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We present the most general model of the type considered by Black and Litterman (1991) after fully 

clarifying the duality between Black–Litterman optimization and Bayesian regression. Our generalization 

is itself a special case of a Bayesian network or graphical model. As an example, we work out in full detail 

the treatment of views on factor risk premia in the context of APT. We also consider a more speculative 

example in which the portfolio manager specifies a view on realized volatility by trading a variance swap. 
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. Introduction 

The topic of portfolio optimization in the style of Black and Lit-

erman (1992, 1991) seems to have generated more than its share

f confusion over the years, as evidenced by articles with titles

uch as “A demystification of the Black–Litterman model” ( Satchell

 Scowcroft, 20 0 0 ), etc. The method itself is often described as

Bayesian” but the original authors do not elaborate directly on 

onnections with Bayesian statistics. 

In language universally familiar to statisticians ( Robert, 2007 ), a

ayesian statistical model consists of: 

1. A vector-valued random variable x ∈ X ⊆ R 

d distributed accord-

ing to f ( x | θ), where realizations of x have been observed and

only the parameter θ (which belongs to a real vector space

� ⊆ R 

� ) is unknown, and 

2. A prior density π ( θ) on �. 

The function f ( x | θ) is called the likelihood and, after condition-

ng on θ, forms a density on the data space X ⊆ R 

d . The posterior

s the density on � proportional to f ( x | θ) π ( θ), and the normaliza-

ion factor drops out of certain calculations. In Bayesian statistics,

ll statistical inference is based on the posterior. 

The paper by Litterman and He (1999) contains many references

o a “prior” but only one mention of a “posterior” without details,

nd no mention of a “likelihood.”

In the present note, we clarify the exact nature of the Bayesian

tatistical model to which Black–Litterman optimization corre-
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ponds, in terms of the prior, likelihood, and posterior. In the pro-

ess we also lay out the full set of assumptions made, some of

hich are glossed over in other treatments. 

. Black, Litterman, and Bayes 

Consider a view such as “the German equity market will out-

erform a capitalization-weighted basket of the rest of the Euro-

ean equity markets by 5%,” which is an example presented in

itterman and He (1999) . Let p ∈ R 

n denote a portfolio which is

ong one unit of the DAX index, and short a one-unit basket which

olds each of the other major European indices (UKX, CAC40, AEX,

tc.) in proportion to their respective aggregate market capitaliza-

ions, so that 
∑ 

i p i = 0 . Let q = 0 . 05 in this example. This view

ay be equivalently expressed as 

 [ p 

′ r ] = q ∈ R (1)

here r is the random vector of asset returns over some subse-

uent interval, and q denotes the expected return, according to the

iew. If there are multiple such views, say 

 [ p 

′ 
i r ] = q i , i = 1 . . . k 

hen the portfolios p i are more conveniently arranged as rows of a

atrix P , and the statement of views becomes 

 [ P r ] = q for q ∈ R 

k . (2)

In the language of statistics, the core idea of Black and Lit-

erman (1991) is to treat the portfolio manager’s views as noisy

bservations which are useful for performing statistical inference

oncerning the parameters in some underlying model for r . For ex-

mple, if 

 ∼ N( θ, �) (3) 
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with � a known positive-definite n × n matrix, then the views

(2) can be recast as “observations” relevant for inference on the

parameter θ. 

A key aspect of the model is that the practitioner must also

specify a level of uncertainty or “error bar” for each view, which is

assumed to be an independent source of noise from the volatility

already accounted for in a model such as (3) . This is expressed as

the following more precise restatement of (2) : 

P θ = q + ε(v ) , ε(v ) ∼ N(0 , �) , � = diag (ω 1 , . . . , ω k ) (4)

Portfolio managers in this model specify noisy, partial, indirect

information about θ, through their views. The information is par-

tial and indirect because the views are on portfolio returns, i.e. lin-

ear transformations of returns, rather than on the asset returns di-

rectly. The information is noisy , with the noise modeled by ε(v ) ,

because the future is always uncertain. 

A subjective, uncertain view about what will happen to a cer-

tain portfolio in the future is conceptually distinct from a noisy ex-

perimental observation such as an attempt to measure some physi-

cal constant with imperfect laboratory equipment. Nonetheless, for

building intuition, we suggest thinking of a portfolio manager’s

forecast as an “observation of the future” in which the measur-

ing device is a rather murky and unreliable crystal ball. Only in

this way is it analogous to the noisy measurements in experimen-

tal design which much of statistics is designed to model. 

Quite generally, if any random variable r comes from a den-

sity p ( r | θ ) with parameter θ , and if one were given a set of noisy

observations of realizations of r , then one could infer something

about θ by statistical inference. This would be the predicament of

a physicist with a noisy measuring device, measuring a quantity

that is itself random, and we suppose the physicist wants to know

about the underlying data-generating process. Black and Litterman

essentially say that the portfolio manager’s view, if it is worth any-

thing, should contain some (noisy) information about the future, so

the view is, mathematically, no different from a noisy observation

of a realization of (a linear transformation of) future returns. 

As noted above, to perform statistical inference, observations

alone are not sufficient; one needs to fully specify the statistical

model, which includes a likelihood and a prior. In fact (4) specifies

the likelihood as 

f ( q | θ) ∝ exp 

[ 
−1 

2 

( P θ − q ) ′ �−1 
( P θ − q ) 

] 
(5)

which is the standard normal likelihood for a multiple linear re-

gression problem with dependent variable q and design matrix P . 

A feature of Bayesian statistics that is dissimilar from frequen-

tist statistics is the ability to perform inference in data-scarce situ-

ations. In Bayesian statistics, even a single observation can lead to

valid inferences for multi-parameter models due to the presence of

a prior. In essence, when less information is available, more weight

is given to the prior. 

The classic regression problem has the number of variables

much less than the number of observations, and is therefore iden-

tifiable. However, the need to perform inference in models with

many more variables than observations also arises in many appli-

cations. Notably, this arises in the analysis of gene expression ar-

rays, and is typically handled by Bayesian methods such as ridge

and the lasso ( Tibshirani, 1996 ). 

In a Black–Litterman model with one single view, there is one

observation and still n parameters to serve as the subjects for sta-

tistical inference: θ ∈ R 

n are the unobservable means of the asset

returns. More generally, we may be presented with no views, one,

or very many. When views are collected from many diverse port-

folio managers or economists, they may contain internal contra-

dictions; i.e. it may be impossible that they all come true exactly.

Bayesian regression is the ideal tool to deal with all such cases.
Please cite this article as: P. Kolm, G. Ritter, On the Bayesian interpretat
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nternal contradictions in the views simply mean that there is no

xact (zero-residual) solution to the regression equations, which in

act is the typical situation in classic (identifiable) linear regression.

We have not yet specified the prior, but Black and Litterman

ere motivated by the guiding principle that, in the absence of

ny sort of information/views which could constitute alpha over

he benchmark, the optimization procedure should simply return

he global CAPM equilibrium portfolio, with holdings denoted h eq .

ence in the absence of any views, and with prior mean equal to

, the investor’s model of the world is that 

 ∼ N( θ, �) , and θ ∼ N( �, C ) (6)

or some covariance C whose inverse represents the amount of pre-

ision in the prior. For any portfolio p , then, according to (6) we

ave 

 [ p 

′ r ] = p 

′ � V [ p 

′ r ] = p 

′ ( � + C ) p . 

n fact we must make a choice whether to use the conditional

r unconditional variance in optimization: V ( r | θ) = � but V ( r ) =
+ C . Since investors are presumably concerned with uncon-

itional variance of wealth, the unconditional variance form is

referable. 

Throughout the following, we use the letter h ∈ R 

n to denote

 vector of portfolio holdings; it has units of dollars, or whatever

uméraire currency the investor is using. Mean–variance optimiza-

ion with the moments as given above, and with risk-aversion pa-

ameter δ > 0, leads to 

 eq = δ−1 ( � + C ) −1 �. 

ny combination of �, C satisfying this will lead to a model with

he desired property – that the optimal portfolio with only the in-

ormation given in the prior is the prescribed portfolio h eq . In par-

icular, taking C = τ� with some arbitrary scalar τ > 0, as did the

riginal authors, leads to 

= δ(1 + τ ) �h eq 

We thus have the normal likelihood (5) and the normal prior

6) which is a conjugate prior for that likelihood, meaning that the

osterior is of the same family (i.e. also normal in this example).

 detailed discussion of conjugate priors is found in Robert (2007 ,

ection 3.3). 

The negative log posterior is thus proportional to (neglecting

erms that do not contain θ): 

( P θ − q ) ′ �−1 
( P θ − q ) + ( θ − �) ′ C −1 ( θ − �) (7)

= θ
′ 
P ′ �−1 

P θ − θ
′ 
P ′ �−1 

q − q 

′ �−1 
P θ (8)

+ θ
′ 
C −1 θ − θ

′ 
C −1 � − �′ 

C −1 θ

= θ
′ 
[ P ′ �−1 

P + C −1 ] θ − 2( q 

′ �−1 
P + �′ 

C −1 ) θ (9)

The following lemma, known colloquially as “completing the

quares” will be useful: 

emma 1. If a multivariate normal random variable θ has density

 ( θ) and 

2 log p( θ) = θ
′ 
H θ − 2 η′ θ + ( terms without θ) 

hen V [ θ] = H 

−1 and E θ = H 

−1 η. 

Lemma 1 follows directly from the fact that, for H symmetric, 

′ 
H θ − 2 v ′ H θ = ( θ − v ) ′ H ( θ − v ) − v ′ H v 

or the quadratic term to match (9) we must have H = P ′ �−1 
P +

 

−1 and hence the posterior has mean 

 = [ P ′ �−1 
P + C −1 ] −1 [ P ′ �−1 

q + C −1 �] (10)
ion of Black–Litterman, European Journal of Operational Research 
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nd covariance 

 

−1 = [ P ′ �−1 
P + C −1 ] −1 . (11)

art of the beauty of this derivation is its simplicity: going from

7) to (11) requires just a few lines of algebra. 

Investors with CARA utility of final wealth will want to solve 

 

∗ = argmax h 
{
E [ h 

′ 
r ] − (δ/ 2) V [ h 

′ 
r ] 

}
here E [ r ] and V [ r ] denote, respectively, the unconditional mean

nd covariance of r under the posterior. The unconditional covari-

nce is a sum of variance due to parameter uncertainty, and vari-

nce due to the randomness in r . In other words, 

 [ h 

′ 
r ] = h 

′ 
[ P ′ �−1 

P + C −1 ] −1 h + h 

′ �h 

he optimal portfolio accounting for both types of variance is

hen 

 

∗ = δ−1 [ H 

−1 + �] −1 H 

−1 [ P ′ �−1 
q + C −1 �] . 

. The most general Black–Litterman–Bayes model 

.1. Definitions 

The observations in the previous section now allow us to easily

ormulate the most general model of this type. 

efinition 1. A Black–Litterman–Bayes model consists of: 

(a) A parametric statistical model for asset returns p ( r | θ) with

finite-dimensional parameter vector θ, 

(b) A prior π ( θ) on the parameter space, 

(c) A likelihood function f ( q | θ) where θ is any parameter vec-

tor appearing in a parametric statistical model for asset re-

turns, and q is a vector supplied by portfolio managers or

economists. 

(d) A utility function u (w ) of final wealth in the sense of Arrow

(1971) and Pratt (1964) . 

Items (a) and (b) simply state that we have a Bayesian statis-

ical model, as defined in Section 1 , for asset returns. Under such

 model, Decision Theory (see Robert (2007 , Chapter 2 and refer-

nces) teaches us that the optimal decision is the one maximizing

osterior expected utility. This leads us to Definition 2 . 

efinition 2. Given a Black–Litterman–Bayes (BLB) model as per

efinition 1 , the associated BLB optimal portfolio is defined to be 

 

∗ ∈ argmax h E [ u ( h 

′ 
r ) | q ] 

here E [ · | q ] denotes the expectation with respect to the poste-

ior predictive density for the random variable r . In other words, h 

∗

aximizes posterior expected utility. Explicitly, the posterior pre-

ictive density of r is given by 

p( r | q ) = 

∫ 
p( r | θ) p( θ | q ) d θ where 

p( θ | q ) = 

f ( q | θ) π( θ) ∫ 
f ( q | θ) π( θ) d θ

efinition 3. Given a benchmark portfolio with holdings h B (e.g.

he market portfolio), and given a Black–Litterman–Bayes model

Definition 1 ), the prior π ( θ) is said to be benchmark-optimal if

 B maximizes expected utility of wealth, where the expectation

s taken with respect to the a priori distribution on asset returns

p( r ) = 

∫ 
p( r | θ) π( θ) d θ, so 

 B ∈ argmax h 

∫ 
u ( h 

′ 
r ) p( r | θ) π( θ) d θ (12)

Many existing approaches are special cases of the above. The

odel of Black and Litterman (1991) is the special case in which
Please cite this article as: P. Kolm, G. Ritter, On the Bayesian interpretat
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 | θ is multivariate normal with mean θ and f ( · | · ) is the nor-

al likelihood for a regression of the portfolio manager’s views,

he utility of final wealth is the CARA function u (w ) = −e −δw , and

he prior is the unique normal distribution which is benchmark-

ptimal with respect to the market portfolio. 

An interesting feature of the model is that there are two func-

ions which both play the role of likelihood functions: p ( r | θ) and

 ( q | θ). Equivalently, we have a triple of random vectors: ( r , q , θ)

hich are not pairwise independent, but r and q are conditionally

ndependent given θ. In Bayesian statistics, such situations are com-

onplace. A Bayesian network (or “graphical model”) is, intuitively,

n arbitrary collection of random variables whose conditional inde-

endence structure is specified by a (typically directed and acyclic)

raph, so this system could be considered a Bayesian network with

hree nodes. We refer the reader to Pearl (2014) for the authorita-

ive treatise on Bayesian networks, but suffice it to say that infer-

nce with much larger networks than the ( r , q , θ) network is now

ommonplace. 

We find that phrasing things in this way inspires the imagi-

ation. Even if θ simply represents the mean vector of asset re-

urns, such returns are widely recognized to be non-normal. Re-

lacing (3) with a Laplace distribution may fit empirical asset re-

urns more accurately. This corresponds to Least absolute devia-

ion (LAD) regression. Giacometti, Bertocchi, Rachev, and Fabozzi

2007) also investigated heavy-tailed distributions in the context

f Black–Litterman optimization. 

More generally, θ is allowed to be any set of parameters ap-

earing in a parametric statistical model for asset returns, not nec-

ssarily their means. We explore this class of generalizations in the

ext sections. 

.2. APT and factor models 

Generalizing further, the parameter vector θ could represent

eans (and covariances) of unobservable latent factors in an APT

odel ( Roll & Ross, 1980; Ross, 1976 ). Such models assume a linear

unctional form 

 = X f + ε, E [ ε] = 0 , V [ ε] = D (13)

here r is an n -dimensional random vector containing the cross-

ection of returns in excess of the risk-free rate over some time

nterval [ t, t + 1] , and X is a (non-random) n × k matrix that is

nown before time t . Also, ε is assumed to follow a mean-zero dis-

ribution with diagonal variance–covariance matrix given by 

 = diag (σ 2 
1 , . . . , σ

2 
n ) with all σ 2 

i > 0 . (14)

he variable f in (13) denotes a k -dimensional random vector pro-

ess which cannot be observed directly; information about the

 -process must be obtained via statistical inference. Specifically,

e assume that the f -process has finite first and second moments

iven by 

 [ f ] = μ f , and V [ f ] = F . (15)

hen necessary, we will use f t to denote a realization of the f -

rocess on day t , but we will usually suppress the implicit time

ubscript. 

The model (13) –(15) entails associated reductions of the first

nd second moments of the asset returns: 

 [ r ] = X μ f , and � := V [ r ] = D + X F X 

′ (16)

here X 

′ denotes the transpose of X . The elements of μf are called

actor risk premia . We will continue to use � to denote D + X F X 

′ 
hroughout this section, and (14) implies that �−1 exists. 

For simplicity, we treat X as non-stochastic and assume

 � n . Then (16) reduces the number of parameters necessary to

escribe the density p ( r ) from O ( n 2 ) down to the k parameters in
ion of Black–Litterman, European Journal of Operational Research 
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μf , the k (k + 1) / 2 parameters in F , and n parameters in D , for a

total of n + k (k + 3) / 2 . Models of the form (13) are ubiquitous in

practice, and for good reason: in equity markets n is too large to

allow direct estimation of �. See Fabozzi, Focardi, and Kolm (2010) ,

Connor, Goldberg, and Korajczyk (2010) for more discussion and

examples. 

In the language of Definition 1 , we are free to choose θ as any

vector of parameters appearing in a parametric statistical model

for asset returns; (13) –(15) is such a model, so as a starting point,

choose θ = μ f , the k parameters describing the factor risk premia.

For simplicity we treat F as a constant matrix, just as the original

Black–Litterman model treats � as a constant matrix. 

What kinds of views on factor risk premia do we expect port-

folio managers to have? The simplest and most parsimonious

scenario is that we have a view on each factor risk premium

that is independent of our views on other factors. For exam-

ple, consider value and momentum, as discussed at length by

Asness, Moskowitz, and Pedersen (2013) , Fabozzi, Focardi, and

Kolm (2006) , Fabozzi et al. (2010) going back to work of Fama and

French (1993) and Carhart (1997) . A quantitative portfolio manager

might have two views: (1) a view on the value premium, and, sep-

arately from that, (2) a view on the momentum premium. It would

be atypical for portfolio managers to have views on, say, the sum

or difference of the value and momentum premia, or more gener-

ally on “portfolios of factors.” Hence to keep things simple but still

useful, we take the likelihood function to be 

f ( q | θ) = 

k ∏ 

i =1 

exp 

[
− 1 

2 ω 

2 
i 

(θi − q i ) 
2 

]
(17)

The choice of prior π ( θ) is very interesting. We discuss two

types of priors: one driven by historical data, and one driven by

the desire to have some specific benchmark turn out to be optimal

under the model of the prior as in in Definition 3 . 

If the random process model driving the unobservable factor

returns f t is stationary, i.e. μf , F are approximately constant over

time, then we could obtain a prior for θ = μ f by taking the poste-

rior from a simple Bayesian time-series model for the factor re-

turns f t . In particular, the historical mean of the OLS estimates
ˆ f t = ( X 

′ 
t X t ) 

−1 X 

′ 
t r t+1 could be taken as the prior mean. More gen-

erally, this problem lends itself well to a hierarchical (or mixed-

effects model) approach. Each time period is a “group” and one

has models for r t+1 ∼ N( X t f t , D ) and the various f t are modeled as

i.i.d. draws f t ∼ N ( μf , F ). The statistical inference problem is then

to infer θ = μ f from observations of r t , a special case of the hi-

erarchical approach discussed in Gelman, Carlin, Stern, and Rubin

(2003 , Chapter 15). The posterior from this procedure is a possible

prior for use in the Black–Litterman procedure. 

The “data-driven” approach to prior selection that we have just

described has the advantage of not requiring a benchmark portfo-

lio. This makes sense for absolute return strategies where the ef-

fective benchmark is cash. It is very common in Bayesian statistics

for the posterior from one analysis to become the prior for subse-

quent analysis. 

Alternatively, if there is a benchmark portfolio h B , then closest

in spirit to Black and Litterman (1991) would be to search for a

benchmark-optimal prior, as defined above. To progress any fur-

ther, we need to introduce notation for the hyperparameters in

π ( θ), so let’s say π ( θ) ∼ N ( ξ, V ) with ξ ∈ R 

k and V ∈ S k ++ , the set of

symmetric positive definite k × k matrices. Choosing a prior then

amounts to choosing ξ and V , which are constrained by (12) . The

first step in evaluating (12) is to compute the a priori density on

returns, ∫ p ( r | θ) π ( θ) d θ. Since π ( θ) and p ( r | θ) are both Gaussian,

this is another completion of squares. 

We continue to use the notation � = D + X F X 

′ as above, since

this is the asset-level covariance in an APT model. Straightforward
Please cite this article as: P. Kolm, G. Ritter, On the Bayesian interpretat
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alculations then show: 

2 log [ p( r | θ) π( θ)] = −2 log N( r ; X θ, �) − 2 log N( θ; ξ, V ) 

= ( r −X θ) ′ �−1 ( r − X θ) + ( θ−ξ) ′ V 

−1 ( θ−ξ) 

= θ
′ 
H θ − 2 η′ θ + z 

here for notational simplicity, we have introduced the auxiliary

ariables 

 = V 

−1 + X 

′ �−1 
X , η = ( ξ

′ 
V 

−1 + r ′ �−1 
X ) ′ 

and z = r ′ �−1 
r + ξ

′ 
V 

−1 ξ. 

ompleting the square again, 

′ 
H θ − 2 η′ θ + z = ( θ − v ) ′ H ( θ − v ) − v ′ H v + z , v = H 

−1 η

he integral over θ is then a standard Gaussian integral, which is

erformed via the formula 

 

exp 

[ 
−1 

2 

( θ − v ) ′ H ( θ − v ) 
] 

d θ = 

√ 

(2 π) k 

det H 

ence, 
 

p( r | θ) π( θ) d θ = (2 π) k/ 2 | H | −1 exp 

[ 
−1 

2 

( z − η′ H 

−1 η) 
] 

= 

(2 π) k/ 2 

det H 

exp 

[ 
−1 

2 

( r ′ �−1 
r + ξ

′ 
V 

−1 ξ − ( ξ
′ 
V 

−1 

+ r ′ �−1 
X ) H 

−1 ( V 

−1 ξ + X 

′ �−1 
r )) 

] 
et’s multiply out the second quadratic term: 

( ξ
′ 
V 

−1 + r ′ �−1 
X ) H 

−1 ( V 

−1 ξ + X 

′ �−1 
r ) 

= ξ
′ 
( V H V ) −1 ξ + 2 ξ

′ 
( H V ) −1 X 

′ �−1 
r + r ′ �−1 

X H 

−1 X 

′ �−1 
r 

ote that ∫ p ( r | θ) π ( θ) d θ is a Gaussian probability distribution for

he random vector r , so to find the covariance, we just collect the

uadratic terms in r and take the inverse: 

 π [ r ] = ( �−1 + �−1 
X H 

−1 X 

′ �−1 ) −1 . 

imilarly, referring to Lemma 1 , the mean is 

 π [ r ] = V π [ r ] �−1 
X H 

−1 V 

−1 ξ (18)

= ( �−1 + �−1 
X H 

−1 X 

′ �−1 ) −1 �−1 
X H 

−1 V 

−1 ξ (19)

The a priori optimal portfolio under CARA utility is of course 

(δV π [ r ]) −1 
E π [ r ] = δ−1 �−1 

X H 

−1 V 

−1 ξ (20)

ut unlike the classic Black–Litterman case, it is no longer true that

ny arbitrary benchmark portfolio can be realized as an a priori

ptimal portfolio. In fact, (20) gives a very simple characterization

f those that can: they are precisely of the form δ−1 �−1 � where

is some linear combination of the columns of X . That is to say,

hey are portfolios which are optimal with respect to a set of in-

ividual asset risk premia that come from the factor model. From

he standpoint of APT, this is not a real restriction; if the original

PT model is not mis-specified, then residuals should be indepen-

ent, and not additional sources of risk premia for use in forming

xpected returns. 

Not every possible portfolio is realizable as a priori optimal,

ence the market portfolio may not be. However, at least we can

ay that if the market is in a CAPM equilibrium and if one of the

olumns of X contains the CAPM betas, then the individual asset

isk premia will be proportional to that column of X , and then the

arket portfolio will be realizable as a priori optimal, as per (20) . 

We now leave behind the question of the prior and continue

ith calculating the a posteriori optimal portfolio, i.e. the portfolio

hich takes into account the views (17) on the factor risk premia.

his calculation proceeds in three steps: 
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1. Calculate the posterior distribution of θ, after the views are

taken into account, which is given by 

p( θ | q ) = 

f ( q | θ) π( θ) ∫ 
f ( q | θ) π( θ) d θ

2. Calculate the a posteriori distribution of asset returns (also

called the posterior predictive density), given by 

p( r | q ) = 

∫ 
p( r | θ) p( θ | q ) d θ (21)

3. Calculate the mean–variance optimal portfolio under (21) . 

Fortunately, Step 1 is easy since the normal prior is a conju-

ate prior for the normal likelihood, meaning that the posterior

istribution is of the same distributional family as the prior (again

ormal), but with different values for the hyperparameters. By a

traightforward calculation, if the prior is normal with hyperpa-

ameters ξ, V then the posterior has hyperparameters ˜ ξ, ̃  V where 

˜ 
 = ( V 

−1 + �−1 
) −1 , ˜ ξ = ( V 

−1 + �−1 
) −1 ( V 

−1 ξ + �−1 
q ) 

Step 2 follows via the same calculation we did to find the a

riori density, but using the posterior updated values ˜ V and 

˜ ξ for

he hyperparameters. We do not need to do the whole calculation

gain, just make the substitution ξ → 

˜ ξ and V → 

˜ V to find 

 [ r | q ] = ( �−1 + �−1 
X ( ̃  V 

−1 + X 

′ �−1 
X ) −1 X 

′ �−1 ) −1 . (22) 

 [ r | q ] = V [ r | q ] �−1 
X ( ̃  V 

−1 + X 

′ �−1 
X ) −1 ˜ V 

−1 ˜ ξ (23) 

Step 3 is then a completely standard calculation of a mean–

ariance optimal portfolio from (22) and (23) : 

 

∗ = δ−1 �−1 � (24) 

:= X 

˜ μ f (25) 

˜ f := ( V 

−1 + �−1 + X 

′ �−1 
X ) −1 ( V 

−1 ξ + �−1 
q ) (26) 

Eqs. (24) –(26) represent the solution to Black–Litterman opti-

ization in the context of APT. They are written in a suggestive

orm: the asset-level risk premia � = X ̃

 μ f are linear combinations

f the factors which form the columns of X . One can think of ˜ μ f as

 set of factor risk premia “adjusted” to take account of the views,

nd the adjustments tend to give more weight to factors which

ave high prior mean–variance ratios ξ i / V ii and/or high expected

eturn-uncertainty ratios q i /ω 

2 
i 

. 

.3. An empirical example for APT 

In this section, we present a detailed empirical example of the

pplication of Eqs. (24) –(26) and other machinery of Section 3.2 .

e study the United States equity market over the period 1992–

015 through the lens of an APT model (13) –(15) . For each day t

n our sample, we take n = 20 0 0 and select the top n stocks in the

S market, sorted by market capitalization. We chose this value

ecause stocks falling below the top 20 0 0 by market cap tend to

e illiquid and have wide spreads, making them difficult to trade

or institutional investors. We restrict the study to common stock,

ence excluding closed-end funds, REITs, ETFs, unit trusts, depos-

tory receipts, warrants, etc. Our only data sources for this study

ere CRSP and IBES which we access via the Wharton Research

ata Service. 

We construct our model to contain five of the most commonly-

tudied and well-known sources of systematic risk: market beta,

ize, value, momentum, and volatility, as well as a classification

f the stocks into industries. For further discussions of the five

isk premia mentioned here, see Fama and French (1993) , Connor

t al. (2010) , Menchero, Morozov, and Shepard (2008) , Asness et al.

2013) . There are likely other sources of systematic risk which
Please cite this article as: P. Kolm, G. Ritter, On the Bayesian interpretat
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ould be considered in a more complete model; our goal is only

o illustrate the techniques of Section 3.2 , and this model will do

icely for that purpose. With the exception of the volatility pre-

ium, our model is intentionally very similar to that of Fama and

rench (1992) , which is one of the most-cited papers in finance.

he classic paper on the volatility premium ( Ang, Hodrick, Xing, &

hang, 2006 ) was not until 2006, but all other factors had been

iscussed in the academic literature prior to the beginning of our

ample period. 

As before we let k denote the number of factors. In this exam-

le, k ≈ 75 due to the 5 risk premia and about 70 industries. Our

ndustry classification is based on the “major group” of the Stan-

ard Industrial Classification (SIC) system. The model is 

 t+1 = X t f t + εt , E [ ε] = 0 , V [ ε] = D 

here r t+1 ∈ R 

n denotes a cross-section of asset returns over the

nterval [ t, t + 1] , and X t is calculated using data knowable before

ay t . Specifically, r t are close-to-close total returns, and t will de-

ote a day, or when more precision is required, the exact time of

he US equity market close on day t . 

The first 5 columns of X t represent exposures to the five risk

remia mentioned above. With the exception of market beta,

hich we do not transform in any way, the exposures are calcu-

ated as a “raw” value which is then “gaussianized” in the cross

ection. Gaussianization refers to a robustification procedure for

xtremely fat-tailed data by which the data is converted to ranks

nd passed through the inverse CDF of a normal. The latter pre-

erves the order, but reshapes the data to appear normally dis-

ributed. 

(1) Market beta: each asset’s daily excess return time series is

winsorized and regressed against the S&P 500 excess re-

turn time series, over a trailing two year window with an

intercept. The beta is the slope coefficient in this regres-

sion. The results are further improved using the Vasicek

(1973) Bayesian adjustment in the cross section. 

(2) Size: market capitalization. 

(3) Volatility: as in the market beta calculation, each asset’s

daily excess return time series is winsorized and regressed

against the S&P 500 excess return time series, over a trailing

two year window. The mean-square error (MSE) from this

regression is the raw exposure. 

(4) Momentum: trailing compound returns over the last 12

months with the last 1 month excluded. For this and the

next, see Asness et al. (2013) and references therein. 

(5) Value: the raw exposure is e t / p t where e t represents the

sum of the trailing 4 quarters’ earnings-per-share (EPS), ad-

justed for any splits which occurred between the earnings

announcement date and date t , and p t is the close price on

day t . 

We define a stock’s exposure to an industry as 1 if the stock is

lassified into that industry by SIC, and zero otherwise. Hence the

emaining 70 columns of X t are populated by 1s and 0s, with one

olumn per industry. 

Next we calculate the OLS factor returns 

ˆ f t = ( X 

′ 
t X t ) 

−1 X 

′ 
t r t+1 . (27) 

ince our example concerns industry-neutral and market-neutral

ortfolios, we will not ascribe any persistent risk premia to the

arket-beta factor, nor to any of the industry factors. The cumula-

ive factor returns of the other risk premia is shown in Fig. 1 . 

Fig. 1 corresponds well with our intuition and established con-

ensus from the academic literature: the two positive risk premia

re momentum and value; the two negative risk premia are size

nd volatility. For example, a negative premium to the size factor

ndicates that low market capitalization stocks tend to outperform
ion of Black–Litterman, European Journal of Operational Research 
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Fig. 1. Cumulative factor returns to risk premia ˆ f t as computed by (27) . The two positive-drift risk premia are momentum and value; the two negative-drift risk premia are 

size and volatility. 
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high market capitalization stocks after controlling for market beta,

industry, and other systematic sources of risk. 

As above we continue to assume that the random process

model driving the unobservable factor returns f t is stationary, i.e.

μf , F are approximately constant over time. None of what follows

depends on having very precise forecasts of μf , F . We take μf to

be zero except for the four risk premia that we want exposure to,

in which case we set the corresponding components of μf as: Mo-

mentum = 1.0 basis points, Size = −0.5 basis points, Volatility =
−1.5 basis points, and Value = 0.5 basis points, in units of daily

return. 

We take F to be diagonal, with all industry variances set to

10 basis points/day-squared; the resulting portfolios do not really

depend on the industry block of F since they are not taking any

meaningful industry risk. The risk premia variances are estimated

using long-range, slowly moving windows. 

We estimate D = diag (σ 2 
1 , . . . , σ

2 
n ) via simple time-series re-

gressions of each stock’s return against the S&P 500 return over

a rolling two-year window; then σ 2 
i 

is the residual variance from

that regression. We also winsorize low values of σ 2 
i 

since they will

be inverted when we compute D 

−1 and could lead to large portfo-

lio weights. 

At this point, we have enough information to compute the

Markowitz portfolio, which is definitionally given by 

h mar := (δ�t ) 
−1 X t μ f , where �t = X t F X 

′ 
t + D t (28)

To speed up the computation, instead of (28) we use the linear-

time formula 1 of Ritter (2016) . Note that (28) does not use

any form of Black–Litterman technology, and it does not include

“views” in the terminology used above. Hence we regard (28) as a

baseline which a supposedly more sophisticated method should be

able to outperform (in terms of information ratio). 

To progress further, we need to compute Eqs. (24) –(26) , for

which we need to choose a prior π ( θ; ξ, V ) and some form of

views on factor risk premia as embodied by q t and �t . For sim-

plicity we take ξ = μ f and V = F , although real-world applications

may wish to build more detailed data-driven priors. Furthermore,

we take ω 

2 
i 

= v ii where v ii is the i th diagonal element of V . This
1 The linear-time formula of Ritter (2016) is implemented in R as fol- 

lows: Z < - t(X) % ∗% sqrt(D.inv) (1.0/delta) ∗ sqrt(D.inv) % ∗% 
ginv(Z) % ∗% solve(V + ginv(Z % ∗% t(Z)), mu_f). 

3

 

n  

m  
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mounts to assuming our uncertainty in each view is proportional

o the actual market risk of the factor that the view is about. This

s reasonable, but one should also consider using for ω i the statis-

ical estimation error in q i , when available. 

We stress that a Black–Litterman–Bayes model is only as good

s its inputs, which in this case are really the forecasts q i , t . We

ake q i , t to be the one-period-ahead forecast of the i th risk pre-

ium’s factor return from a univariate ARIMA model fit on an ex-

anding window (i.e. the entire history up to t ). In other words,

e are forecasting the time-series depicted in Fig. 1 and using

hose forecasts for q . The precise ARIMA model used for forecast-

ng E [ f t+1 ] is selected using AIC c on a rolling basis, using only data

nowable as of time t . 

With these data in hand, we then compute for each day t , the

lack–Litterman–Bayes portfolio holdings as per (24) : 

 blb = δ−1 �−1 
X ( V 

−1 + �−1 + X 

′ �−1 
X ) −1 ( V 

−1 ξ + �−1 
q ) (29)

he computation of (29) can be sped up considerably by means

f the Woodbury matrix inversion lemma: one has �−1 = D 

−1 −
 [ F −1 + X 

′ Z ] −1 Z 

′ where Z = D 

−1 X , which only requires calculating

he inverses of diagonal or low-dimensional matrices. 

We then directly compare the two time-series of transaction-

ost-free profits: h 

′ 
blb ,t r t+1 and h 

′ 
mar ,t r t+1 . The cumulative (pre-

rading cost) profit from both portfolios is shown in Fig. 2 . They

ave been scaled to have the same volatility. 

The respective information ratios (IR) are 1.8 for the BLB portfo-

ios and 1.3 for the Markowitz portfolios. Hence we conclude that

he Black–Litterman–Bayes optimization procedure has done what

t was designed to do: it has successfully used the one-period-

head predictions of risk premia returns as “views,” and incorpo-

ated these views into the optimization, leading to an improved

nformation ratio and less severe drawdowns. In some cases the

LB portfolio actually benefits when the Markowitz portfolio has a

rawdown because the negative trend is picked up quickly enough

y the ARIMA model generating the views, and the factor having

he drawdown is given a negative view. 

.4. Simultaneous views on drift and volatility 

Consider a fixed time interval [ t , T ] and let r = (S T − S t ) /S t de-

ote an asset’s return over the interval. Suppose that a portfolio

anager has a view, that r > 0 and also that the volatility over
ion of Black–Litterman, European Journal of Operational Research 
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Fig. 2. Cumulative returns to Markowitz portfolio (solid line, IR = 1.3) and Black–Litterman–Bayes portfolio (dotted line, IR = 1.8). 
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2 This is a reasonable prior to use in cases where some data may have already 

been observed; the inverse gamma arises as the marginal posterior distribution for 

the unknown variance of a normal distribution if an uninformative prior is used. 
 t , T ] will be higher than the options market is currently antici-

ating. One relatively pure representation of the market’s view on

hat the realized variance will be is the strike of a variance swap.

he payoff of a variance swap is 

 var (σ
2 
R − σ 2 

str ) 

here n var is the notional, σ 2 
R 

is realized variance of the underlying

ver the sampling period, and σ 2 
str is the “strike variance.”

The portfolio manager may be more certain about the volatil-

ty view than the drift view, as in the example of an upcoming

vent: one can be sure that once the event occurs, the volatility

ill spike, but the direction is harder to predict. Presumably this

ortfolio manager would like to hold a portfolio consisting of the

nderlying asset and a variance swap. The final wealth of such a

ortfolio (neglecting the initial wealth) will be 

 = hr + n var (σ
2 
R − σ 2 

str ) (30)

To construct a Black–Litterman–Bayes model, we will need a

ayesian statistical model for asset returns. More precisely, for the

ivariate joint distribution of the two terms in (30) . We take the

arameters to be 

= (μ, σ 2 ) , 

he mean and variance of the true underlying distribution of r ,

hich is assumed to be normal. Concretely, we assume r is driven

y a Brownian motion with drift, in which S T − S t is the sum of

 + 1 normally-distributed i.i.d. increments at the sample points of

he variance swap. The theorem of Cochran (1934) shows that σ 2 
R 

ollows a scaled chi-squared distribution: 

 

σ 2 
R 

σ 2 
∼ χ2 

n . 

e write this as σ 2 
R 

∼ χ2 
scaled 

(σ 2 
R 
;σ 2 ) where 

2 
scaled (x ; v ) = 

2 

−n/ 2 ne −nx / ( 2 v ) ( nx / v ) 
n 
2 −1 

v �(n/ 2) 

n particular, 

 [ σ 2 
R | σ 2 ] = σ 2 and V [ σ 2 

R | σ 2 ] = 2 σ 4 /n. (31)

The portfolio manager must express views via a likelihood func-

ion f ( q | θ) for some as-yet undetermined data q . Views on the as-

et’s return and variance can be expressed as 

∼ N(q, ω 

2 ) , and σ 2 ∼ IG (α, β) (32)
Please cite this article as: P. Kolm, G. Ritter, On the Bayesian interpretat
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here IG( α, β) is the inverse gamma distribution with p.d.f. 

 α,β (x ) = 

βα

�(α) 
x −α−1 exp 

(
−β

x 

)

n other words the portfolio manager specifies ( q , ω 

2 ) as in the

lassical Black–Litterman model for expected return and uncer-

ainty in the view. Additionally – and this is the new ingredient

the portfolio manager expresses views on volatility by giving ( α,

) such that σ 2 ∼ IG( α, β). Reasonable views have α > 2 so that

G( α, β) has finite first two moments. 

Perhaps the most “boring” class of views on volatility would be

haracterized by those having E [ σ 2 ] = β/ (α − 1) = σ 2 
str , because

2 
str represents the consensus view on variance already implied by

he prevailing volatility surface in the market. This may be a use-

ul reference point. More generally, any model of a random process

hat can be calibrated to the volatility surface could be used to set

arameters or otherwise specify the prior and the views. 

The likelihood function which encodes these views is then 

f (q | θ) = g α,β (σ 2 ) N(μ; q, ω 

2 ) , where θ = (μ, σ 2 ) . 

To complete the specification of the model, we take the prior

( μ, σ 2 ) to be a special case of the Normal-Inverse-Gamma distri-

ution NIG( μ0 , α0 , β0 ). In other words, 

| σ 2 ∼ N(μ0 , σ
2 ) , σ 2 ∼ IG (α0 , β0 ) (33)

here α0 > 2. A zero subscript indicates a hyper-parameter ap-

earing in the prior. 2 

It is interesting that σ 2 
str is essentially quoted by the market,

ence the determination of a market-implied prior is perhaps eas-

er than for portfolios of non-derivative instruments, which was

he case for the original examples of Black–Litterman optimization.

n the present case, the market gives us information directly about

he parameters of the model via the quoted strike of a variance

wap. Therefore we feel that any reasonable definition of market-

mplied prior π ( σ 2 ) should have the property that 

 π [ σ 2 ] = σ 2 
str . 

riors not satisfying this property are of course possible, but they

annot claim to be in agreement with the options market. If the
ion of Black–Litterman, European Journal of Operational Research 
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A  
prior is of the inverse gamma family, IG( α0 , β0 ) then E π [ σ 2 ] =
β0 / (α0 − 1) , and hence β0 = σ 2 

str (α0 − 1) . One can match both

moments of the sampling distribution (31) by setting α0 = 2 + n/ 2

and β0 = σ 2 
str (1 + n/ 2) . 

To progress further we need to understand the joint posterior of

r and σ 2 
R 
, which are the two random variables driving Eq. (30) , ∫ 

p(r, σ 2 
R | θ) p( θ | q ) d θ

= 

∫ 
χ2 

scaled (σ
2 
R ;σ 2 ) 

{ 

∫ 
p N (r;μ,σ 2 ) p(μ,σ 2 | q ) d μ

} 

d σ 2 

where p N denotes the pdf of a normal. We will now show that the

inner integral over μ can be done in closed form, for which we

need the posterior p ( μ, σ 2 | q ): 
p(μ, σ 2 | q ) ∝ g α,β (σ 2 ) p N (μ; q, ω 

2 ) ︸ ︷︷ ︸ 
likelihood 

× p N (μ;μ0 , σ
2 ) g α0 ,β0 

(σ 2 ) ︸ ︷︷ ︸ 
prior 

Neglecting proportionality constants, the previous line is propor-

tional to 

p N 
(
μ;μ′ , (σ ′ ) 2 

)
g α′ ,β ′ (σ 2 ) 

where 

μ′ := 

qσ 2 + μ0 ω 

2 

σ 2 + ω 

2 
, (σ ′ ) 2 := 

σ 2 ω 

2 

σ 2 + ω 

2 

α′ := α + α0 + 1 , β ′ = β + β0 

Then, we obtain ∫ 
p N (r;μ, σ 2 ) p(μ, σ 2 | q ) dμ = g α′ ,β ′ (σ 2 ) p N (r;μ′ , σ 2 + (σ ′ ) 2 ) 

The bivariate posterior predictive density p(r, σ 2 
R ) can thus be re-

duced to ∫ 
χ2 

scaled (σ
2 
R ;σ 2 ) g α′ ,β ′ (σ 2 ) p N 

×
(

r; q σ 2 + μ0 ω 

2 

σ 2 + ω 

2 
, σ 2 + (σ−2 + ω 

−2 ) −1 
)

dσ 2 (34)

As an aside, it is worth noting that the marginals of this dis-

tribution are simpler than the original due to the structure of the

integrand; e.g. the marginal distribution of σ 2 
R 

is then ∫ 
p(r, σ 2 

R ) dr = 

∫ 
χ2 

scaled (σ
2 
R ;σ 2 ) g α′ ,β ′ (σ 2 ) dσ 2 

For any choice of h , n var the wealth random variable is, as

above, w = hr + n var (σ 2 
R 

− σ 2 
str ) . Hence 

E [ w ] = h E [ r] + n var (E [ σ 2 
R ] − σ 2 

str ) 

and E [ R ] and E [ σ 2 
R ] can be computed (from the marginals) before

optimizing over h , n var . Similarly, 

V [ w ] = h 

2 
V [ r] + n 

2 
var V [ σ 2 

R ] + 2 hn var cov (r, σ 2 
R ) 

Hence for the purposes of optimizing E [ w ] − (δ/ 2) V [ w ] over h ,

n var , we have only to compute ( h , n var -independent) estimates of

the first and second moments of the joint posterior (34) . Vari-

ous numerical methods can be used to compute such estimates

to any desired accuracy. Given the low dimension of the prob-

lem, a multidimensional numerical integration procedure will work

well. Specifically, we suggest 3 writing a one-dimensional adaptive

quadrature routine to compute p(r, σ 2 
R 
) as in (34) for any specific

values of (r, σ 2 
R 
) and then using this within a two-dimensional

lattice integration to compute moments such as 
∫ 

rp(r, σ 2 
R ) d rd σ 2 

R ,∫ 
(r − E [ r])(σ 2 

R 
− E [ σ 2 

R 
]) p(r, σ 2 

R 
) d rd σ 2 

R 
etc. 
3 Source code for performing this procedure is available by emailing the au- 

thor(s). 

A  

B  
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We present this example in the spirit of writing down one of

he simplest nontrivial models that illustrates the procedure. One

eakness of the above structure, which is really a weakness of the

ormal-Inverse Gamma family, is that the model does not prop-

rly capture the negative correlation which exists between return

nd volatility; higher volatility states of the world are empirically

bserved to coincide with states of the world in which risk assets

uch as equities experience negative returns. 

. Conclusions 

We live in an exciting era characterized by rapid advances in

tatistical inference techniques, often driven by corresponding ad-

ances in machine learning and the need to analyze ever larger

nd more complex data sets. Many of the associated inference

nd model selection techniques can be naturally understood in

 Bayesian context. For example, the Lasso ( Tibshirani, 1996 ) is

quivalent to Bayesian regression with a Laplace prior. In light of

hese developments, we believe that the coming decades will, in-

reasingly, see instances of Bayesian statistical models being used

o model asset returns in empirical finance. See Rachev, Hsu,

agasheva, and Fabozzi (2008) and Kolm, Tütüncü, and Fabozzi

2014) for surveys of the field. 

Many practical problems now require inference in “data scarce”

ituations where the number of parameters may greatly exceed the

umber of observations. Black–Litterman optimization with a small

umber of views is one such problem. 

Any Bayesian statistical model of asset returns, together with a

tility function of final wealth in the sense of Arrow (1971) and

ratt (1964) , gives rise to an associated Black–Litterman–Bayes op-

imization procedure. Key to the generality of this procedure is

hat θ can be any vector of parameters appearing in a statistical

odel for asset returns, and need not be simply a parameter rep-

esenting the mean return. Section 3 also shows that our Black–

itterman–Bayes generalization is itself a special case of a Bayesian

etwork in the sense of Pearl (2014) . 

In the examples to Section 3 we show that the Arbitrage Pric-

ng Theory of Ross (1976) , which has become central to the entire

ractice of quantitative trading, has a natural Bayesian extension

nd we write down the associated Black–Litterman–Bayes optimal

ortfolio. We also discuss the main two types of priors which are

elevant to this kind of model: data-driven priors and benchmark-

ptimal priors. 

In the process we hope to have clarified the precise sense in

hich the original model of Black and Litterman (1992) ; 1991 ) is

Bayesian.” Usually, in Bayesian statistics, the likelihood function

lays the essential role of connecting the empirical data to the pa-

ameters. The structure of the experimental design must be en-

oded in the likelihood function (which is why the matrix in a re-

ression is called the “design matrix.”) 

In Black–Litterman type models, the likelihood is not re-

lly what connects the parameters to empirical data, unless we

roaden the definition of “empirical data” to include data on port-

olio managers’ views. We reconcile this by regarding portfolio

anagers’ views as (possibly very noisy) observations of the fu-

ure, and as such, operationally no different from empirical data

btained through a very unreliable measuring device. 
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