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Dynamic Replication and
Hedging: A Reinforcement
Learning Approach

PETTER N. KOLM AND GORDON RITTER

he problem of replicating and
hedging an option position is
fundamental in finance. Since the
publication of the seminal work of
Black and Scholes (1973) and Merton (1973) on
option pricing and dynamic hedging (jointly
referred to as BSM), a substantial number of
articles have addressed the problem of optimal
replication and hedging. The core idea of BSM
is that in a complete and frictionless market
there is a continuously rebalanced dynamic
trading strategy in the stock and riskless secu-
rity that perfectly replicates the option.
However, in practice, continuous trading
of arbitrarily small amounts of stock is infi-
nitely costly. Instead, the portfolio replicating
the option is adjusted at discrete times to mini-
mize trading costs. Consequently, perfect rep-
lication is impossible, and an optimal hedging
strategy will depend on the desired trade-oft
between replication error and trading costs. In
other words, the hedging strategy chosen by
an agent depends on the agent’s risk aversion.
Although a number of articles have con-
sidered discrete time hedging or transaction
costs alone, Leland (1985) was first to address
discrete hedging under transaction costs. His
work was followed by others. The majority

'See, for example, Figlewski (1989), Boyle and
Vorst (1992), Henrotte (1993), Grannan and Swindle
(1996), Tott (1996), Whalley and Wilmott (1997), and
Martellini (2000).

of these studies treat proportionate transaction
costs. More recently, several studies have con-
sidered option pricing and hedging subject to
both permanent and temporary market impact
in the spirit of Almgren and Chriss (1999),
including Rogers and Singh (2010); Almgren
and Li (2016); Bank, Soner, and Vob (2017);
and Saito and Takahashi (2017).

In this article, we show how to build
a system that can learn how to optimally
hedge an option (or other derivative secu-
rity) in a fully realistic setting. Our method
applies to the real-world engineering
problem faced daily by trading and risk man-
agement desks at investment banks. In such
situations, continuous-time theory is only a
guide. Portfolio rebalance decisions must be
made in discrete time and in markets with
frictions, in which liquidity is not guaran-
teed and the market impact of the hedge
could be substantial if not managed care-
fully. Almgren and Chriss (1999) showed
that executing a large trade in a single stock
is a multiperiod planning problem that can
be solved by mean—variance optimization.
The option hedging problem is similar but
more complex. In most cases, the hedge
itself 1s not static but needs to be continu-
ously readjusted. Nonetheless, both prob-
lems are related in the sense that one wishes
to minimize (1) all forms of cost and (2) the
deviation from the optimal hedge.
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This article contributes to the literature in several
ways. First, our method is quite general. In particular,
given any derivative security that we know how to
price (even if that pricing is done by Monte Carlo), our
method will quickly produce an autonomous agent who
knows how to optimally trade off trading costs versus
hedging variance for that security. The relative impor-
tance of cost versus variance is determined by the agent’s
risk-aversion parameter.

Second, our method is based on reinforcement
learning (RL). Although RL is well known in its
own right, to the best of our knowledge this form of
machine learning technique has previously not been
applied to discrete replication and hedging subject to
nonlinear transaction costs. It is worthwhile to note
that with the flexibility of the technique presented in
this article, it is a straightforward process to extend
the model with additional features and constraints
such as round-lotting and position-level constraints.
Although Halperin (2017) applied RL to options,
the methods therein appear very specific to the BSM
model, whereas our method allows the user to plug
in any option pricing and simulation library and then
train the system with no further modifications. Note
also that Halperin (2017) did not consider transaction
costs. Our article 1s also related to work by Buehler
et al. (2018), who evaluated neural network—based
hedging under convex risk measures subject to pro-
portional transaction costs.

Third, our method is based on a continuous state
space, and the training neither uses finite-state-space
methods nor does it use or require a (necessarily arbi-
trary) selection of basis functions (as semigradient
methods from Sutton and Barto (2018) would). Rather,
we introduce a training method that has not been applied
to derivatives hedging problems previously. Our training
method relies on applying nonlinear regression tech-
niques to the sarsa targets (Equation 6) derived from the
Bellman equation.

Methods that require finite state spaces fail for
larger problems, due to the curse of dimensionality. The
state vector must contain all variables that are relevant
to making a decision. For example, suppose there are k
such variables, and each variable is allowed to have 10
possible values. The resulting state space has 10° ele-
ments. Of course, this leads to insurmountable problems,
such as (1) the fact that the training process can never
visit most of the states; (2) there is no guarantee that the
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value function will be continuous, let alone smooth; (3) a
vector containing all such states cannot fit in computer
memory; and (4) one must estimate millions of inde-
pendent parameters from relatively fewer data points.
By using a continuous state space, we avoid the curse of
dimensionality and are thereby able to apply our method
to higher-dimensional problems.

Fourth, the method extends in a straightforward
way to arbitrary portfolios of derivative securities. For
example, envision a trader who has inherited a deriva-
tive security that he or she must hold to expiration
because of some exogenous constraint. The trader has
no directional view on the derivative or its underlier.
With the method proposed in this article, the trader
can essentially press a button to train an algorithm to
hedge the position. The algorithm can then handle the
hedging trades until expiration with no further human
intervention.

REINFORCEMENT LEARNING

RL’ has been developed largely independently
from classical utility theory in finance. It provides a way
to train artificial agents that learn through positive rein-
forcement to interact with an environment, with the goal
of optimizing a reward over time. The learning agent
does this through simple trial and error by receiving
feedback on the amount of reward that a particular
action yields. In contrast to supervised learning, an RL
agent is not trained on labeled examples to optimize its
actions. In addition, RL is not trying to find a hidden
structure in unlabeled data and hence is different from
unsupervised learning.

Mathematically speaking, RL is a way to solve
multiperiod optimal control problems. The agent’s
policy typically consists of explicitly maximizing the
action-value function for the current state. This value
function is an approximation of the true value function
of the multiperiod optimal control problem. Training
refers to the process of improving on the approxima-
tion of the value functions as more training examples
are made available.

Following the notation of Sutton and Barto
(2018), the sequence of rewards received after time step

*See Sutton and Barto (2018) and Kaelbling, Littman, and
Moore (1996) for an introduction to RL.
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t is denoted R,,,, R,,,, R, .... The agent’s goal is to

maximize the expected cumulative reward, denoted by
G =R +7R +’Y2Rr+3+'” (M

t+1 t+2

The agent then searches for policies that maximize
E[G]. The sum in Equation 1 can be either finite or
infinite. The constant Y € [0, 1] is known as the dis-
count rate. If rewards are bounded, then y < 1 ensures
convergence of the infinite sum.

A policy, denoted T, is a way of choosing an action
a,, conditional on the current state s,. A policy is allowed
to be stochastic. For example, choosing a random action
is also a policy.

There are principally two kinds of value functions;
at optimality, one is a maximization of the other. The
action-value function expresses the value of starting in
state s, taking an arbitrary action a, and then following
policy T thereafter

qﬂ(s’a) = EI\Z[G{ |S{ = S’AI = a] (2)

where E_ denotes the expectation under the assumption
that policy  is followed. The state-value function is the
action-value function, where the first action also comes
from the policy ©

ve(s)= BilG, [ S, = 5= (s, 1(s))

Action-value functions are, for most practical pur-
poses, more useful than state-value functions because
any action-value function immediately gives rise to a
natural policy: If ¢ is any action-value function, the
q-greedy policy is to choose the action 4, in state s, that
maximizes g (s, a).

Policy T is defined to be at least as good as 1" if
v, (8) 2 v (s) for all states s. An optimal policy is defined
to be one that is at least as good as any other policy.
There need not be a unique optimal policy, but all
optimal policies share the same optimal state-value func-
tion v,(s) = sup,v,(s) and optimal action-value function
q.(s, a) = sup,q,(s, a). Note also that v, is the supremum
over a of ¢,. In particular, v,(s) is the expected gain
(under any optimal policy), given that one started from
state s. Colloquially, one might then refer to v,(s) as the
value of being in state s.

The search for an optimal policy reduces to the
search for the optimal action-value function ¢, because
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the g,-greedy policy is optimal. The typical way of
searching for g, is to produce a sequence of iterates that
approximates g, with increasing accuracy. Methods for
producing those iterates are based on the Bellman equa-
tions, which we now recall.

Let p(s,r | s, a) denote the probability that the pro-
cess transitions to state s” and the agent receives reward r,
conditional on the event that the process was previously
in state s, and in that state, the agent choses action a. The
optimal state-value function and action-value function
satisfy the Bellman equation

v.(s) = max z p(s’r | s,a)[r +yv. ()] 3)

2.(50) =2 p(orsa)lr+ymaxg,(sha)) @)

where the sum over ¢, r, denotes a sum over all states s,
and all rewards r.

The intuition for Equation 3 is that the value of
being in state s equals the average, over all possible next
states s, of the value of being in 5" plus the reward asso-
ciated with making the transition s — s". The intuitive
interpretation for Equation 4 is very similar; indeed
max,q,(s,a’) =v,(s'), so the bracketed quantities are the
same in both equations.

The state-value function v,(s) has a natural inter-
pretation in derivatives pricing theory. Specifically, in
continuous time and frictionless markets, the optimal
value function of the dynamic replicating strategy is
obviously equal to the no-arbitrage price of the option.
This is the value function that solves the Hamilton—
Jacobi—Bellman partial differential equation, as shown
by Merton and Samuelson (1992). Thus, it is natural that
RL, in which value functions organize the search for
optimal policies, should apply to pricing and, by exten-
sion, hedging of derivatives.

TRAINING VIA SIMULATION
AND BATCH LEARNING

Although the state of the art is still evolving, the
vast majority of the most successful applications of RL
in recent years use a simulation of the environment to
generate training data (as opposed to, say, training on
historical data).
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In a famous example from Mnih et al. (2013,
2015), a deep RL system learned to play video games
on a superhuman level. According to the authors, the
network was not provided with any game-specific infor-
mation or hand-designed features and was not privy to
the internal state of the emulator. It simply learned from
nothing but the video input, the reward and terminal
signals, and the set of possible actions.

In another famous example, Silver et al. (2017)
created the best Go player in the world “based solely on
RL, without human data, guidance, or domain knowl-
edge beyond game rules.” The associated system, termed
AlphaGo Zero “is trained solely by self-play RL, starting
from random play, without any supervision or use of
human data.”

In these cases (and many simpler ones—see Sutton
and Barto (2018) for examples), the agents are trained in
a simulated environment, as opposed to being trained
on historical data. This has an advantage: Millions of
training examples can be generated, limited only by
computer hardware capabilities. The examples in the
present article follow the same pattern: The system is
trained by interacting with a simulator.

We now provide more details about how the
training procedure works. We start with an estimate ¢
of the optimal action-value function. This estimate is
often initialized to be the zero function and is refined
as the algorithm continues.

All RL systems must balance exploration and
exploitation in the training process. They must some-
times take random actions to explore new areas of state
space and action space—this is exploration. However,
ultimately they must use their experience to concen-
trate the search around strategies that are likely to be
optimal and refine the estimate of the value function on
those areas of state space. We follow standard practice,
which is to force exploration during training by using
an e-greedy policy relative to ¢

a u<e

_ 5
nffgrfedy (S) argrnax”é(s,a) u2e ( )

where € is a real number between 0 and 1, u is a uni-
formly distributed random variable on (0, 1), and 2 is
sampled uniformly from the action space. As is standard
in RL and necessary to ensure convergence, we decrease
the value of € as training progresses.
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Let s, be the state at the t-th step in the simula-
tion, and let a, = T_, ., (s) be the associated e-greedy
action. Let

Xr = (S,,d,)
be the resulting state-action pair. The update target Y, is
defined to be any valid approximation of g (s, a)). In this

article we use the one-step sarsa target, which approxi-
mates ¢, (s,, a,) as follows

Y =r,+ Y‘}(Sm’am) (6)

Intuitively, Equation 6 resembles part of the
Bellman equation

0.(5,0) = 2 p(s"sr [ s,a)lr+ymaxq (") (7)

’
s

Indeed, if a,,, = argmax, q,(s",a"), then Equation 6
would be a sample of the random variable in brackets
in Equation 7. Thus, Equation 6 may be viewed as an
approximation of ¢ (s, a,).

We shall define a batch to be a collection of pairs of
the form (X, Y) where X: = (s, a) is a state-action pair,
and Y, is the corresponding update target (Equation 6).
A batch is typically obtained by running the simulator
for the required number of time steps and choosing the
actions via some policy T that is being evaluated.

Suppose we are going to run B different batches,
indexed by b =1, ..., B. We assume there is a nonlinear
regression learner available that can learn a function
of the form Y = §”(X) using all of the samples in the
batch. Suitable nonlinear regression learners are a topic
of frequent study in the statistical learning literature
(see Friedman, Hastie, and Tibshirani (2001) for an
overview). They include random forests, Gaussian pro-
cess regression, support vector regression, and artificial
neural networks.

The fitted model ¢ will then be used to improve
the model current ¢ by model averaging. We then gen-
erate batch b + 1, using the updated/improved ¢ to
calculate the Y|, and repeat until we have B batches
and ¢ has been updated B times. Alternating between
generation of batches and fitting models continues until
some convergence criterion is reached. The simulations
in this article used B = 5 batches each consisting of

750,000 (X, Y) pairs.
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AUTOMATIC HEDGING IN THEORY

We define automatic hedging to be the practice of
using trained RL agents to handle the hedging of certain
derivative positions. The agent has a long option posi-
tion that cannot be traded. The agent is only allowed
to trade any other nonoption positions that would be
used for replication. In a world with no trading frictions
and where continuous trading is possible, there may be
a dynamic replicating portfolio that hedges the option
position perfectly, meaning that the overall portfolio
(option minus replication) has zero variance. In our set-
ting in this article, we will consider frictions and where
only discrete trading is possible. Here the goal becomes
minimization of variance and cost.

We will derive the precise form of the reward
function, assuming our agent has a quadratic utility.’
In particular, the agent’s optimal portfolio is given by
the solution to a mean—variance optimization problem
with risk-aversion K

max (E[w.,. - g Viw, ]) ®)

where the final wealth w, is the sum of individual wealth
increments Ow,

T
w, =w, + 28“4

=1

and so E[uy] = w, + 2 E[dw]. The variance term involves
cross-covariances of the form cov(dw,, dw) for s # t, but if
we are willing to assume independence of wealth incre-
ments across time, that is

cov(Ow,,0w ) =0 fors # 1t

then V[w,] = ¥, V[w]."

In complete markets, options are redundant instru-
ments. They can be exactly replicated (with zero vari-
ance) by a continuous-time dynamic trading strategy
that trades infinitely often in infinitesimal increments.
In the real world, the profit and loss (P&L) variance of

’See Ritter (2017) for a discussion of how the mean—variance
assumption fits in within a general utility framework.

*The independence assumption will be violated in a number
of interesting examples, such as assets with long-lived transient
market impact.
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an option minus its offsetting replicating portfolio is not
zero. In the spirit of Almgren and Chriss (2001), our
hedging agent would like to solve a simplified version
of Equation 8, namely

T

min 2(E[—5w,]+g V[Bw,]) 9)

strategies
%0

where the minimum is computed across all permissible
trading strategies. What is different in our work as com-
pared to that of Almgren and Chriss (2001) is that a
machine will learn the optimal strategy by simulating
a financial market and applying RL to the simulation
results.

If the log price process is a random walk, then
wealth increments can be decomposed as

Swt = ql‘ _CI

where ¢, is random walk term, and ¢, is the total trading
cost paid in period ¢ (including commissions, bid—offer
spread cost, market impact cost, and other sources of
slippage). In the random walk case, the expected wealth
increment is therefore just —1 times the expected cost

E[~8w,]= E[,]

In other words, in this case the problem (Equation 9)
becomes a trade-off of cost versus variance. The agent
can hedge more frequently to reduce the variance of the
hedged position, but at increased trading costs.

As shown by Ritter (2017), with an appropriate
choice of the reward function, the problem of maxi-
mizing Elu(w,)] can be recast as a RL problem. The
reward in each period corresponding to Equation 9 is
approximately

R, := 0w, — g(&uf)2

By plugging each one-period reward into the
cumulative reward (Equation 1), we obtain an approxi-
mation of the mean—variance objective. Thus, training
reinforcement learners with this kind of reward function
amounts to training expected-utility maximizers. In the
context of option hedging, it amounts to training auto-
matic hedgers that are prepared to optimize the trade-off
of costs versus variance from being out of hedge.

THE JOURNAL OF FINANCIAL DATA SCIENCE 163


https://jfds.pm-research.com

Downloaded from https://jfds.pm-research.com at New Y ork University on September 14, 2020. Copyright 2019 Pageant Media Ltd.

In the next section, we shall show that automatic
hedging is indeed possible using RL training methods.

AUTOMATIC HEDGING IN PRACTICE

We look at the simplest possible example:
a European call option with strike price K and expiry
T on a non-dividend-paying stock. We take the strike
and maturity as fixed, exogenously given constants. For
simplicity, we assume the risk-free rate is zero. The agent
we train will learn to hedge this specific option with
this strike and maturity. It is not being trained to hedge
any option with any possible strike/maturity.’

The agent comes into the current period with a
fixed option position of L contracts. We assume for sim-
plicity that this option position will stay the same until
the option either is exercised or expires—we are training
an agent to be an optimal hedger of a given contract, not
an agent that can decide not to hold the contract at all.

Each period, the agent observes a new state and
then can decide on an action. Available actions always
include trading shares of the underlying, with bounds
dictated by the economics of the problem. For example,
with L contracts, each for 100 shares, one would not
want to trade more than 100-L shares. If the option is
American, then there is an additional action, which is
to exercise the option and hence buy or sell shares at the
strike price K.

In any successful application of RL, the state must
contain all of the information that is relevant for making
the optimal decision. Information that is not relevant to
the task at hand, or which can be derived directly from
other variables of the state, does not need to be included.
For European options, the state must minimally contain
the current price S, of the underlying and the time T :=
T — t > 0 still remaining to expiry, as well as our cur-
rent position of n shares. The state is thus naturally an
element of

S=R2XZ={(S,t,n)|S>0,1>0,neZ}

If the option is American, then it may be optimal
to exercise early just before an ex-dividend date. In
this situation, the state must be augmented with one

*However, we note that this is possible on an extended state
space.
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additional variable: the size of the anticipated dividend
in period f + 1.

The state does not need to contain the option
Greeks because they are (nonlinear) functions of the
variables the agent has access to via the state. We expect
agents, given enough simulations, to learn such non-
linear functions on their own as needed. This has the
advantage of not requiring any special, model-specific
calculations that may not extend beyond BSM models.

Practitioners often compute the delta of an option
position, for hedging purposes, using the BSM formula:

aC
A=—=N(,),
S (d,)
S, 10’
In >+ 2
oK 2
1 G\/E >
T=T—-t>0 (11)

but with 0 replaced by the implied volatility. This is
referred to as practitioner delta by Hull and White [2017].
Note that parameters such as K and 6~ are not provided
to the agent, although they are used in constructing the
simulation under which the agent is trained.

The agent will learn the properties of the stochastic
world it inhabits by means of a large number of simula-
tions of such world, as described. Nonlinear functions
such as A as given by Equation 11, insofar as they affect
the optimal strategy, will become part of the agent’s
learned action-value function (Equation 2).

We simulate a BSM world but modified to reflect
the realities of trading: discrete time and space. We
consider a stock whose price process is a geometric
Brownian motion (GBM) with initial price S, and daily
lognormal volatility of 6/day. We consider an initially
at-the-money European call option (struck at K= S,)
with T days to maturity. We discretize time with D
periods per day; hence each episode has T D total
periods. We require trades (hence also holdings) to be
integer numbers of shares. We assume that our agent’s
job is to hedge one contract of this option. In the fol-
lowing specific examples, the parameters are 6 = 0.01,
S, =100, T =10, and D = 5. In addition, we set the
risk aversion K = 0.1.

We first consider a frictionless world without
trading costs and answer the question of whether it is
possible for a machine to learn what we teach students
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ExHIBIT 1
Out-of-Sample Simulation of a Trained RL Agent
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Notes: We depict cumulative stock, option, and total P&EL; RL agent’s position in shares (stock.pos.shares); and —100-A (delta.hedge.shares). Observe that
(1) cumulative stock and options PEL roughly cancel one another to give the (relatively low variance) total P&EL, and (2) the RL agent’s position tracks the

delta position even though it was not provided with it.

in their first semester of business school: formation of
the dynamic replicating portfolio strategy. Unlike our
students, the machine can only learn by observing and
interacting with simulations.

The RL agent is at a disadvantage, initially. Recall
that it does not know any of the following pertinent
pieces of information: (1) the strike price K, (2) the
fact that the stock price process is a GBM, (3) the vol-
atility of the price process, (4) the BSM formula, (5)
the payoft function (S — K), at maturity, and (6) any of
the Greeks. It must infer the relevant information from
these variables, insofar as it affects the value function, by
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interacting with a simulated environment.® Each out-of-
sample simulation of the GBM is different, but we show
a typical example of the trained agent’s performance in
Exhibit 1.

One could try to help the algorithm by providing the BSM
delta as part of the state variable, hence allowing the reinforcement
learner to use that directly, but we deliberately chose not to include
any of the option Greeks as state variables. Giving the system access
to the option Greeks is sure to improve its performance because the
function being learned is closer to linear. We chose not to do this
to make the problem as hard as possible and to see if RL is up to
the challenge. However, in a real-world production scenario, we
recommend making the problem as easy as possible by including
certain option Greeks in the state variable, unless they are prohibi-
tively hard to calculate.
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EXHIBIT 2

Out-of-Sample Simulation of a Baseline RL Agent That Uses Policy Delta or ny,, Defined in Equation 12
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Notes: We show cumulative stock P&EL and option P&L, which roughly cancel one another to give the (relatively low variance) total P&L. We show the
position, in shares, of the agent (stock.pos.shares). The agent trades so that the position in the next period will be the quantity —100-A rounded to shares.

Because the examples of Exhibit 1 were generated
in a frictionless simulation, why is the total P&L not
exactly zero? The answer is discretization error. Time
is discretized (to five periods per day), so continuous
hedging is not possible. Moreover, the simulation
requires trading an integer number of shares, which
introduces further discretization error.

Any complex model should be tested against a sim-
pler model as a baseline. To justify its additional com-
plexity, the more complex model should be able to do
something that the simpler model cannot. Along these
lines, let us define a simple policy, 7t,,,;, as a baseline for
the more complex policy learned by RL methods.

As in Equation 11, let A(p,, T) denote the delta as
computed from the price p, at time f and the time-to-
expiry T= T—t. The full state variable is then s,= (p,, T, 1),
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where n, denotes the agent’s current holding, in shares,
at time ¢. Our simple baseline policy must output an
action, which is just a number of shares to trade, given
this state vector. Define

Ty (5,) = Ty (p,5Tom,) = —100 - round(A(p,, T)) — n (12)

t
where the round function returns the closest integer to
the argument.

The policy ®,,, without rounding, is optimal
in a hypothetical trading-cost-free world, where the
number of time steps goes to infinity and where one can
trade fractional numbers of shares. There is, however,
no reason to expect that m,,, would solve the utility-
maximization problem (Equation 9) in a simulation with
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EXHIBIT 3
Out-of-Sample Simulation of Our Trained RL Agent
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Note: The curve representing the agent’s position (stock.pos.shares) controls trading costs and is hence much smoother than the value of =100-A (called delta.

hedge.shares), which naturally fluctuates along with the GBM process.

nontrivial trading costs or, for that matter, in the real
world (where we know trading costs are nontrivial).
For a trade size of n shares we define

cost(n) = multiplier X TickSize X (1] +0.01n%)  (13)
where we take TickSize = 0.1. With multiplier = 1, the
term TickSize X |n| represents a cost, relative to the
midpoint, of crossing a bid—offer spread that is two ticks
wide. The quadratic term in Equation 13 is a simplistic
model for market impact. Exhibit 1 has multiplier = 0.
A key strength of the RL approach is that it
does not make any assumptions about the form of
the cost function (Equation 13). It will learn to opti-
mize expected utility under whatever cost function is
provided. In Exhibit 1, we had taken multiplier = 0 in
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the function cost(n), representing no frictions. We now
take multiplier = 5, representing a high level of friction.
Our intuition is that in high-trading-cost environments
(which would always be the case if the position being
hedged were large relative to the typical volume in the
market), the simple policy T, trades too much. One
could perhaps save a great deal of cost in exchange for a
slight increase in variance.

Given the mean—variance utility function in
Equation 9, we expect RL to learn the trade-off between
variance and cost. In other words, we expect it to realize
lower cost than T, possibly coming at the expense
of higher variance, when averaged across a sufficiently
large number of out-of-sample simulations (i.e., simu-
lations that were not used during the training phase in
any way).
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ExXHIBIT 4

Kernel Density Estimates for Total Cost (left panel) and Volatility of Total P&L (right panel) from N = 10,000

Out-of-Sample Simulations
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Notes: Policy delta is T, while policy reinf is the greedy policy of an action-value function trained by RL. The reinf policy achieves much lower cost

(t-statistic = —143.22) with no significant difference in volatility of total P&L.

We trained the agent using five batches with
15,000 episodes per batch, each episode having D-T' =
50 time steps, as before. This means that each call to
the nonlinear regression learner involves 750,000 (X, Y)
pairs. The training procedure took one hour on a single
CPU. After training, we ran N = 10,000 out-of-sample
simulations. Using the out-of-sample simulations, we
ran a horse race between the baseline agent that uses
just delta-hedging and ignores cost and the R L-trained
agent that trades cost for realized volatility.

Exhibit 2 shows one representative out-of-sample
path of the baseline agent. We see that the baseline agent
is overtrading and paying too much cost. Exhibit 3 shows
the RL agent on the same path. We see that, while main-
taining a hedge, the agent is trading in a cost-conscious
way. The curves in Exhibit 2, representing the agent’s
position (stock.pos.shares), are much smoother than the
value of =100-A (called delta.hedge.shares in Exhibit 2),
which naturally fluctuates along with the GBM process.

Exhibit 3 consists of only one representative run
from an out-of-sample set of N= 10,000 paths. To sum-
marize the results from all runs, we computed the total
cost and standard deviation of total P&L of each path.
Exhibit 4 shows kernel density estimates (basically,
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smoothed histograms) of total costs and volatility of total
P&L of all paths. In each case, we performed a Welch
two-sample r-test to determine whether the difference
in means was significant. The difference in average
cost is highly statistically significant, with a f-statistic
of —143.22. The difference in vols, on the other hand,
was not statistically significant at the 99% level.

One can also gauge the efficacy of an automatic
hedging model by how often the total P&L (including
the hedge and all costs) is significantly less than zero.
For both policies (delta and reinf), we computed the
t-statistic of total P&L for each of our out-of-sample
simulation runs and constructed kernel density estimates
(see Exhibit 5). The reinf method is seen to outper-
form: Its ¢-statistic is much more often close to zero and
insignificant.

CONCLUSIONS

The main contribution of this article is to show that
with RL one can train a machine learning algorithm to
hedge an option under realistic conditions. Somewhat
remarkably, it accomplishes this without the user providing
any of the following pertinent pieces of information:
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EXHIBIT 5

Kernel Density Estimates of the t-Statistic of Total P&L for Each of Our Out-of-Sample Simulation Runs
and for Both Policies Represented Previously (delta and reinf)
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Note: The reinf method is seen to outperform in the sense that the t-statistic is much more often close to zero and insignificant.

(1) the strike price K, (2) the stock price process,
(3) the volatility of the price process, (4) the BSM for-
mula, (5) the payoft function (S — K), at maturity, and
(6) any of the Greeks. This is the financial derivatives
analogue of the examples of Mnih et al. (2013) and Mnih
et al. (2015), wherein computers learned to play games
without knowing the rules.

A key strength of the RL approach is that it does
not make any assumptions about the form of trading
cost. RL learns the minimum variance hedge subject
to whatever transaction cost function one provides. All
it needs is a good simulator in which transaction costs
and options prices are simulated accurately. This has the
interesting implication that any option that can be priced
can also be hedged, whether or not the pricing is done by
explicitly constructing a replicating portfolio—whether
or not a replicating portfolio even exists among the class
of tradable assets.

Our approach does not depend on the existence of
perfect dynamic replication. It will learn to optimally
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trade off variance and cost using whatever assets it is
given as potential candidates for inclusion in a hedging
portfolio. In other words, it will find the minimum-
variance dynamic hedging strategy, whether or not the
minimum variance is actually zero (as it typically is in
derivatives pricing, where one needs perfect replica-
tion to derive a no-arbitrage price). This is important
because, in many realistic cases, markets are not com-
plete and hence some of the assets required for perfect
replication may not exist.

Another advantage of this approach is that it can
deal automatically with position-level constraints.
It is part of the structure of any RL problem that, for
each possible state s of the environment, the agent has
a (potentially state-dependent) list of possible actions.
In the examples given, the list of possible actions was
taken to be buying or selling up to 100 shares in integer
numbers of shares. We note that other trade or position
constraints could be incorporated in a straightforward
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way, simply by modifying the state-dependent list of
available actions.

In this article, we leave open several avenues for
turther research. One obvious point of interest would
be to train agents like ours on more sophisticated hard-
ware and hence to take advantage of many more simula-
tions and finer discretization of time. Silver et al. (2017)
described various Go players that were trained on clus-
ters with up to 176 GPUs and/or 48 TPUs, with training
times ranging from 3 to 40 days. For reference, all of the
examples in this article were trained on a single CPU,
and the longest training time allowed was one hour.

Transaction costs are not static. The intraday term
structure of trading volume has a well-known smile
shape (documented by Chan, Christie, and Schultz
1995), with a nontrivial fraction of US equity trading
volume occurring in the close and closing auction. Our
RL system should handle this sort of complication very
well. For instance, the simulator could be augmented
with a nuanced cost function that depends on the time
of day and add a discrete time-of-day indicator to the
state vector.

Another interesting line of research would be to
investigate optimal hedging strategies for portfolios of
options in the presence of trading costs. Obviously,
for low-gamma portfolios, delta-hedging would not
be needed so frequently, thus naturally reducing the
trading costs for that kind of portfolio. In general, the
most cost-effective way to reduce variance is likely to
use other options rather than a replicating portfolio of
the underlier.
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