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The problem of replicating and 
hedging an option position is 
fundamental in finance. Since the 
publication of the seminal work of 

Black and Scholes (1973) and Merton (1973) on 
option pricing and dynamic hedging ( jointly 
referred to as BSM), a substantial number of 
articles have addressed the problem of optimal 
replication and hedging. The core idea of BSM 
is that in a complete and frictionless market 
there is a continuously rebalanced dynamic 
trading strategy in the stock and riskless secu-
rity that perfectly replicates the option.

However, in practice, continuous trading 
of arbitrarily small amounts of stock is infi-
nitely costly. Instead, the portfolio replicating 
the option is adjusted at discrete times to mini-
mize trading costs. Consequently, perfect rep-
lication is impossible, and an optimal hedging 
strategy will depend on the desired trade-off 
between replication error and trading costs. In 
other words, the hedging strategy chosen by 
an agent depends on the agent’s risk aversion.

Although a number of articles have con-
sidered discrete time hedging or transaction 
costs alone, Leland (1985) was first to address 
discrete hedging under transaction costs. His 
work was followed by others.1   The majority 

1 See, for example, Figlewski (1989), Boyle and 
Vorst (1992), Henrotte (1993), Grannan and Swindle 
(1996), Toft (1996), Whalley and Wilmott (1997), and 
Martellini (2000).

of these studies treat proportionate transaction 
costs. More recently, several studies have con-
sidered option pricing and hedging subject to 
both permanent and temporary market impact 
in the spirit of Almgren and Chriss (1999), 
including Rogers and Singh (2010); Almgren 
and Li (2016); Bank, Soner, and Vob (2017); 
and Saito and Takahashi (2017).

In this article, we show how to build 
a system that can learn how to optimally 
hedge an option (or other derivative secu-
rity) in a fully realistic setting. Our method 
applies to the real-world engineering 
problem faced daily by trading and risk man-
agement desks at investment banks. In such 
situations, continuous-time theory is only a 
guide. Portfolio rebalance decisions must be 
made in discrete time and in markets with 
frictions, in which liquidity is not guaran-
teed and the market impact of the hedge 
could be substantial if not managed care-
fully. Almgren and Chriss (1999) showed 
that executing a large trade in a single stock 
is a multiperiod planning problem that can 
be solved by mean–variance optimization. 
The option hedging problem is similar but 
more complex. In most cases, the hedge 
itself is not static but needs to be continu-
ously readjusted. Nonetheless, both prob-
lems are related in the sense that one wishes 
to minimize (1) all forms of cost and (2) the 
deviation from the optimal hedge.
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This article contributes to the literature in several 
ways. First, our method is quite general. In particular, 
given any derivative security that we know how to 
price (even if that pricing is done by Monte Carlo), our 
method will quickly produce an autonomous agent who 
knows how to optimally trade off trading costs versus 
hedging variance for that security. The relative impor-
tance of cost versus variance is determined by the agent’s 
risk-aversion parameter.

Second, our method is based on reinforcement 
learning (RL). Although RL is well known in its 
own right, to the best of our knowledge this form of 
machine learning technique has previously not been 
applied to discrete replication and hedging subject to 
nonlinear transaction costs. It is worthwhile to note 
that with the f lexibility of the technique presented in 
this article, it is a straightforward process to extend 
the model with additional features and constraints 
such as round-lotting and position-level constraints. 
Although Halperin (2017) applied RL to options, 
the methods therein appear very specif ic to the BSM 
model, whereas our method allows the user to plug 
in any option pricing and simulation library and then 
train the system with no further modifications. Note 
also that Halperin (2017) did not consider transaction 
costs. Our article is also related to work by Buehler 
et al. (2018), who evaluated neural network–based 
hedging under convex risk measures subject to pro-
portional transaction costs.

Third, our method is based on a continuous state 
space, and the training neither uses finite-state-space 
methods nor does it use or require a (necessarily arbi-
trary) selection of basis functions (as semigradient 
methods from Sutton and Barto (2018) would). Rather, 
we introduce a training method that has not been applied 
to derivatives hedging problems previously. Our training 
method relies on applying nonlinear regression tech-
niques to the sarsa targets (Equation 6) derived from the 
Bellman equation.

Methods that require f inite state spaces fail for 
larger problems, due to the curse of dimensionality. The 
state vector must contain all variables that are relevant 
to making a decision. For example, suppose there are k 
such variables, and each variable is allowed to have 10 
possible values. The resulting state space has 10k ele-
ments. Of course, this leads to insurmountable problems, 
such as (1) the fact that the training process can never 
visit most of the states; (2) there is no guarantee that the 

value function will be continuous, let alone smooth; (3) a 
vector containing all such states cannot fit in computer 
memory; and (4) one must estimate millions of inde-
pendent parameters from relatively fewer data points. 
By using a continuous state space, we avoid the curse of 
dimensionality and are thereby able to apply our method 
to higher-dimensional problems.

Fourth, the method extends in a straightforward 
way to arbitrary portfolios of derivative securities. For 
example, envision a trader who has inherited a deriva-
tive security that he or she must hold to expiration 
because of some exogenous constraint. The trader has 
no directional view on the derivative or its underlier. 
With the method proposed in this article, the trader 
can essentially press a button to train an algorithm to 
hedge the position. The algorithm can then handle the 
hedging trades until expiration with no further human 
intervention.

REINFORCEMENT LEARNING

RL2 has been developed largely independently 
from classical utility theory in finance. It provides a way 
to train artificial agents that learn through positive rein-
forcement to interact with an environment, with the goal 
of optimizing a reward over time. The learning agent 
does this through simple trial and error by receiving 
feedback on the amount of reward that a particular 
action yields. In contrast to supervised learning, an RL 
agent is not trained on labeled examples to optimize its 
actions. In addition, RL is not trying to find a hidden 
structure in unlabeled data and hence is different from 
unsupervised learning.

Mathematically speaking, RL is a way to solve 
multiperiod optimal control problems. The agent’s 
policy typically consists of explicitly maximizing the 
action-value function for the current state. This value 
function is an approximation of the true value function 
of the multiperiod optimal control problem. Training 
refers to the process of improving on the approxima-
tion of the value functions as more training examples 
are made available.

Following the notation of Sutton and Barto 
(2018), the sequence of rewards received after time step 

2 See Sutton and Barto (2018) and Kaelbling, Littman, and 
Moore (1996) for an introduction to RL.
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t is denoted Rt+1, Rt+2, Rt+3, …. The agent’s goal is to 
maximize the expected cumulative reward, denoted by

	 = + γ + γ ++ + +1 2
2

3 G R R Rt t t t 	 (1)

The agent then searches for policies that maximize 
E[Gt]. The sum in Equation 1 can be either finite or 
infinite. The constant g ∈ [0, 1] is known as the dis-
count rate. If rewards are bounded, then g < 1 ensures 
convergence of the infinite sum.

A policy, denoted p, is a way of choosing an action 
at, conditional on the current state st. A policy is allowed 
to be stochastic. For example, choosing a random action 
is also a policy.

There are principally two kinds of value functions; 
at optimality, one is a maximization of the other. The 
action-value function expresses the value of starting in 
state s, taking an arbitrary action a, and then following 
policy p thereafter

	 E= = =π π( , ) : [ | , ]q s a G S s A at t t 	 (2)

where Ep denotes the expectation under the assumption 
that policy p is followed. The state-value function is the 
action-value function, where the first action also comes 
from the policy p

E= = = ππ π π( ) [ | ] ( , ( ))v s G S s q s st t

Action-value functions are, for most practical pur-
poses, more useful than state-value functions because 
any action-value function immediately gives rise to a 
natural policy: If q̂  is any action-value function, the 
q̂ -greedy policy is to choose the action a, in state s, that 
maximizes q̂ (s, a).

Policy p is defined to be at least as good as p′ if 
vp (s) ≥ vp′(s) for all states s. An optimal policy is defined 
to be one that is at least as good as any other policy. 
There need not be a unique optimal policy, but all 
optimal policies share the same optimal state-value func-
tion v*(s) = suppvp(s) and optimal action-value function 
q*(s, a) = suppqp(s, a). Note also that v* is the supremum 
over a of q*. In particular, v*(s) is the expected gain 
(under any optimal policy), given that one started from 
state s. Colloquially, one might then refer to v*(s) as the 
value of being in state s.

The search for an optimal policy reduces to the 
search for the optimal action-value function q* because 

the q*-greedy policy is optimal. The typical way of 
searching for q* is to produce a sequence of iterates that 
approximates q* with increasing accuracy. Methods for 
producing those iterates are based on the Bellman equa-
tions, which we now recall.

Let p(s′, r | s, a) denote the probability that the pro-
cess transitions to state s′ and the agent receives reward r, 
conditional on the event that the process was previously 
in state s, and in that state, the agent choses action a. The 
optimal state-value function and action-value function 
satisfy the Bellman equation

	 ∑= ′ + γ ′∗
′

∗( ) max ( , | , )[ ( )]
,

v s p s r s a r v s
a

s r

	 (3)

	 ∑= ′ + γ ′ ′∗
′ ′ ∗( , ) ( , | , )[ max ( , )]
,

q s a p s r s a r q s a
s r

a
	 (4)

where the sum over s′, r, denotes a sum over all states s′, 
and all rewards r.

The intuition for Equation 3 is that the value of 
being in state s equals the average, over all possible next 
states s′, of the value of being in s′ plus the reward asso-
ciated with making the transition s → s′. The intuitive 
interpretation for Equation 4 is very similar; indeed 
maxa′ q*(s′, a′) = v*(s′), so the bracketed quantities are the 
same in both equations.

The state-value function v*(s) has a natural inter-
pretation in derivatives pricing theory. Specifically, in 
continuous time and frictionless markets, the optimal 
value function of the dynamic replicating strategy is 
obviously equal to the no-arbitrage price of the option. 
This is the value function that solves the Hamilton–
Jacobi–Bellman partial differential equation, as shown 
by Merton and Samuelson (1992). Thus, it is natural that 
RL, in which value functions organize the search for 
optimal policies, should apply to pricing and, by exten-
sion, hedging of derivatives.

TRAINING VIA SIMULATION  
AND BATCH LEARNING

Although the state of the art is still evolving, the 
vast majority of the most successful applications of RL 
in recent years use a simulation of the environment to 
generate training data (as opposed to, say, training on 
historical data).
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In a famous example from Mnih et al. (2013, 
2015), a deep RL system learned to play video games 
on a superhuman level. According to the authors, the 
network was not provided with any game-specific infor-
mation or hand-designed features and was not privy to 
the internal state of the emulator. It simply learned from 
nothing but the video input, the reward and terminal 
signals, and the set of possible actions.

In another famous example, Silver et al. (2017) 
created the best Go player in the world “based solely on 
RL, without human data, guidance, or domain knowl-
edge beyond game rules.” The associated system, termed 
AlphaGo Zero “is trained solely by self-play RL, starting 
from random play, without any supervision or use of 
human data.”

In these cases (and many simpler ones—see Sutton 
and Barto (2018) for examples), the agents are trained in 
a simulated environment, as opposed to being trained 
on historical data. This has an advantage: Millions of 
training examples can be generated, limited only by 
computer hardware capabilities. The examples in the 
present article follow the same pattern: The system is 
trained by interacting with a simulator.

We now provide more details about how the 
training procedure works. We start with an estimate q̂
of the optimal action-value function. This estimate is 
often initialized to be the zero function and is refined 
as the algorithm continues.

All RL systems must balance exploration and 
exploitation in the training process. They must some-
times take random actions to explore new areas of state 
space and action space—this is exploration. However, 
ultimately they must use their experience to concen-
trate the search around strategies that are likely to be 
optimal and refine the estimate of the value function on 
those areas of state space. We follow standard practice, 
which is to force exploration during training by using 
an ε-greedy policy relative to q̂

	
ε
εεπ =

<
≥






( )

argmax ˆ( , )-greedy



s
a u

q s a ua

	 (5)

where ε is a real number between 0 and 1, u is a uni-
formly distributed random variable on (0, 1), and ã is 
sampled uniformly from the action space. As is standard 
in RL and necessary to ensure convergence, we decrease 
the value of ε as training progresses.

Let st be the state at the t-th step in the simula-
tion, and let at = pε-greedy(s) be the associated ε-greedy 
action. Let

=: ( , )X s at t t

be the resulting state-action pair. The update target Yt is 
defined to be any valid approximation of qπ(st, at). In this 
article we use the one-step sarsa target, which approxi-
mates qπ(st, at) as follows

	 = + γ+ + +ˆ( , )1 1 1Y r q s at t t t 	 (6)

Intuitively, Equation 6 resembles part of the 
Bellman equation

	 ∑= ′ + γ ′ ′∗
′ ′ ∗( , ) ( , | , )[ max ( , )]
,

q s a p s r s a r q s a
s r

a
	 (7)

Indeed, if = ′ ′+ ′ ∗argmax ( , )1a q s at a , then Equation 6 
would be a sample of the random variable in brackets 
in Equation 7. Thus, Equation 6 may be viewed as an 
approximation of qπ(st, at).

We shall define a batch to be a collection of pairs of 
the form (Xt, Yt) where Xt: = (st, at) is a state-action pair, 
and Yt is the corresponding update target (Equation 6). 
A batch is typically obtained by running the simulator 
for the required number of time steps and choosing the 
actions via some policy p that is being evaluated.

Suppose we are going to run B different batches, 
indexed by b = 1, …, B. We assume there is a nonlinear 
regression learner available that can learn a function 
of the form Y = ˆ( )q b (X) using all of the samples in the 
batch. Suitable nonlinear regression learners are a topic 
of frequent study in the statistical learning literature 
(see Friedman, Hastie, and Tibshirani (2001) for an 
overview). They include random forests, Gaussian pro-
cess regression, support vector regression, and artificial 
neural networks.

The fitted model ˆ( )q b  will then be used to improve 
the model current q̂  by model averaging. We then gen-
erate batch b + 1, using the updated/improved q̂  to 
calculate the Yt, and repeat until we have B batches 
and q̂  has been updated B times. Alternating between 
generation of batches and fitting models continues until 
some convergence criterion is reached. The simulations 
in this article used B = 5 batches each consisting of 
750,000 (X, Y ) pairs.
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AUTOMATIC HEDGING IN THEORY

We define automatic hedging to be the practice of 
using trained RL agents to handle the hedging of certain 
derivative positions. The agent has a long option posi-
tion that cannot be traded. The agent is only allowed 
to trade any other nonoption positions that would be 
used for replication. In a world with no trading frictions 
and where continuous trading is possible, there may be 
a dynamic replicating portfolio that hedges the option 
position perfectly, meaning that the overall portfolio 
(option minus replication) has zero variance. In our set-
ting in this article, we will consider frictions and where 
only discrete trading is possible. Here the goal becomes 
minimization of variance and cost.

We will derive the precise form of the reward 
function, assuming our agent has a quadratic utility. 3  
In particular, the agent’s optimal portfolio is given by 
the solution to a mean–variance optimization problem 
with risk-aversion κ

	 E V− κ



max [ ]

2
[ ]w wT T 	 (8)

where the final wealth wT is the sum of individual wealth 
increments δwt

∑= + δ
=

0
1

w w wT
t

T

t

and so E[wT] = w0 + ∑tE[dwt]. The variance term involves 
cross-covariances of the form cov(dwt, dws) for s ≠ t, but if 
we are willing to assume independence of wealth incre-
ments across time, that is

δ δ = ≠( , ) 0 for cov w w s tt s

then V[wT] = ∑t V[δwt].
4

In complete markets, options are redundant instru-
ments. They can be exactly replicated (with zero vari-
ance) by a continuous-time dynamic trading strategy 
that trades infinitely often in infinitesimal increments. 
In the real world, the profit and loss (P&L) variance of 

3 See Ritter (2017) for a discussion of how the mean–variance 
assumption fits in within a general utility framework.

4 The independence assumption will be violated in a number 
of interesting examples, such as assets with long-lived transient 
market impact.

an option minus its offsetting replicating portfolio is not 
zero. In the spirit of Almgren and Chriss (2001), our 
hedging agent would like to solve a simplified version 
of Equation 8, namely

	 E V∑ −δ + κ δ





=

min [ ]
2

  [ ]
strategies

0

w w
t

T

t t 	 (9)

where the minimum is computed across all permissible 
trading strategies. What is different in our work as com-
pared to that of Almgren and Chriss (2001) is that a 
machine will learn the optimal strategy by simulating 
a financial market and applying RL to the simulation 
results.

If the log price process is a random walk, then 
wealth increments can be decomposed as

δ = −w q ct t t

where qt is random walk term, and ct is the total trading 
cost paid in period t (including commissions, bid–offer 
spread cost, market impact cost, and other sources of 
slippage). In the random walk case, the expected wealth 
increment is therefore just −1 times the expected cost

E E−δ =[ ] [ ]w ct t

In other words, in this case the problem (Equation 9) 
becomes a trade-off of cost versus variance. The agent 
can hedge more frequently to reduce the variance of the 
hedged position, but at increased trading costs.

As shown by Ritter (2017), with an appropriate 
choice of the reward function, the problem of maxi-
mizing E[u(wT)] can be recast as a RL problem. The 
reward in each period corresponding to Equation 9 is 
approximately

= δ − κ δ:
2

( )2R w wt t t

By plugging each one-period reward into the 
cumulative reward (Equation 1), we obtain an approxi-
mation of the mean–variance objective. Thus, training 
reinforcement learners with this kind of reward function 
amounts to training expected-utility maximizers. In the 
context of option hedging, it amounts to training auto-
matic hedgers that are prepared to optimize the trade-off 
of costs versus variance from being out of hedge.
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In the next section, we shall show that automatic 
hedging is indeed possible using RL training methods. 

AUTOMATIC HEDGING IN PRACTICE

We look at the simplest possible example:  
a European call option with strike price K and expiry 
T on a non-dividend-paying stock. We take the strike 
and maturity as fixed, exogenously given constants. For 
simplicity, we assume the risk-free rate is zero. The agent 
we train will learn to hedge this specific option with 
this strike and maturity. It is not being trained to hedge 
any option with any possible strike/maturity.5 

The agent comes into the current period with a 
fixed option position of L contracts. We assume for sim-
plicity that this option position will stay the same until 
the option either is exercised or expires—we are training 
an agent to be an optimal hedger of a given contract, not 
an agent that can decide not to hold the contract at all.

Each period, the agent observes a new state and 
then can decide on an action. Available actions always 
include trading shares of the underlying, with bounds 
dictated by the economics of the problem. For example, 
with L contracts, each for 100 shares, one would not 
want to trade more than 100⋅L shares. If the option is 
American, then there is an additional action, which is 
to exercise the option and hence buy or sell shares at the 
strike price K. 

In any successful application of RL, the state must 
contain all of the information that is relevant for making 
the optimal decision. Information that is not relevant to 
the task at hand, or which can be derived directly from 
other variables of the state, does not need to be included. 
For European options, the state must minimally contain 
the current price St of the underlying and the time τ := 
T - t > 0 still remaining to expiry, as well as our cur-
rent position of n shares. The state is thus naturally an 
element of

R Z ZS = × = τ > τ > ∈+: {( , , )| 0, 0, }2 S n S n

If the option is American, then it may be optimal 
to exercise early just before an ex-dividend date. In 
this situation, the state must be augmented with one 

5 However, we note that this is possible on an extended state 
space.

additional variable: the size of the anticipated dividend 
in period t + 1.

The state does not need to contain the option 
Greeks because they are (nonlinear) functions of the 
variables the agent has access to via the state. We expect 
agents, given enough simulations, to learn such non-
linear functions on their own as needed. This has the 
advantage of not requiring any special, model-specific 
calculations that may not extend beyond BSM models.

Practitioners often compute the delta of an option 
position, for hedging purposes, using the BSM formula:

	

∆ = ∂
∂

=

=
+ τσ

σ τ
τ = − >

( ),

ln
2 ,

: 0

1

1

2

C
S

N d

d

S
K

T t

t

	 (11)

but with s replaced by the implied volatility. This is 
referred to as practitioner delta by Hull and White [2017]. 
Note that parameters such as K and s2 are not provided 
to the agent, although they are used in constructing the 
simulation under which the agent is trained.

The agent will learn the properties of the stochastic 
world it inhabits by means of a large number of simula-
tions of such world, as described. Nonlinear functions 
such as D as given by Equation 11, insofar as they affect 
the optimal strategy, will become part of the agent’s 
learned action-value function (Equation 2).

We simulate a BSM world but modified to ref lect 
the realities of trading: discrete time and space. We 
consider a stock whose price process is a geometric 
Brownian motion (GBM) with initial price S0 and daily 
lognormal volatility of s ⁄day. We consider an initially 
at-the-money European call option (struck at K = S0) 
with T days to maturity. We discretize time with D 
periods per day; hence each episode has T ⋅ D total 
periods. We require trades (hence also holdings) to be 
integer numbers of shares. We assume that our agent’s 
job is to hedge one contract of this option. In the fol-
lowing specif ic examples, the parameters are s = 0.01, 
S0 = 100, T = 10, and D = 5. In addition, we set the 
risk aversion κ = 0.1.

We f irst consider a frictionless world without 
trading costs and answer the question of whether it is 
possible for a machine to learn what we teach students 
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in their first semester of business school: formation of 
the dynamic replicating portfolio strategy. Unlike our 
students, the machine can only learn by observing and 
interacting with simulations.

The RL agent is at a disadvantage, initially. Recall 
that it does not know any of the following pertinent 
pieces of information: (1) the strike price K, (2) the 
fact that the stock price process is a GBM, (3) the vol-
atility of the price process, (4) the BSM formula, (5) 
the payoff function (S − K)+ at maturity, and (6) any of 
the Greeks. It must infer the relevant information from 
these variables, insofar as it affects the value function, by 

interacting with a simulated environment. 6 Each out-of-
sample simulation of the GBM is different, but we show 
a typical example of the trained agent’s performance in 
Exhibit 1.

6 One could try to help the algorithm by providing the BSM 
delta as part of the state variable, hence allowing the reinforcement 
learner to use that directly, but we deliberately chose not to include 
any of the option Greeks as state variables. Giving the system access 
to the option Greeks is sure to improve its performance because the 
function being learned is closer to linear. We chose not to do this 
to make the problem as hard as possible and to see if RL is up to 
the challenge. However, in a real-world production scenario, we 
recommend making the problem as easy as possible by including 
certain option Greeks in the state variable, unless they are prohibi-
tively hard to calculate.

E x h i b i t  1
Out-of-Sample Simulation of a Trained RL Agent

Notes: We depict cumulative stock, option, and total P&L; RL agent’s position in shares (stock.pos.shares); and −100⋅D (delta.hedge.shares). Observe that 
(1) cumulative stock and options P&L roughly cancel one another to give the (relatively low variance) total P&L, and (2) the RL agent’s position tracks the 
delta position even though it was not provided with it.
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Because the examples of Exhibit 1 were generated 
in a frictionless simulation, why is the total P&L not 
exactly zero? The answer is discretization error. Time 
is discretized (to five periods per day), so continuous 
hedging is not possible. Moreover, the simulation 
requires trading an integer number of shares, which 
introduces further discretization error.

Any complex model should be tested against a sim-
pler model as a baseline. To justify its additional com-
plexity, the more complex model should be able to do 
something that the simpler model cannot. Along these 
lines, let us define a simple policy, πDH, as a baseline for 
the more complex policy learned by RL methods.

As in Equation 11, let D(pt, t) denote the delta as 
computed from the price pt at time t and the time-to-
expiry τ = T − t. The full state variable is then st = (pt, τ, nt), 

where nt denotes the agent’s current holding, in shares, 
at time t. Our simple baseline policy must output an 
action, which is just a number of shares to trade, given 
this state vector. Define

π = π τ = − ⋅ ∆ τ −( ) ( , , ) : 100 round( ( , ))s p n p nDH t DH t t t t	 (12)

where the round function returns the closest integer to 
the argument.

The policy pDH, without rounding, is optimal 
in a hypothetical trading-cost-free world, where the 
number of time steps goes to infinity and where one can 
trade fractional numbers of shares. There is, however, 
no reason to expect that pDH would solve the utility-
maximization problem (Equation 9) in a simulation with 

E x h i b i t  2
Out-of-Sample Simulation of a Baseline RL Agent That Uses Policy Delta or πDH, Defined in Equation 12

Notes: We show cumulative stock P&L and option P&L, which roughly cancel one another to give the (relatively low variance) total P&L. We show the 
position, in shares, of the agent (stock.pos.shares). The agent trades so that the position in the next period will be the quantity −100⋅D rounded to shares.
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nontrivial trading costs or, for that matter, in the real 
world (where we know trading costs are nontrivial).

For a trade size of n shares we define

	 = × × +cost( ) multiplier TickSize ( 0.01 )2n n n 	 (13)

where we take TickSize = 0.1. With multiplier = 1, the 
term TickSize × |n| represents a cost, relative to the 
midpoint, of crossing a bid–offer spread that is two ticks 
wide. The quadratic term in Equation 13 is a simplistic 
model for market impact. Exhibit 1 has multiplier = 0.

A key strength of the RL approach is that it 
does not make any assumptions about the form of 
the cost function (Equation 13). It will learn to opti-
mize expected utility under whatever cost function is 
provided. In Exhibit 1, we had taken multiplier = 0 in 

the function cost(n), representing no frictions. We now 
take multiplier = 5, representing a high level of friction. 
Our intuition is that in high-trading-cost environments 
(which would always be the case if the position being 
hedged were large relative to the typical volume in the 
market), the simple policy pDH trades too much. One 
could perhaps save a great deal of cost in exchange for a 
slight increase in variance.

Given the mean–variance utility function in 
Equation 9, we expect RL to learn the trade-off between 
variance and cost. In other words, we expect it to realize 
lower cost than pDH, possibly coming at the expense 
of higher variance, when averaged across a sufficiently 
large number of out-of-sample simulations (i.e., simu-
lations that were not used during the training phase in 
any way).

E x h i b i t  3
Out-of-Sample Simulation of Our Trained RL Agent

Note: The curve representing the agent’s position (stock.pos.shares) controls trading costs and is hence much smoother than the value of −100⋅D (called delta.
hedge.shares), which naturally f luctuates along with the GBM process.

 a
t N

ew
 Y

or
k 

U
ni

ve
rs

ity
 o

n 
Se

pt
em

be
r 

14
, 2

02
0.

 C
op

yr
ig

ht
 2

01
9 

Pa
ge

an
t M

ed
ia

 L
td

. 
ht

tp
s:

//j
fd

s.
pm

-r
es

ea
rc

h.
co

m
D

ow
nl

oa
de

d 
fr

om
 

https://jfds.pm-research.com


168      Dynamic Replication and Hedging: A Reinforcement Learning Approach	 Winter 2019

We trained the agent using f ive batches with 
15,000 episodes per batch, each episode having D ⋅ T = 
50 time steps, as before. This means that each call to 
the nonlinear regression learner involves 750,000 (Xt, Yt) 
pairs. The training procedure took one hour on a single 
CPU. After training, we ran N = 10,000 out-of-sample 
simulations. Using the out-of-sample simulations, we 
ran a horse race between the baseline agent that uses 
just delta-hedging and ignores cost and the RL-trained 
agent that trades cost for realized volatility.

Exhibit 2 shows one representative out-of-sample 
path of the baseline agent. We see that the baseline agent 
is overtrading and paying too much cost. Exhibit 3 shows 
the RL agent on the same path. We see that, while main-
taining a hedge, the agent is trading in a cost-conscious 
way. The curves in Exhibit 2, representing the agent’s 
position (stock.pos.shares), are much smoother than the 
value of −100⋅Δ (called delta.hedge.shares in Exhibit 2), 
which naturally f luctuates along with the GBM process.

Exhibit 3 consists of only one representative run 
from an out-of-sample set of N = 10,000 paths. To sum-
marize the results from all runs, we computed the total 
cost and standard deviation of total P&L of each path. 
Exhibit 4 shows kernel density estimates (basically, 

smoothed histograms) of total costs and volatility of total 
P&L of all paths. In each case, we performed a Welch 
two-sample t-test to determine whether the difference 
in means was signif icant. The difference in average 
cost is highly statistically significant, with a t-statistic 
of −143.22. The difference in vols, on the other hand, 
was not statistically significant at the 99% level.

One can also gauge the efficacy of an automatic 
hedging model by how often the total P&L (including 
the hedge and all costs) is significantly less than zero. 
For both policies (delta and reinf ), we computed the 
t-statistic of total P&L for each of our out-of-sample 
simulation runs and constructed kernel density estimates 
(see Exhibit 5). The reinf method is seen to outper-
form: Its t-statistic is much more often close to zero and 
insignificant.

CONCLUSIONS

The main contribution of this article is to show that 
with RL one can train a machine learning algorithm to 
hedge an option under realistic conditions. Somewhat 
remarkably, it accomplishes this without the user providing 
any of the following pertinent pieces of information: 

E x h i b i t  4
Kernel Density Estimates for Total Cost (left panel) and Volatility of Total P&L (right panel) from N = 10,000 
Out-of-Sample Simulations 

Notes: Policy delta is pDH, while policy reinf is the greedy policy of an action-value function trained by RL. The reinf policy achieves much lower cost  
(t-statistic = −143.22) with no significant difference in volatility of total P&L.
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(1) the strike price K, (2) the stock price process,  
(3) the volatility of the price process, (4) the BSM for-
mula, (5) the payoff function (S − K)+ at maturity, and 
(6) any of the Greeks. This is the financial derivatives 
analogue of the examples of Mnih et al. (2013) and Mnih 
et al. (2015), wherein computers learned to play games 
without knowing the rules.

A key strength of the RL approach is that it does 
not make any assumptions about the form of trading 
cost. RL learns the minimum variance hedge subject 
to whatever transaction cost function one provides. All 
it needs is a good simulator in which transaction costs 
and options prices are simulated accurately. This has the 
interesting implication that any option that can be priced 
can also be hedged, whether or not the pricing is done by 
explicitly constructing a replicating portfolio—whether 
or not a replicating portfolio even exists among the class 
of tradable assets.

Our approach does not depend on the existence of 
perfect dynamic replication. It will learn to optimally 

trade off variance and cost using whatever assets it is 
given as potential candidates for inclusion in a hedging 
portfolio. In other words, it will f ind the minimum-
variance dynamic hedging strategy, whether or not the 
minimum variance is actually zero (as it typically is in 
derivatives pricing, where one needs perfect replica-
tion to derive a no-arbitrage price). This is important 
because, in many realistic cases, markets are not com-
plete and hence some of the assets required for perfect 
replication may not exist.

Another advantage of this approach is that it can 
deal automatically with position-level constraints.  
It is part of the structure of any RL problem that, for 
each possible state s of the environment, the agent has 
a (potentially state-dependent) list of possible actions. 
In the examples given, the list of possible actions was 
taken to be buying or selling up to 100 shares in integer 
numbers of shares. We note that other trade or position 
constraints could be incorporated in a straightforward 

E x h i b i t  5
Kernel Density Estimates of the t-Statistic of Total P&L for Each of Our Out-of-Sample Simulation Runs  
and for Both Policies Represented Previously (delta and reinf)

Note: The reinf method is seen to outperform in the sense that the t-statistic is much more often close to zero and insignificant.
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way, simply by modifying the state-dependent list of 
available actions.

In this article, we leave open several avenues for 
further research. One obvious point of interest would 
be to train agents like ours on more sophisticated hard-
ware and hence to take advantage of many more simula-
tions and finer discretization of time. Silver et al. (2017) 
described various Go players that were trained on clus-
ters with up to 176 GPUs and/or 48 TPUs, with training 
times ranging from 3 to 40 days. For reference, all of the 
examples in this article were trained on a single CPU, 
and the longest training time allowed was one hour.

Transaction costs are not static. The intraday term 
structure of trading volume has a well-known smile 
shape (documented by Chan, Christie, and Schultz 
1995), with a nontrivial fraction of US equity trading 
volume occurring in the close and closing auction. Our 
RL system should handle this sort of complication very 
well. For instance, the simulator could be augmented 
with a nuanced cost function that depends on the time 
of day and add a discrete time-of-day indicator to the 
state vector.

Another interesting line of research would be to 
investigate optimal hedging strategies for portfolios of 
options in the presence of trading costs. Obviously, 
for low-gamma portfolios, delta-hedging would not 
be needed so frequently, thus naturally reducing the 
trading costs for that kind of portfolio. In general, the 
most cost-effective way to reduce variance is likely to 
use other options rather than a replicating portfolio of 
the underlier.
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