as building blocks to the formation of

investment views. Indeed, one of the benefits of quantitative investing is that it provides

a consistent and structured way of ordering market information. The BL model is a

cornerstone of the standard toolkit of quantitative investing, along with statistical analysis,

machine learning techniques and moderen optimization, as it provides a rigorous and

scalable framework to formally incorporate subjective views into a manager’s quantitative
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investment process.

In this article we provide an overview of the BL model and its various extensions that

have been developed over the years in an effort to address issues in real-world trading

and investment practice. In the first part of the article, we review the original BL model.

Next, we provide a general Bayesian interpretation of the model, in which the original BL

model is a special case. From here we proceed to discuss several considerations that bear

on the practical implementation of the BL model. The latter include, the choice of prior,

view generation, and transaction costs. The remainder of the article examines several

major extensions to the original BL framework. First, we describe how the idea of the

original BL model can be extended to factor models and factor investing. We next describe

the application of so-called “robust optimization” methods to the BL model. Robust

approaches to optimization are designed to mitigate the impact of model misspecification

on portfolio construction. Our discussion of robust optimization is followed by a related

discussion on various methods that have been developed to address two shortcomings of the

original BL model: the assumptions of normality and linearity. In the original formulation

of the BL model, the distribution of security returns are assumed to be multivariate

normal, while an investor’s subjective views are assumed to be linear. Both assumptions

contradict empirical reality. It is well-known that many security return distributions

are non-normal. For example, tail events, both positive and negative, are significantly

more frequent than would be expected if security returns were normally distributed. The

assumption of linearity as it pertains to investor views is also unrealistic given that many

widespread investment approaches such as options strategies, have non-linear payoffs.

Finally, we conclude the article with a discussion of multiperiod extensions of the BL

model, in which investors can express views over different time horizons. Our ultimate

goal with this article is to not only provide a historical overview of the BL model but also

to describe extensions to the original model which we believe are useful to practitioners.
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THE BLACK-LITTERMAN MODEL

We consider a market with n securities whose returns, r, are multivariate normally

distributed with an expected return vector, µ, and return covariance matrix, Σ, that is

r ∼ N (µ,Σ) . (1)

In classical portfolio theory [Markowitz, 1952], a mean-variance investor determines their

portfolio holdings, h = (h1, . . . , hn)′, by solving the mean-variance optimization (MVO)

problem

max
h∈C

µp −
λ

2
σ2
p , (2)

where µp := E[h′r] = h′µ is the expected portfolio return, σ2
p := V[h′r] = h′Σh is the

portfolio variance, C is the set of constraints and λ is the investor’s risk aversion parameter

that characterizes their trade-off between expected portfolio return and risk. Examples of

constraints include long-only, trading, exposure and risk management constraints (see,

Fabozzi, Kolm, Pachamanova, and Focardi [2007] and Kolm, Tütüncü, and Fabozzi [2014],

for a discussion of common constraints used by portfolio managers in practice). The

portfolio holdings h are in units of dollars, or whatever currency the investor is using.

The optimal holdings of an unconstrained investor (i.e. C ≡ Rn) is given by

h∗ = λ−1Σ−1µ .

In the BL model an investor can express their subjective views at the security level. A

view might be that “the German equity market will outperform a capitalization-weighted

basket of the rest of the European equity markets by 5%” [Litterman and He, 1999]. To

express this view we let p = (p1, . . . , pn)′ denote the portfolio which is long one unit

of the DAX index, and short a one-unit basket which holds each of the other major

European indices (UKX, CAC40, AEX, etc.) in proportion to their respective aggregate

market capitalizations so that
∑

i pi = 0. Denoting the expected return of this portfolio
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by q = 0.05, we can express the investor’s view as E [p′r] = q where r is the vector of

security returns over the considered time horizon. If the investor has k such views

E [p′ir] = qi, for i = 1, . . . , k , (3)

the portfolios pi are more conveniently arranged as rows of the k × n matrix, P. Then

the investor’s views can be compactly written as

E[Pr] = q , (4)

where q := (q1, . . . , qk)
′. The expectations (4) alone do not convey how confident an

investor may be in their views. For this purpose, in the BL model the investor specifies a

level of confidence in their views via the k × k matrix Ω such that

q = Pµ+ εq, εq ∼ N (0,Ω) . (5)

Altogether, an investor’s subjective views are represented as the (a) mean and (b) co-

variance matrix of linear combinations of the expected returns µ. This information is

partial and indirect because the views are statements about portfolio returns rather than

on individual security returns. Furthermore, this information is noisy, with the noise εq

assumed to be multivariate normally distributed, because the future is uncertain.

Black and Litterman were motivated by the principle that, in the absence of the

investor’s subjective views and any constraints, the mean-variance optimal portfolio

holdings should be the global CAPM equilibrium portfolio, heq. Therefore, in the absence

of views, the investor’s model for security returns is given by (1) with

µ ∼ N (π,C) , (6)

where π is the global CAPM expected return in excess of the risk-free rate and the inverse

of the covariance matrix C represents the amount of confidence the investor has in their

estimate of π. The distributional assumption (6) is referred to as the (CAPM) prior.
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Given the security return distribution (1), the prior (6) and the investor’s views (5),

the BL model yields the (posterior) expected returns

µBL := (P′Ω−1P + C−1)−1(P′Ω−1q + C−1π) (7)

and (posterior) return covariance matrix

ΣBL := V[µBL] = (P′Ω−1P + C−1)−1 , (8)

frequently referred to as the Black-Litterman expected returns and covariance matrix,

respectively. This implies that E[r |q] is also given by (7) while the posterior unconditional

covariance is a sum of variance due to parameter uncertainty and variance due to the

randomness in r. The optimal portfolio accounting for both types of variance is then

given by

h∗BL = λ−1(ΣBL + ΣΣΣ)−1ΣBL(P′Ω−1q + C−1π) . (9)

We refer the reader to, for example, Satchell and Scowcroft [2000], Fabozzi, Focardi, and

Kolm [2006a], and Idzorek [2007] for non-Bayesian derivations of the BL model. The BL

model is often described as “Bayesian” but the original authors do not elaborate directly

on connections with Bayesian statistics. Kolm and Ritter [2017] provide a full Bayesian

derivation of the BL model.

An important feature of the BL model is that it modifies the entire market equilibrium

implied expected return vector with the investor’s views. As security returns are correlated,

views on just a few securities result in changes to the expected returns on all securities.

This effect is stronger the more correlated the different securities are. In the absence of

this adjustment of the expected return vector, the differences between the equilibrium

expected return and an investor’s views will be seen as an arbitrage opportunity by a

mean-variance optimizer, frequently resulting in “corner portfolios” concentrated in a few

holdings.

It is easy to see from the BL expected returns (7) and covariance matrix (8) that if
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the investor has no views or the confidence in the views is zero (i.e. q = 0 or Ω→∞),

then the Black-Litterman expected returns are equal to the global CAPM equilibrium

returns, i.e. µBL ≡ π. Hence, without subjective views the unconstrained investor will

hold the global CAPM portfolio.

We remark that the Black-Litterman expected returns are a “confidence” weighted

linear combination of market equilibrium and investor’s views, that is

µBL = Wππ + Wqq̃ ,

where q̃ := (P′P)−1 P′q and the weighting matrices are defined by

Wπ := (P′Ω−1P + C−1)−1C−1 , (10)

Wq := (P′Ω−1P + C−1)−1P′Ω−1P , (11)

with Wπ + Wq = I, where I denotes the identity matrix. It can be shown that the

BL expected returns (7) can also be written as µBL = π + v, where v := CP′
(
PCP′ +

Ω
)−1

(q−Pπ) is the tilt away from the equilibrium expected excess returns. The confidence

the investor has in their estimates of the market equilibrium and subjective views are

represented by C−1 and P′Ω−1P, respectively. In other words, when the investor has low

confidence in their views, the resulting expected returns will be close to the ones implied

by market equilibrium. Conversely, when the investor has higher confidence in their views,

the resulting expected returns will deviate from the market equilibrium implied expected

returns, thereby “tilting” away from market equilibrium.

Pros and Cons of the BL Model

As we saw in the previous section, BL relies on several key assumptions. First, the BL

model assumes that security returns are normally distributed. The advantage of using this

assumption within a modeling framework is that it imbues the model with mathematical

tractability and transparency. The disadvantage, as we noted above is that it often leads

to an inaccurate picture of security behavior. In one study, for example, 10,000 synthetic
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data sets were produced, each spanning approximately one century, using the GARCH

(1,1), a commonly used volatility forecasting model that, like the BL model, assumes

that security returns are normally distributed. In approximately one million years of

simulated trading, not once in a single “GARCH century” was a market drop identified

that approached the magnitude of the three largest observed in the Dow Jones Industrial

Average (DJIA) during the twentieth century [Johansen and Sornette, 1998].

The assumption that investment views are (linear) portfolios of the securities is the

second major assumption of the BL model. Surely, this assumption aids in simplifying the

BL model, but limits its practical application. Many investment managers run investment

strategies that include expressions of non-linear views. Options strategies, such as tail-risk

hedging overlays, are an example of this. The original BL model is thus ill-suited for

application to many types of investment strategies commonly deployed by hedge funds.

The third major simplifying assumption of the original BL model is that prior returns

can be reliably derived from the CAPM market equilibrium portfolio. However, it is

commonly accepted that there are a number of additional factors in addition to the market

factor that are important for the derivation of prior returns. This is especially so for

portfolios of multiple asset classes.

Perhaps, we may conclude that the primary advantage of the original BL framework is

its simplicity. Simplicity is an important feature of any working model and indeed, one of

the reasons that the BL model became so widely adopted in the first place. However, there

is a trade-off between model simplicity and accuracy. In the latter respect, the original

BL model is incomplete for some practical applications. The theoretical and practical

extensions to the BL model we describe in the rest of the article trade some simplicity for

the requisite level of accuracy required to make the resulting model a comprehensive tool

in the real world.
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A GENERAL FRAMEWORK: THE BLACK-LITTERMAN-

BAYES MODEL

Throughout the rest of this article we discuss various extensions and developments to

the BL model. As an expository tool, we will use a general Bayesian framework referred

to as the Black-Litterman-Bayes model (BLB) introduced by Kolm and Ritter [2017]. We

define a BLB model as consisting of:

1. A parametric distribution for the security returns p(r |θ), where r := (r1, . . . , rn)′

and θ = (θ1, . . . , θm)′ denote the n security returns and m parameters, respectively;

2. A prior distribution π(θ) on the parameter space Θ;

3. A likelihood function f(q |θ), where θ is the same parameter vector appearing in

the parametric statistical model above, and q is a k-dimensional vector supplied by

the investor; and

4. A utility function u(wT ) of final wealth, wT , in the sense of Arrow [1971] and Pratt

[1964].

In the statistics literature, items (1)-(2) are referred to as a Bayesian statistical model.

In Bayesian statistics, all statistical inference is based on the posterior. Under such a

Bayesian statistical model, decision theory shows that the optimal decision is the one

maximizing posterior expected utility [Robert, 2007]. Consequently, given a BLB model,

we define the associated BLB optimal portfolio holdings as the ones maximizing posterior

expected utility of final wealth, that is

h∗ = argmaxh∈C E[u(w0 + h′r) |q] (12)

where E[ · |q] denotes the expectation with respect to the posterior predictive density for

the security returns r, h = (h1, . . . , hn)′ denotes portfolio holdings in dollars, w0 denotes

the investor’s initial wealth, and C represents the set of constraints as before. Explicitly,
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the posterior predictive density of r is given by

p(r |q) =

∫
p(r |θ)p(θ |q)dθ , where (13)

p(θ |q) =
f(q |θ)π(θ)∫
f(q |θ)π(θ)dθ

. (14)

Suppose we are given a benchmark portfolio with holdings hb (such the CAPM

equilibrium portfolio, heq). We say that the BLB prior π(θ) is benchmark-optimal if the

benchmark portfolio maximizes expected utility of final wealth, where the expectation is

taken with respect to the a priori distribution of security returns p(r) =
∫
p(r |θ)π(θ)dθ.

In particular, this is to say that

hb = argmaxh

∫
u(w0 + h′r)p(r |θ)π(θ)dθ . (15)

The BLB model is not just of interest from a theoretical perspective. This Bayesian

framework is quite useful for understanding and developing many of extensions of the

original BL model [Kolm and Ritter, 2017]. Having said that, in general the posterior

predictive density (13) and the resulting optimization problem (12) cannot be determined

in closed form but need to be computed using numerical sampling and optimization

techniques. However, as we will see in the next section, the BL model is special case of

the BLB model for which a closed form solution is available. As we shall discuss in a

later section, linear factor models represent another case in which a closed-form solution

is available.

BL as a Special Case of BLB

The BL model is a special instance of the general BLB framework where r |θ is

multivariate normal with mean θ ≡ µ, f(θ |q) ∝ exp
[
− 1

2
(Pθ − q)′Ω−1(Pθ − q)

]
is

the normal likelihood for a regression of the portfolio manager’s views, the utility of

final wealth is given by the exponential utility (CARA) u(w) = −e−λw, and the prior is

the unique normal distribution which is benchmark-optimal with respect to the market

portfolio, θ ∼ N (π,C).
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Interestingly, in the BL models there are two functions playing the role of likelihood

functions; namely, p(r |θ) and f(q |θ). Similarly, the triple of random vectors (r,q,θ)

are not pairwise independent, but r |θ and q |θ are independent. Such situations occur

frequently in Bayesian networks (frequently also referred to as graphical models) [Pearl,

2014]. Bayesian networks consists of a collection of random variables whose conditional

independence structure is specified by a graph. The BL model is an example of a Bayesian

network with three nodes.

One of the early successes of the Black-Litterman model was that it provided a form of

regularization of the fundamentally-unstable inversion of the historical sample covariance

matrix. However, the Black-Litterman technique is not primarily meant as a regularization

technique. It has that property as a by-product because its likelihood and prior tend to

pull the portfolios towards known and reasonable (prior) portfolios. Importantly, with

common usages of factor models of the form (21), which we discuss later in this article,

regularization is strictly speaking no longer necessary because the resulting covariance

matrix is already stably invertible. For example, when the mean-variance portfolio is

computed using a factor-based covariance matrix, “corner portfolios” do not occur. The

resulting portfolios are typically well-diversified, as long as the factor model itself is

reasonable.

PRACTICAL CONSIDERATIONS WHEN USING BLB MOD-

ELS

Any application of the BL and BLB models entails consideration of a number of

aspects that bear on their successful implementation. In this section, we address the key

aspects that are important to any application of the BL and BLB models: (a) choice of

prior, (b) view generation, and (c) transaction costs.

Choice of Prior

As discussed above, Black and Litterman were motivated by the principle that, in the

absence of the investor’s subjective views and any constraints, the MVO portfolio should
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be the capitalization-weighted CAPM benchmark. This prior is of course benchmark

optimal as per the definition above, where the solution to the optimization problem (15)

is given by

heq = λ−1(ΣΣΣ + C)−1π . (16)

This follows directly from the fact that the prior is a conjugate prior of the normal

likelihood used in the BL model, which means that the resulting posterior is of the same

family (i.e. also normal). We refer to Robert [2007, Sec. 3.3] for a detailed discussion of

conjugate priors in Bayesian statistics. By setting C = τΣΣΣ with some arbitrary scalar

τ > 0, as did the original authors, we obtain π = λ(1 + τ)ΣΣΣheq.

There is a belief amongst some practitioners that because the BL model uses CAPM

priors, the model is not useful beyond broadly diversified (global) portfolios. We remark

that the formulas for the BL expected returns and covariance matrix (7) and (8) are

valid for any multivariate normal prior. For active management it is common to set the

mean excess return vector of the normal prior to zero [Herold, 2003; Da Silva, Lee, and

Pornrojnangkool, 2009]. Such a prior leads to portable alpha implementations for active

portfolio management where benchmark weights are of no interest.

At the risk of stating the obvious, one can construct market-neutral portfolios using

constraints during the portfolio optimization while still using the capitalization-weighted

portfolio to inform the prior. Hence BL is useful beyond long-only investing and one can

still get the benefit of using the information in the market cap weights to inform the prior.

For active portfolio management such as absolute return strategies where the effective

benchmark is cash, a “data-driven” approach to prior selection can be useful. Data-driven

priors are very common in Bayesian statistics, where the posterior from one analysis is

used as the prior for subsequent analysis. We provide an example of a data-driven prior

when we describe a BL extension to linear factor models below.

View Generation

Investor views can be generated in a number of ways. Investors may simply produce

them using an “all-things-considered” assessment of the information at their disposal,
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or they can use a quantitative framework to generate views. Traditional econometric

models or modern machine learning (ML) driven frameworks are common for the latter.

Given the predictive advantages that ML models have in comparison to their traditional

econometric counterparts, they will be the focus of this section.1

At its core ML is prediction – a trained ML algorithm can only navigate its environment

intelligently if it can make and lever accurate predictions. Perhaps more accurately, most

ML approaches in common usage today are statistical machine learning (SML) methods,

emphasizing that their training procedures correspond to fitting a statistical model to

data, and their predictive mechanism consists of using the fitted statistical model to make

predictions.

As ML has come into prominence over the past twenty years, the subject of how to

take advantage of ML in portfolio construction has likewise been treated by many authors.

The Black-Litterman model provides a natural framework to incorporate the outputs of

ML models – especially statistical ML models – into the portfolio construction process.

This is due to the fact that the BL model allows for the views to be input as noisy and

incomplete.

Many of the early examples of Black–Litterman views were human-generated. Indeed,

Exhibit 11 of Black and Litterman [1991] is a table of Goldman Sachs economists’ views.

When dealing with human-generated views, it can be difficult to ascertain the proper

uncertainty to assign to each view. Even though the confidence in a prediction is a

distinct concept from the volatility of a security’s return, in the absence of any clean way

to ascertain the uncertainty in the view, practitioners have sometimes simply used the

covariance matrix implied by the view portfolios’ holdings

Ω := const ·PΣP′ .

This prescription, while convenient and trivial to implement, is not theoretically justified.

What if the least volatile portfolio is also the one in which a particular economist has
1For a discussion of some of the advantages of ML in investment applications, see Simonian and

Fabozzi [2019] and Simonian, de Prado, and Fabozzi [2018].
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the least confidence in their prediction? One could argue that each portfolio has a

certain intrinsic level of variance due to totally unpredictable future events, and that it

is disingenuous to pretend that one’s views have a lower level of error variance than the

intrinsic variance due to unforeseeable future events. However, that only offers an intrinsic

lower bound to the confidence in a view, not an upper bound.

Black and Litterman [1991] acknowledge that the uncertainties are not precisely known

and discuss an approach in which the uncertainties are increased until the optimal portfolio

becomes sufficiently balanced. Interestingly, when the views are forecasts generated by

a statistical forecasting method, it becomes much more straightforward to obtain the

required uncertainty parameters. Most statistical machine learning models generate not

only a point prediction, but rather a full predictive density for the random variable being

predicted.

Concretely, recall that in the BLB model discussed above there is a parametric

distribution for the security returns p(r |θ), a prior distribution π(θ) on the parameter

space Θ, and a likelihood function f(q |θ). In other words the single parameter vector θ

is simultaneously related to (a) the security returns r via the model p(r |θ), and (b) the

model describing the random variable q which some intelligence – human or machine –

is responsible for predicting. Of course, in the classical setting θ is the mean of r and

q is defined as the return on a collection of portfolios. However, we emphasize that, in

general, q can be any random variable which: (a) is amenable to forecasting (e.g. using

ML methods), and (b) which is related to θ by some model f(q |θ). In particular, when

the prediction of q is performed by an SML method, then the problem of obtaining an

appropriate uncertainty matrix Ω – typically one of the more subtle parts of applying BL

in practice – becomes completely straightforward.

For instance, if the random vector q can be modeled as a Gaussian process (GP), then

the predictive density will also be Gaussian, allowing us to use the covariance matrix

of the Gaussian process prediction as Ω. Other ML methods, such as artificial neural

networks (ANN) and support vector regression (SVR), naturally generate point estimates

and are not usually trained to generate a full posterior predictive density. However, even
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in such cases, one may view such models as nonlinear regression models with Gaussian

noise, and the standard errors of their predictions may be obtained via bootstrapping

techniques [Fabozzi, Focardi, and Kolm, 2006b].

Transaction Costs

When using the BL model in the context of portfolio optimization, it amounts to

maximizing expected utility of final wealth under the specifically formed return distribution

p(r |q) known as the posterior predictive density. We recall that in the classical BL model

the posterior predictive density is multivariate normal.

In the multivariate normal case, for any utility function of final wealth u(wT ) that is

smooth, increasing and concave, it can be shown that a maximization of expected-utility

such as (12) has the same solution as the much simpler problem

argmaxh E[wT |q]− λ

2
V[wT |q] (17)

where wT denotes the investor’s final wealth at the investment horizon T , and E[ · |q]

and V[ · |q] denote the expectation and variance under the posterior predictive density,

respectively. Here, λ > 0 is the risk aversion which depends on the investor’s utility

function and initial wealth, but not on the portfolio or the returns. The optimization

problem (17) is known as the mean-variance form of the problem. Note that this is not to

say that investors have or should have quadratic utility. Rather, this mathematical fact

implies that (17) achieves its optimum at the same portfolio as the harder problem (12).

As Kenneth Arrow once noted, it is nonsensical for an investor to have a quadratic utility

function of wealth, as at some level of wealth the investor prefers to take losses due to

market moves in their investment portfolio.

The formulation (17) clarifies how transaction costs should be included into portfolio

construction. First, we note that the final wealth wT can be written

wT = w0 + h′r− c(h) (18)
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where c(h) denotes any costs that are incurred over the investment horizon to transition

from the initial portfolio h0 to the target portfolio h. Second, we observe that the

risk aversion λ > 0 depends on the investor’s initial wealth w0. But once λ has been

determined, the initial wealth w0 is no longer important and can be dropped from the

problem without changing the solution. Now, by inserting (18) into (17), the investor’s

problem becomes

argmaxh E[h′r− c(h) |q]− λ

2
V[h′r− c(h) |q] . (19)

Unless the portfolio has very high turnover, it is common in practice to make the

approximation V[h′r− c(h) |q] ≈ V[h′r |q], which is to say that most of the variance in

the portfolio’s return is due to market moves rather than variance in transaction costs.

Consequently, a simpler, if slightly less accurate, version of the investor’s problem is given

by

argmaxh h′E[r |q]− E[c(h)]− λ

2
h′V[r |q]h . (20)

Up to the approximations discussed above, the optimization problem (20) is how any

rational expected utility maximizer will perform portfolio optimization using the BL model

under transaction costs.

In the classical case, E[r |q] and V[r |q] are of course the familiar Black-Litterman

mean and covariance matrix given above in (7)–(8). However, we emphasize that the

derivation of (20) remains valid for any general BLB model as long as the posterior

predictive density of returns, p(r |q), is a member of an elliptical family. An elliptical

density is one whose iso-probability surfaces are ellipsoids. This is the only condition

one needs in order to ensure that the difficult non-linear problem of expected-utility

maximization reduces to the simpler problem (20), which is a quadratic form plus a

potentially-nonlinear model for expected transaction costs E[c(h)]. Needless to say, this

is a tremendous reduction in complexity; perhaps the most important being that one

does not need to know the precise form of the investor’s utility function, nor deal with its

non-linearity, assuming one can determine the investor’s risk aversion.
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EXTENSIONS TO THE BLACK-LITTERMAN MODEL

Over time various extensions to the original BL model have been developed in an effort

to bring its application closer to modern investment practice. Variants of the BL model

that incorporate non-normality, nonlinear views, and model misspecification are designed

to provide a more robust risk-awareness and empirical realism to the implementation of

the framework. Extensions that make the BL model amenable to linear factor models and

multiperiod forecasting seek to align the BL model with the actual investment processes

employed by many contemporary quantitative investors.

BL for Linear Factor Models

Risk premia and factor investing have attracted considerable attention from institu-

tional and individual investors for its simplicity, transparency and low cost. While a

number of studies have addressed portfolio construction for risk premia (see, for example,

Bass, Gladstone, and Ang [2017], Bergeron, Kritzman, and Sivitsky [2018], Dopfel and

Lester [2018], Bender, Le Sun, and Thomas [2018], and Aliaga-Diaz, Renzi-Ricci, Daga,

and Ahluwalia [2020]), most of the work in this area has focused on factor models from

the frequentist’s perspective.

In the BL model an investor’s subjective views are expressed as portfolios of securities.

Factors are not portfolios but unobservable random variables representing sources of risk

that are common to all securities trading in the market. Therefore, the BL model is not

directly applicable to factor views. However, Kolm and Ritter [2017] and Kolm and Ritter

[2020] propose a Bayesion extension that allows for the incorporation of investor views

and priors on factor risk premia. The authors show how to use the approach in a realistic

empirical example with a number of well-known industry and style factors, showing their

approach add value to mean-variance optimal multi-factor risk premia portfolios. We

briefly describe their approach here.

Using Arbitrage Pricing Theory (APT) [Ross, 1976; Roll and Ross, 1980] as a starting

point, we consider a market of n securities whose returns in excess of the risk-free rate at

18



time t, denoted by rt := (rt,1, . . . , rt,n)′, are given the linear factor model

rt = Xtf t + εt , εt ∼ N (0,Dt) , (21)

where Xt is the n× k matrix of factor loadings known before time t, εt := (εt,1, . . . , εt,n)′

is the n-dimensional random vector process of residual return, and f t := (ft,1, . . . , ft,k)
′ is

the k-dimensional random vector process of factors with E[f t] =: µf and V[f t] =: F, and

Dt := diag(σ2
t,1, . . . , σ

2
t,n), where all σt,j > 0, (22)

is the n× n diagonal matrix of residual variances. The residual returns εt,i are assumed

to be mutually uncorrelated with each other and across time, and uncorrelated with all

factors. Common examples of factors include size and value. For a size factor the loadings

are typically some nonlinear transformation of the market capitalization of each stock,

which are known and exogenous. The factors ft,j are unobservable random variables,

collectively accounting for all co-movement of security returns.

Assuming µf and F are approximately constant over time, we can obtain a factor prior

from a (Bayesian) time series model of the factor returns f t. For example, one possible

choice is the rolling mean of a time series of the OLS estimates f̂ t = (X′tXt)
−1X′trt+1.

More sophisticated approaches such as that of hierarchical or mixed-effects models can

also be used [Gelman, Carlin, Stern, and Rubin, 2003]. We denote the prior by

πf ∼ N (ξ,V) , (23)

where V is a k × k matrix represents the confidence the investor has in their estimate of

πf .

Subjective views on factor risk premia can be expressed in a similar fashion to the BL

model. For instance, an investor can express views on each factor risk premium indecently,

such as

q = µf + εq, εq ∼ N (0,Ω) , (24)
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where Ω = diag(ω2
1, . . . , ω

2
k) is a diagonal k × k matrix with all ωj > 0, representing the

uncertainties in their views. Kolm and Ritter [2017] and Kolm and Ritter [2020] show

that the (posterior) expected returns and return covariance matrix are given by

µBL-fac = ΣBL-fac ·Σ−1X(Ṽ
−1

+ X′Σ−1X)−1Ṽ
−1
ξ̃ , (25)

ΣBL-fac =
(
Σ−1 + Σ−1X(Ṽ

−1
+ X′Σ−1X)−1X′Σ−1

)−1
, (26)

where Ṽ := (V−1 + Ω−1)−1 and ξ̃ := Ṽ(V−1ξ+ Ω−1q) are the posterior hyperparameters

and

Σ := D + XFX (27)

is the covariance matrix of security returns implied by the factor model (21). In the

formulas in the last paragraph, we dropped the explicit time index for purposes of

readability.

Model Misspecification, Robust Optimization and BL

Model misspecification is a concern for every quantitative asset manager. As a result,

for some time there has been an effort to extend the static max-min expected utility

theory framework of Gilboa and Schmeidler [1989] to a dynamic environment in various

areas of finance, including portfolio construction.2 Gilboa and Schmeidler’s framework

provides an elegant way of modelling decision-making that incorporates investors’ aversion

to model uncertainty and ambiguity in the sense described by Ellsberg [1961].

The robust Black-Litterman (rBL) approach by Simonian and Davis [2011] is motivated

by a desire to design a portfolio construction framework based on the BL methodology

that also incorporates uncertainty about the covariance matrix of security returns, Σ, in

a simple yet coherent manner. They assume the uncertainty about Σ can be expressed

using a distribution derived via a bootstrap procedure or an asymptotic approximation to

the sampling distribution of the covariance matrix estimator.
2Examples of the wide variety of applications of robust methods in economics and finance include

Hansen and Sargent [2001], Garlappi, Uppal, and Wang [2007], Fabozzi, Kolm, Pachamanova, and Focardi
[2007], Hansen and Sargent [2008], Ben-Tal, El Ghaoui, and Nemirovski [2009], Rustem and Howe [2009],
Simonian and Davis [2010], Simonian [2011], and Simonian and Davis [2011].
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By taking C = τΣΣΣ with some arbitrary scalar τ > 0, as did Black and Litterman, there

is a correspondence between each covariance matrix and the resulting the BL posterior

multivariate distribution, with mean and covariance matrix given in (7) and (8). rBL

characterizes a neighborhood of alternative prior distributions (6) that are also likely

based on the sampling distribution of the covariance matrix as follows. For two continuous

probability distributions, q and p, the Kullback-Leibler (KL) divergence, defined as

DKL(p | q) :=

∫
log

(
p(x)

q(x)

)
p(x)dx , (28)

represents the information lost when one uses the q-distribution to approximate the

p-distribution.

Given the multivariate normally distributed security returns (1), its KL divergence to

an alternative multivariate normal distribution, N (µa,Σa) is

DKL (Na | N ) =
1

2

(
ln

(
det Σ

det Σa

)
+ tr

(
Σ−1Σa

)
+ (µ− µa)

′Σ (µ− µa)− n
)

with “tr” and “det” denoting the trace and determinant, and where we constrain the

alternative distribution to be consistent with the benchmark portfolio by requiring

µa = λΣaweq .

The resulting distribution can be found empirically by repeatedly drawing from the

sampling distribution of Σ. In rBL, the authors introduce another parameter to describe

the confidence of the investor has in their estimate of the covariance matrix, similar

to parameter τ in the original BL model that scales the investor’s confidence in the

prior. Define the hyperparameter δ to be the investor’s confidence in the estimate of the

covariance matrix, which in turn implicitly defines a value η that will be used in rBL via

P
(
DKL (Na | N ) ≤ η

)
= 1− δ ,

where P(·) denotes the probability measure. Thus, the investor’s confidence level deter-

21



mines a neighborhood of alternative prior distributions that is a function of the sampling

error of the covariance estimator. As the investor loses confidence in the quality of the

covariance matrix estimate, the space of priors determined to be “ex ante plausible” ex-

pands. Acknowledging the potential imprecision of parameter estimates alters the portfolio

construction process by imposing two constraints on the mean-variance objective function.

The first constraint stipulates that mean excess return and covariance parameters for each

security must lie within a specified confidence interval of their estimated value, explicitly

recognizing the possibility of model misspecification. The second constraint expresses

that a minimization over the choice of mean excess returns and covariances must be

performed. Together, the constraints transform the mean-variance objective function into

the max-min problem

max
h

minΣ̃a

(
h′µa −

λ

2
h′Σ̃ah

)

subject to the constraint

ln
( det Σ

det Σa

)
+ tr

(
Σ−1Σa

)
+ (µ− µa)

′Σ (µ− µa)− n ≤ 2η .

The end result is that the perturbed prior alters the entire BL process. Through robust

optimization, the pivotal role of the covariance matrix in BL is brought to the fore within

a Bayesian framework that explicitly incorporates the uncertainty that investors often

have in their capital market assumptions.

Non-Normality and Nonlinear Views

The original work of Black and Litterman was done under the assumption the security

return distribution is multivariate normal. Mathematically, this is convenient because the

normal prior is a conjugate prior for the normal likelihood, and therefore the posterior is

also normal with all means and covariances obtainable in closed form. Needless to say, it

is of clear interest to apply BLB approaches in settings beyond the normal distribution.

Chamberlain [1983] showed that under elliptically distributed return distributions,
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expected utility, for any concave utility function, is a function of only the portfolio’s

return and variance. Elliptical distributions is a large family of distributions, including

many fat-tailed distributions such as the Student’s t-distributions. In the context of BLB

models, this implies that if we use any form for the prior and views (including models

where the unknown parameter(s) need not simply be the mean return); as long as the

final posterior distribution p(rt+1 |q) of the security return vector is a member of the

elliptical family, then any risk-averse expected-utility maximizer will end up maximizing

the posterior expected portfolio return minus a constant multiple of the posterior portfolio

variance. Naturally, in a non-normal model the investor need not arrive at the same

expected return and variance formulas in the classical BL model. However, if the prior is

not conjugate to whatever likelihood is chosen, then computing the posterior moments

may be difficult or even impossible.

In the following subsections we discuss copula-opinion and entropy pooling, two exten-

sions that explicitly model non-normality in security returns and allow for nonlinearities

in the investor’s subjective views.

Copula-Opinion Pooling

Meucci [2006a] and Meucci [2006b] propose a variant of BL model known as copula-

opinion pooling (COP). Using the notation introduced for the BLB model above, θ

represents the n-dimensional vector of security returns having the prior distribution

θ ∼ π . (29)

Investors can have k ≤ n subjective views, which just as in the BL model are represented

by a k×n matrix P whose i-th row determines the relative weight of each expected return

in the respective view. Investors can also posit n − k additional complementary linear

combinations on which no view is expressed. The latter is represented in an (n− k)× n

matrix denoted by P⊥. Together, the view-adjusted coordinates are represented by the
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invertible matrix

P :=

 P

P⊥

 .

We define the n-dimensional random vector, q, by the linear transformation of the market

prior θ as follows

q := Pθ . (30)

In COP the investor’s subjective views correspond to statements on the first k entries

of q. Each of the subjective views is represented in terms of a cumulative distribution

function (CDF)

F̂i(q) := Psubj(qi ≤ q) , i = 1, . . . , k , (31)

where the right hand side denotes the probability that the random variable qi takes on a

value less than or equal to q. In addition, the prior distribution (29) implies a distribution

for each view, represented by its CDF

Fi(q) := Pprior(qi ≤ q) , i = 1, . . . , k . (32)

COP uses linear opinion pooling to derive the posterior CDF

F̃i := ciF̂i + (1− ci)Fi , i = 1, . . . , k , (33)

where the pooling parameters ci ∈ [0, 1] represents the confidence level that investors

have in each views. Accordingly, in the case when the confidence is total (ci = 1), the

posterior results in the investor’s view; while in the total absence of confidence (ci = 0),

the posterior coincides with the prior CDF. The source of confidence estimates can be

varied. For instance, they can be subjective inputs from portfolio managers based on
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the strength of their convictions or alternatively, they can be imposed exogenously by

using the manager’s past forecasting success (i.e. their “batting average”). Formula (33)

defines the posterior marginal distribution of each view, where the copula of the posterior

distribution of a given view is inherited from the copula of the market prior (29)

(C1, . . . , Ck)
′ :=

(
F1(q1), . . . , Fk(qk)

)′
.

Thus the posterior joint distribution of the views becomes

q̃ = (q̃1, . . . , q̃k)
′ :=

(
F̃−11 (C1), . . . , F̃

−1
k (Ck)

)
.

Finally, to determine the posterior distribution of the market r ∼ p(r | q), we apply (30)

to rotate the views back into the market coordinates, obtaining

r := P
−1

q̃ .

Simonian [2014] builds on Meucci’s COP framework work by providing a method for

aggregating complex opinions in the form of interconnected probability estimates using

the game-theoretic solution concept known as the Shapley value.

Entropy Based Methods

In Entropy Pooling (EP), using the notation introduced for the BLB model above,

Meucci [2008] assumes the “risk factors,” θ = (θ1, . . . , θm)′, have the prior distribution

θ ∼ π . (34)

For example, θ could be security returns, latent factors in an APT model, or a combination

of observed and latent factors that relate to security returns in some nonlinear way. Rather

than expressing views through a likelihood function as in BLB, EP represents them by

imposing constraints directly on the unknown posterior distribution of θ, denoted by p(θ),
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that is

p(θ) ∈ V , (35)

where V represents the set of these constraints. We note that the constraints can be

(nonlinear) functions of the risk factors and hence quite general. Expressing the investor’s

subjective views in this way is one of the strengths of EP. For instance, it is straightforward

to express views such as portfolios of linear and nonlinear securities, expected shortfall,

and full or partial rankings of securities. The prior itself may not satisfy the constraints,

π 6∈ V. As EP does not use a likelihood function, the posterior distribution is in general

not a posterior in the Bayesian sense, i.e. it cannot be determined via Bayes’s theorem

(14). Instead, it is computed by minimizing the KL divergence3 (28), that is

p = argminp̃∈V DKL (p̃ | π) . (36)

Confidence levels for the views can also be specified in order to calibrate the mixture of

the prior and posterior just as in the BL model. We point out that the computational

complexity of the optimization problem (36) is determined by the functional form of the

views. For a large class of problems, its dual formulation is a linearly constrained convex

program of dimension equal to the number of views. Once the posterior distribution

has been determined, it can be used for the purposes of portfolio optimization such as

maximizing posterior expected utility of final wealth (12). We remark that while we

described the parametric version of EP, it can also be implemented in a non-parametric

fashion [Meucci, 2008; Meucci, Ardia, and Colasante, 2014].

Multiperiod Black-Litterman

Recently, there has been an increased interest in multiperiod portfolio optimization

amongst traders and portfolio managers who make trading decisions in real-time based on

time-varying forecasts of quantities such as risk, return and trading costs. For instance,
3Theoretically, it is of interest to note that entropy minimization generalizes Bayesian updating [Giffin,

2009]. The use of KL divergence makes robust Black-Litterman in Simonian and Davis [2011] and entropy
pooling similar.
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consider a systematic trader who is trading a universe of two to three thousand stocks

globally. Continuously throughout the day, the trader may be producing forecasts of

future returns, risk and market impact costs at different time horizons. The trader

then determines trades by maximizing after-cost expected utility of portfolio value. The

resulting portfolio optimization model manages a complex trade-off across the forecasts over

multiple periods. Developments in portfolio trading systems and optimization have made

multiperiod portfolio optimization fully possible in such real-world trading applications,

even at intraday time scales (see, for example, Gârleanu and Pedersen [2013], Kolm,

Tütüncü, and Fabozzi [2014], Kolm and Ritter [2015], and Boyd, Busseti, Diamond, Kahn,

Koh, Nystrup, and Speth [2017]).

Consider an investor who at time t has l-step ahead forecasts of security returns up to

some maximal horizon. This is referred to as an alpha term structure. Typically, these

forecasts are increasingly uncertain as l increases. In other words, the 10-step ahead

forecast typically has larger “error bars around the prediction” than the 1-step ahead

forecast. This is not a statement that a security’s return volatility is expected to increase

in the future. Rather, it reflects the fact that, usually we can predict less accurately

about the distant future than we can about the near future. Even for a security with

constant volatility the term structure of forecast error variance can be expected to be

upward-sloping.

In this context, a trade that is executed more quickly incurs more market impact, but

also enjoys the benefit of exposure to the early part of the alpha term structure where

the forecast is more certain. Broadly speaking, in the presence of trading costs, that

forecast uncertainty increases as we look further ahead must be balanced against the

market impact costs associated with trading too quickly.

Suppose one wishes to use an l-period optimization to maximize the utility of final

wealth in l days. If a naive optimization method is employed, then profit made on the

l-th day is viewed by the optimizer as equivalent to profit made on the first day – both

increase final wealth. Hence the optimizer is willing to trade off a slightly worse portfolio

on the first day for a modestly better portfolio on the l-th day. The naive approach is
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suboptimal because it ignores the fact that the l-step ahead forecasts have much larger

forecast error variance than the one-step-ahead forecasts.

In a single-period setting, if trading costs are negligible, the BL model and its various

extensions provide a coherent framework for incorporating forecast uncertainty into

portfolio construction. In a setting with forecasts at multiple horizons, one needs to

generalize the BL model to a multiperiod setting with trading costs [Kolm and Ritter,

2016].

The inputs to the Black–Litterman model are views, which are expected returns on

given portfolios and uncertainties in those views. Suppose the current time is t, then a set

of k distinct views about the future l periods from now consists of a matrix Pt+l with k

rows, a vector qt+l, and a matrix Ωt+l where

Pt+lrt+l = qt+l + εt+l, εt+l ∼ N (0,Ωt+l). (37)

with rt+l denoting the random vector of l-period-ahead security returns. In practice, often a

diagonal form Ωt+l = diag(ω2
t+l,1, . . . , ω

2
t+l,k) is used, indicating that the uncertainty in the

views are independent. We emphasize that it is perfectly reasonable that the uncertainty

terms may be statistically independent, even when the underlying view portfolios are

correlated. Often the portfolio, Pt+l, will be fixed as of time t, while the forecasts, qt+l,

and their confidences, Ωt+l, depend on l.

In the following, we suppress the time subscripts when they are not relevant. For any

view, scaling P,q and Ω by the same constant gives an equivalent view containing the

same information. Similarly, multiplying P and q both by −1 expresses an equivalent

view. Hence all economically meaningful expressions, such as expressions for optimal

portfolios, must be invariant under the same set of symmetries.

As discussed above, as we make predictions further into the future, our uncertainty

will typically increase. This leads us to the property that elements of Ω along the time

axis satisfy

ωt+l,i < ωt+l+s,i for all s > 0 . (38)
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We emphasize that the ωt+l,i’s are not security return variances. There is no reason, in

general, that a security’s return variance should increase in the future in the manner

suggested by (38). The property (38) is not a law or mathematical theorem. It is merely

an expression of the fact that in most statistical forecasting models, the error variance

increases the further ahead we attempt to forecast.

Assume, quite generally, that the returns on some security or some portfolio of securities

are contemporaneously related to some discrete-time stochastic process Z whose value

at time t is zt. The most straightforward application is simply that zt is the return

observed in period t on some fixed portfolio of securities, but at the highest level of

generality, all one needs is some statistical model connecting zt with returns on some

known portfolios. We assume that the time series zt is amenable to forecasting via any

structural time series model (such as a VAR model) that produces l-step-ahead forecasts

for any desired integer l > 0 [Hamilton, 1994; Tsay, 2005]. Such models allow us to

calculate the predictive density, p(zt+l | zt, zt−1, . . . , z1). If we assume that zt is a Markov

process, then the predictive density does not depend on the full history and can be written

more simply as p(zt+l | zt). The predictive distribution is often summarized by its mean

and 95% quantiles. An ideal forecast ẑ of zt+l given the information set Ft should satisfy

E[(zt+l − ẑ)2 | Ft] = minf E[(zt+l − f)2 | Ft] (39)

where the minimization is over all functions of zt. The solution is that the optimal forecast

ẑ is ẑ = E[zt+l | zt].

We define the l-step ahead forecast error as the random variable

et(l) := zt+l − ẑ , (40)

and the associated forecast error variance as

σ2
t+l | t := V[et(l) | Ft] . (41)
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The truly fundamental object (in the sense that it contains all of the information we have

about various periods in the future) is the collection of predictive densities, {p(zt+l | zt) :

l = 1, 2, 3, . . .}, which we call the term structure of information. As long as the variable

being forecasted, zt, is identifiable as the return on some portfolio of securities, referring

to (37), we may set a row of P to be this portfolio, and then identify the Black-Litterman

quantities q, ω in terms of forecasts produced by our statistical model

qt+l := E[zt+l | zt], ω2
t+l := V[et(n) | Ft] = σ2

t+l | t. (42)

The formulas in (42) are the basic relations connecting the uncertainty variances ω2
t+l,

which are inputs to the Black–Litterman procedure, to the output of multi-step-ahead

statistical forecast procedures.

Next, we provide a concrete example. Suppose we have two securities with returns

xt, yt in period t. Suppose for some constant β, that

zt := yt − βxt

is the stationary return on a portfolio which is short β units of the first security and

long one unit of the second secucrity. We define a matrix P whose one single row is the

portfolio

P = [−β 1] . (43)

Then by construction

Prt+l = yt+l − βxt+l ≡ zt+l .

We take the qt+l and ωt+l for all l to be given by (42), and assume for simplicity that zt

follows the mean-zero AR(1) model

zt − φzt−1 = at with |φ| < 1 and at ∼ N (0, σ2
a).
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Then, a standard calculation shows that

ẑ(t+ l) = φnzt

V[et(n)] = (1 + φ2 + . . .+ φ2(n−1))σ2
a.

Note that as l→∞, we have ẑ(t+ l)→ 0 which is the long-run mean, and moreover the

variance of forecast error converges to (1− φ2)−1σ2
a, which is the variance of zt.

In the following, we denote by δ the first-difference operator for time series, so for any

time series {xt : t = 1, . . . , T}, we have δxt := xt − xt−1. Let rt denote the n-dimensional

vector of security returns at times t = 1, . . . , T . We are interested in our wealth at time T

given by

wT = w0 +
T∑
t=1

δwt , (44)

where δwt = wt − wt−1 denotes the change in wealth associated to period t. With ht

denoting the portfolio holdings at the beginning of the period at time t, then

δwt = h′trt − c(ht,ht−1) (45)

where c(ht,ht−1) includes all forms of cost that could potentially cause trading profit to

differ from its idealized form h′trt.

The full collection of security returns r := (r′1, . . . , r
′
T )′ is then an nT -dimensional

random column vector. This vector is expressed in stacked notation, a way of representing

a T -period problem of n securities as a one-period problem of nT securities. We assume all

column vectors are stacked vertically. All matrices become block matrices, with T separate

n×n blocks stacked along the diagonal. Any blocks which are not one of the n×n blocks

arranged along the diagonal represent relationships that connect one time period with

another, such as serial autocorrelation. Intuitively, this amounts to treating IBM shares

today and IBM shares tomorrow as two separate entities that we might consider trading;

a portfolio must specify holdings for both “versions” of IBM.

Let h := (h′1, . . . ,h
′
T )′ denote the full sequence of portfolios – this is the decision
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variable in multiperiod portfolio optimization. Final wealth wT is implicitly a function of

h. If the probability law of r has an elliptical distribution, then to optimize

h∗ = argmaxh E[u(wT )]

one may equivalently optimize

h∗ = argmaxh

{
E[wT ]− λ

2
V[wT ]

}
(46)

= argmaxh

{
E[h′r− c(h)]− λ

2
V[h′r− c(h)]

}
with c(h) =

∑T
t=1 c(ht,ht−1) and where we used formulas (44) and (45).

In stacked notation, the more complicated multiperiod problem resembles a one-period

problem. In particular, there is a multiperiod analogue of (37). A separate view at each

time-step is expressed as

Ptrt = qt + εt

where εt ∼ N (0,Ωt). The number of views at step t is denoted by kt. We allow the

possibility that kt 6= ks for t 6= s, but the more familiar situation is that we have a single

set of view portfolios, but the uncertainty increases as we look further into the future. In

this more familiar situation, the kt ×N matrices Pt for various t are all the same matrix.

By stacking the views, we define

P :=



P1 0 . . . 0

0 P2 . . . 0

0 0
. . .

0 0 . . . PT


, q :=



q1

q2

...

qT


so that q is an nT -dimensional vector and the dimension of the P matrix is (

∑
t kt)× nT .

In the absence of trading costs, it is straightforward to extend the BL methodology to

a multiperiod setting. We will do this first, and return to the problem with trading costs.

Assuming the covariance matrix of security returns, Σ, is known and the prior is Gaussian
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as in the original BL model, it is easy to see that the posterior distribution p(θ |q) has

the mean and covariance matrix given formulas (7) and (8) where all matrices and vectors

are replaced with their stacked equivalents. Similarly, this implies that the mean-variance

optimal multiperiod portfolio is given by (9).

In the presence of trading costs the full problem is given by

argmaxh

{
E[h′r− c(h) |q]− λ

2
V[h′r− c(h) |q]

}
(47)

where E and V are computed using the posterior predictive density p(r |q). We take

the simplifying assumption that costs are certain, and expected costs are not modified

by views (so E[c(h)] is not a function of P,q). We further assume no serial dependence

among security returns. Then, the objective function of (47) becomes

T∑
t=1

{
h′tE[rt |qt]−

λ

2
h′tV[rt |qt]ht − c(δht)

}
, (48)

where

δht := ht − ht−1, ht := h0 + δh1 + · · ·+ δht .

Here δht is called a trade list or order wave.

Typically, the expected cost of a portfolio transition is separable over securities, so

c(δht) =
∑N

i=1 ci(δht,i). For a single security, the function ci typically includes both

bid-offer spread cost, which depends on the absolute value of the trade size, as well

as predicted market impact which is usually the square or 3/2 power of the absolute

trade size, with a coefficient dependent upon the expected volume and volatility. Such

cost functions are convex, but can be pointwise non-differentiable. Consequently, the

multiperiod problem (48) will be convex in which the only non-differentiable terms are

separable across securities and across time. This implies that the globally optimal solution

can be found by convex optimization techniques.
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CONCLUSION

The Black-Litterman model is one of the most successful models in finance. Its appeal

stems from its roots in Bayesian statistics, which provides the mathematical tools to

combine investors’ forward-looking subjective views with a market-based prior. The latter

quality has proven attractive to investment practitioners who must constantly confront the

twin challenges of limited data sets and rapidly changing market information. Since the

introduction of the Black-Litterman model in the early 1990s, there has been significant

advancements in statistical inference techniques, often driven by advances in machine

learning and the need to analyze large complex datasets in real-time. Moreover, many

practical problems in finance require inference in “data scarce” situations where the number

of parameters may greatly exceed the number of observations. The Black-Litterman model

is thus as relevant as ever. In this article, the authors have provided an overview of the

original Black-Litterman model, its major implementation considerations and some of the

important extensions to the original framework. The authors hope that by providing this

exploration of the Black-Litterman model, academics and practitioners will be inspired to

further develop it in response to the evolving needs of modern investment practice.
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