
Cutting edge: Asset management

Multiperiod portfolio selection and
Bayesian dynamic models
Techniques inspired by Bayesian statistics provide a solution to the classic investment problem of optimally planning a
sequence of trades in the presence of transaction costs, according to Petter Kolm and Gordon Ritter

P
lanning a sequence of trades extending into the future is a
very common problem in finance. All trading is costly, and
the need for intertemporal optimisation is more acute when

trading costs are considered. The total cost due to market impact is
known to be superlinear as a function of the trade size (Almgren et al
(2005) measured an exponent of about 0:6 for impact itself, hence 1:6

for total cost), implying a large order may be more efficiently executed
as a sequence of small orders. Indeed, optimal liquidation paths had
already been studied by Almgren & Chriss (1999) under an idealised
linear impact model, leading to quadratic total cost.

A similar, but more complex, problem is faced by the discretionary
trader, who can set the time horizon and wait to deploy an alpha strategy
until there is a trading path with favourable expected utility. Further,
the drivers of demand for trading may differ vastly at different hori-
zons. Disagreement among alpha models defined at various horizons
is, in fact, commonplace in quantitative trading. Gârleanu & Peder-
sen (2013) studied the multiperiod quantitative-trading problem under
the somewhat restrictive assumptions that the alpha models follow
mean-reverting dynamics and that the only sources of trading frictions
are purely linear market impacts (leading to purely quadratic impact-
related trading costs).

A third problem, related to the first two, is the practicality of hedg-
ing derivatives contracts when the trading cost of dynamic offsetting
replicating portfolios is taken into account. This problem is routinely
faced by the office of the chief investment officer at an investment
bank, which must balance risk with the cost of trading a large hedging
position.

In this paper we present a general framework that encompasses all
of these types of problems and establishes an intuitively appealing
link to the theory of Bayesian statistics. Intuition is most valuable
when it is also useful, however, and perhaps the best feature of our
framework is that intuition leads to a straightforward algorithm for
solving the problem. This algorithm applies to the realistic case when
market impact is nonlinear and overall trading costs may not even be
differentiable, and there are real-world portfolio constraints.

Intuition and a probabilistic view
We now place ourselves in the position of a rational agent planning a
sequence of trades beginning presently and extending into the future.
Specifically, a trading plan for the agent is modelled as a specific
portfolio sequence x D .x1; x2; : : : ; xT /, where xt is the portfolio
the agent plans to hold at time t in the future. If rtC1 is the vector
of asset returns over Œt; t C 1�, then the trading profit (ie, difference
between initial and final wealth) associated with the trading plan x is
given by:

�.x/ D
X

t

ŒxT
t rtC1 � ct .xt�1; xt /� (1)

where ct .xt�1; xt / is the total cost (including but not limited to market
impact, spread pay, borrowing costs, ticket charges, financing, etc.)
associated with holding portfolio xt�1 at time t � 1 and ending up
with xt at time t .

Trading profit �.x/ is a random variable since many of its compo-
nents are future quantities unknowable at time t D 0. The distribution
of �.x/ need not be normal, and we do not assume normality in this
paper. However, a number of important calculations are only tractable
if we assume the investor’s utility function can be approximated by the
first two terms in its Taylor series. Thus the problem we treat initially
is that of maximising u.x/ where:

u.x/ WD EŒ�.x/� � .�=2/VŒ�.x/� (2)

where � > 0 is the risk-aversion parameter. Just after Intuition 1
below, we discuss how our framework can be applied to more general
problems that transcend (2).

We often refer to a planned portfolio sequence x D .x1; x2;

: : : ; xT / simply as a ‘path’. Similarly, we sometimes refer to (2) as
the ‘utility of the path x’, while remembering the more complex link
to utility theory noted above. Our task, in this simpler language, is to
find the maximum-utility path x� D arg maxx u.x/.

Combining (1) with (2), and defining ˛t WD EŒrtC1� and ˙t WD
VŒrtC1�, we have:

u.x/ D
X

t

�
xT

t ˛t � �

2
xT

t ˙t xt � ct .xt�1; xt /

�
(3)

Neglecting terms that do not depend on x, the first two terms of (3)
are (up to a sign) equivalent to:

b�˙t
.xt ; yt / WD 1

2
.yt � xt /T�˙t .yt � xt / (4)

where:
yt WD .�˙t /�1˛t (5)

The latter is a classic mean-variance portfolio, which is known to be the
solution to a myopic problem without costs or constraints, and b�˙t

measures variance of the tracking error. Then up to x-independent
terms:

u.x/ D �
X

t

Œb�˙t
.xt ; yt /C ct .xt�1; xt /� (6)

In any multiperiod optimisation problem with transaction costs, one
can always ask what the solution would be in an ideal world without
transaction costs or, equivalently, at the limit as costs tend to zero. We
call this solution the ideal sequence, and always denote it by yt .

Intuition 1 Multiperiod portfolio optimisation is mathematically
equivalent to optimally tracking a sequence yt , called the ideal
sequence, which is the portfolio sequence that would be optimal in
a transaction-cost–free world.
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The general guiding principle, expressed as Intuition 1, extends
beyond the case in which the ideal sequence is .�˙t /�1˛t and, indeed,
beyond the case in which yt has a clean derivation from a utility func-
tion. For computing optimal liquidation paths in the spirit of Alm-
gren & Chriss (1999), the ideal sequence is clearly yt D 0 for all t .
For hedging exposure to derivatives, yt should be our expectation of
the offsetting replicating portfolio at all future times until expiration.
Tracking the portfolios of Black & Litterman (1992) is also a special
case of our framework in which yt is the solution to a mean-variance
problem with a Bayesian posterior distribution for the expected returns.
Since the posterior is Gaussian in the original Black-Litterman model,
the two-moment approximation to utility is exact, and one simply
replaces ˛t and ˙t with the appropriate quantities.

In practice, investors’ utility functions may depend on higher
moments (skewness, kurtosis) or partial moments of the distribution of
final wealth (Zakamouline & Koekebakker 2009). Optimal portfolio
selection in this case is a hard problem, even without transaction costs,
as the objective function need not be convex. Suppose, however, that
an investor with such a utility function has decided on the trading path
y D .yt / to follow in an ideal world without trading costs. Presum-
ably this has been accomplished via solving a difficult four-moment
or mean-conditional-value-at-risk optimisation problem. Once y has
been determined, we may proceed with the maximisation of (6) for
the purpose of tracking y in a cost-efficient manner. As we shall see,
the quadratic distance function b�˙t

in (6) may be replaced with any
smooth, convex function of its arguments and the optimisation tech-
nology we discuss later will still apply.

For our next piece of intuition, consider the random process model
for x D .x1; x2; : : : ; xT / given by:

p.x/ D 1

Z
exp.�u.x//; Z WD

Z
exp.u.�x// dx (7)

for an arbitrary constant � > 0. In realistic models, Z is always finite.
Optimising expected utility is then equivalent to predicting the most

likely action of a randomly acting agent whose actions are probability-
weighted by (7). We will refer to this agent as the random trader.

If u.x/ is of the form (6) for any ideal sequence yt , then p.x/

naturally has a product form:

p.x/ D
Y

t

p.yt j xt /p.xt j xt�1/ (8)

where:

p.yt j xt / / exp.��b�˙t
.xt ; yt // (9)

p.xt j xt�1/ / exp.��ct .xt�1; xt // (10)

In fact, (8) should remind us of random process models we have seen
before in other contexts.

Intuition 2 The process model of the random trader is a hidden
Markov model (HMM). The optimal trading path is the most likely
sequence of hidden states, conditional on the ideal path y D
.y1; : : : ; yT /.

An HMM is based on a pair of coupled stochastic processes .Xt ; Yt /

in which Xt is Markov and is never observed directly. Information

about Xt can only be inferred by means of Yt , which is observable
and ‘contemporaneously coupled’, meaning that Yt is coupled to Xt

but not to Xs for s ¤ t . This coupling has a stochastic component and
the conditional probability p.Yt j Xt / is known to us, along with the
transition probability p.Xt j Xt�1/ of the hidden process. These two
types of terms will turn out to be exactly what we need to model the
multiperiod portfolio problem.

In a given optimisation problem, trading paths x of the random
trader will be modelled as realisations of the Markov process Xt , and
the ideal sequence y D .yt / will correspond to a realisation of the
observable Yt . The random trader’s process model, called simply p.x/

above, is actually the density of x conditional on the ideal sequence
y , denoted by p.x j y/. The most likely realisation of Xt conditional
on y is the true optimal sequence in the presence of trading costs.

The Markov property and the assumption that Yt has only contem-
poraneous coupling to Xt together imply:

p.x j y/ D
Y

t

p.yt j xt /p.xt j xt�1/ (11)

Any factorisation of a joint density can be represented graphically in
a way that highlights conditional dependence relations. From each
variable, we draw arrows to any other variables conditioned on that
variable in the given factorisation. The graph for (11) is:

yt ytC1

� � � �� xt
p.xtC1jxt /

��

p.yt jxt /

��

xtC1

p.ytC1jxtC1/

��

�� � � �
(12)

Such graphical models are often referred to as Bayesian networks.
Taking logs, (11) becomes:

log p.x j y/ D
X

t

Œlog p.yt j xt /C log p.xt j xt�1/� (13)

Logical reasoning about the structure of the terms in (13) reveals the
economic aspects of the utility function to which they must correspond.
The term log p.xt j xt�1/ is the only term that couples xt with its
predecessor, xt�1, so this term must account for all trading frictions. In
other words, up to the normalisation constant that makes p.xt j xt�1/

a density:
� log p.xt j xt�1/ D ct .xt�1; xt / (14)

Similarly, log p.yt j xt / is the only term that couples yt and xt , and
so it must model the utility from ‘closeness’ or ‘proximity’ to y . Since
this term only concerns a single moment in time, it could not possibly
model anything related to portfolio transitions. Defining b.xt ; yt / as
the total disutility related to not tracking yt exactly, we are led to:

� log p.yt j xt / D b.xt ; yt / (15)

Relations (14)–(15) mirror the relations seen above in (9)–(10), but
they hold in greater generality as they need not come from an explicit
utility function.

We conclude this section by showing how our framework handles
two important extensions: statistical uncertainty in parameter estima-
tion and portfolio constraints.
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The parameter estimates (or distributional inferences) that go into
return forecasts, ˛t , and risk forecasts, ˙t , are subject to estimation
error. Out-of-sample variance depends on the precision of parameter
estimates. Fortunately, this type of variance is easily handled by stan-
dard Bayesian methods. One must compute (2) with respect to a differ-
ent probability measure – ie, compute E OpŒ�.x/� � .�=2/V OpŒ�.x/� –
where the mean and the variance must use the posterior predictive den-
sity Op for returns. Letting �t denote the full collection of all parameters
in our model for rt , and letting pt .�t / denote the posterior density of
�t in our Bayesian model after all data has been assimilated, the pre-
dictive density for rt is Opt .rt / WD R

pt .rt j �t /pt .�t / d�t and the
mean-variance investor must calculate E Op and V Op using rt � Opt .rt /.

A strength of the probabilistic framework is its conceptual handling
of constraints.

Intuition 3 Constraints are regions of path space with zero
probability.

For example, a long-only constraint simply means p.x/ D 0 if the
path x contains short positions. Practically, this means sampling from
p will never generate sample paths that are infeasible with respect to
the constraints and that the global maximum of p is always a feasible
path, if one exists.

Finding optimal paths: reduction of the multi-asset
case to the single-asset case
We consider the general case of N assets, N > 1, and show this
problem can be reduced to iteratively optimising single-asset paths; a
fact which greatly simplifies the computation and does not seem to be
widely known. We then solve the single-asset case in the next section.

We will make the fairly weak assumption that our notion of distance
b.xt ; yt / from the ideal sequence yt is a function that is convex and
differentiable. These conditions are satisfied by the positive-definite
quadratic form:

.yt � xt /T.�˙t /.yt � xt / DW b�˙t
.xt ; yt / (16)

considered above and many other distance functions.
We assume trading costs can be separated into a sum of differentiable

and non-differentiable terms. Total cost due to market impact in the
asset being traded has the form jıj1Cˇ , where ˇ � 0:6 (Almgren
et al 2005), and is thus differentiable. Hence it is also reasonable to
assume any cross-asset impact is also a differentiable term. Gârleanu
& Pedersen (2013) in their equation (3) propose c.ı/ / ıT �ı, where
� is a positive-definite matrix; this is, of course, differentiable.

We assume the non-differentiable part of trading cost is separable
in the sense that it is additive over assets:

ct .xt�1; xt / D
X

i

ci
t .xi

t�1; xi
t / (17)

where the superscript i always refers to the i th asset. For some types
of costs, such as commission or borrow costs, separation (17) is true
by construction. For spread pay, (17) is also reasonable; crossing the
spread to execute at the inside market in one asset should not neces-
sarily have an impact on the price of any other assets.

If the differentiable term (16) were also separable, we could opti-
mise each asset’s trading path independently without considering the
others, but we cannot: the differentiable term is usually not separable.
Intuitively, trading in any one asset could either increase or decrease
the tracking error variance, depending on the positions in the other
assets.

Since x D .x1; : : : ; xT / denotes a trading path for all assets, let
xi D .xi

1
; : : : ; xi

T
/ denote the projection of this path on to the i th

asset. Let ci .xi / denote the total cost of the i th asset’s trading path.
We require that each ci be a convex function on the T -dimensional
space of trading paths for the i th asset.1 Putting all of this together,
we want to minimise f .x/ D �u.x/, where:

f .x/ D b.y � x/C
X

i

ci .xi / (18)

b W convex, continuously differentiable

ci W convex, non-differentiable

Consider the following blockwise coordinate descent (BCD) algo-
rithm. Choose an initial guess for x, and set i D 1. Iterate the following
until convergence.
� Optimise f .x/ over xi , holding xj fixed for all j ¤ i . Denote this
optimum by Oxi .
� Update x by setting the coordinates relevant to the i th asset, xi ,
equal to Oxi .
� If i D N , set i D 1; otherwise set i D i C 1.

Seminal work of Tseng (2001) shows that for f .x/ of the form
(18), under fairly mild continuity assumptions, any limit point of the
BCD iteration is a minimiser of f .x/. Note that for a generic non-
differentiable convex function, there is no reason to expect BCD to
find the global minimum and it is trivial to construct examples where
it fails to do so for almost any starting point. The key assumption
that makes this algorithm work is that ‘the non-differentiable part is
separable’, as in (18).

Intuition 4 The globally optimal multi-asset trading path x can
be found by treating each asset in turn, keeping positions in the others
fixed. Each single-asset optimal path is immediately incorporated into
x before proceeding to the next asset.

If b.y � x/ is a quadratic function, such as (16) summed over t ,
then it projects to a lower-dimensional quadratic when xj .j ¤ i/ are
held fixed and xi alone is allowed to vary. In this case, each iteration
calls for minimising q.xi / C ci .xi / where q.xi / is quadratic. This
subproblem is, mathematically, a single-asset problem, and yet the
coefficients of the quadratic function q.xi / depend on the rest of the
portfolio. This is as it should be. Intuitively, increasing holdings of the
i th asset could increase the portfolio risk, or it could actually reduce
the portfolio risk if the i th asset is a hedge. One needs to at least
know the risk exposures of the rest of the portfolio when performing
optimisation for the i th asset’s trading path.

1 This is true for a wide variety of cost functions that have been considered.
For example, the model of Kyle & Obizhaeva (2011) has this property, as
does borrow cost, market impact as inAlmgren et al (2005), and piecewise-
linear functions, etc.
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Finding optimal paths: one asset, multiple periods
Now let us consider the multiperiod problem for a single asset, in
which case the ideal sequence y D .yt / and the optimal holdings (or
equivalently, hidden states) x D .xt / are both univariate time series.
Since the multiperiod many asset problem can be reduced to iteratively
solving a sequence of single-asset problems, the methods we develop
in this section are important even if our main interest is in multi-asset
portfolios.

Certain special cases lend themselves to treatment by fast special-
purpose optimisers. For example, if all of the terms in (13) happen to
be quadratic (ie, logs of Gaussians) and there are no constraints, then
the associated HMM is a linear-Gaussian state space model and the
appropriate tool is the Kalman smoother. If the state space is contin-
uous, and if the objective function and all constraints are convex and
differentiable, then modern convex solvers apply.

A very important class of examples arises when there are no con-
straints, but the cost function is a convex and non-differentiable func-
tion of the difference ıt WD xt � xt�1. This allows for non-quadratic
terms, as in Almgren et al (2005), and non-differentiable terms such
as Kyle & Obizhaeva’s (2011) spread term. In this case we can use
Tseng’s theorem again, applied to trades rather than positions. Writing
xt D x0 CPt

sD1 ıs the utility function becomes:

u.x/ D �
X

t

�
b

�
x0 C

tX
sD1

ıs ; yt

�
C ct .ıt /

�
(19)

We then perform coordinate descent over the trades ı1; ı2; : : : ; ıT ,
using a warm start from a previous optimisation if one is available.
Equation (19) satisfies the convergence criteria of Tseng (2001) that
the non-differentiable term is separable across time while the non-
separable term is differentiable.

We now present a general-purpose method that is slower than the
one just described, because it is a Monte Carlo statistical method, but
which works for absolutely any cost function (irrespective of differen-
tiability, convexity or other concerns) and any constraints that can be
expressed as single-asset constraints. It handles cases where a discrete
solution is actually preferred over a continuous one, such as when trad-
ing is desired to be in round lots. This method is based on the HMM
representation (11), (12) and (13).

Stocks and most other assets trade in integer multiples of a fun-
damental unit, so the state space is finite, but so large that it is well
approximated by a continuous one. Nonetheless, a finite state space
could be a useful tool. If the state space were finite, we could follow
standard practice for finding the most likely state sequence in a finite
HMM, which is to use the ingenious algorithm due to Viterbi (1967).

Viterbi’s algorithm is general enough to allow the set of available
states to change through time. Let St denote the (finite) state space at
time t . First, run through time in the forward direction, calculating for
each time t and every state xt 2 St the probability vt .xt / of the most-
probable state sequence ending in state xt after t steps. Calculation
of vt .xt / is done recursively, noting any sequence ending in state xt

can be broken up into a subsequence of t � 1 steps (ending, say, at
xt�1) plus a transition from xt�1 to xt . By the optimality principle
of Bellman (1957), the subsequence contributing to vt .xt / must have

been the most probable sequence ending at xt�1 in t � 1 steps, so its
probability is vt�1.xt�1/. Hence, for every xt 2 St , compute:

vt .xt / D max
xt�1

Œp.xt j xt�1; yt /vt�1.xt�1/� (20)

and save the state which achieved the maximum for later use. The
endpoint of the optimal sequence is then x�

T
D arg maxxT

vT .xT /.
Finally, backtrack from x�

T
using the states saved in the previous step

to recursively find the full optimal sequence.
Equation (20) is essentially the Bellman equation. For numerical

stability one typically works with log-probability. Taking logs trans-
forms (20) to an additive form in which log vt .xt / is Bellman’s value
function.

If K D maxt jSt j is the maximal number of states, the time and
space requirements of the Viterbi algorithm are both O.K2T /, which
means we need to control K by working in a judiciously chosen smaller
state space, yet we must ensure a good approximation to the optimal
path can still be found in this smaller state space. This is precisely what
sampling from p.x/ accomplishes, because it typically generates paths
in the region of path space near the mode, where most of the probability
mass is located, and we are free to tune the arbitrary constant � in (7)
to achieve reasonable coverage of the relevant region of path space.
The union of all points comprising all of the paths sampled from p.x/

is the smaller state space we need.
In fact, sampling from p.x/ is much easier than sampling from a

generic KT -dimensional density because the structure of (11) allows
the use of sequential Monte Carlo (SMC) methods. The nonlinear
filtering technique based on SMC is known as the particle filter (for
details see Doucet & Johansen (2009) and references therein).

Intuition 5 If we draw a sufficient number of sample paths from
the density p.x/, then the union of the points in all of those paths
is a discretisation of the region of path space near the optimal path.
Applying theViterbi algorithm to this ‘smaller state space’gives a good
approximation of the optimal path, which becomes a better approxi-
mation as more sample paths are added.

Godsill, Doucet & West (2001) proved the algorithm suggested by
Intuition 5 converges to the most likely hidden state sequence, ie, the
mode of p.x j y/. This algorithm works in part because the Viterbi
algorithm has full freedom to choose any path through the set of points
formed as the union of the Monte Carlo samples.

As a proof of concept, we study optimal trading with a stylised
alpha term structure (specified explicitly below), and a cost function
that provides a realistic model of impact and spread. We chose the
model of Kyle & Obizhaeva (2011) for this example because it is
theoretically justified by basic microstructure invariance assumptions,
and it was fit to a large data set of portfolio transitions, hence it also
has empirical support.

For simplicity, we assume the asset being traded is the ‘benchmark
asset’, which Kyle & Obizhaeva (2011) use to centre their model. This
asset has price P D 40, daily volatility of � D 0:02, and average
daily volume V D 106 shares. When using the reference asset, the
Kyle-Obizhaeva cost function simplifies to:

ct .ıt / D �1jıt j C �2ı2
t =.0:01P V / (21)
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where we take �1 D 2:89 � 10�4 and �2 D 7:91 � 10�4. With these
parameter settings, the cost to trade 1% of the average daily volume
is 10.8 basis points of the trade size. We assume an initial holding of
x0 D 0 and take � D 10�5 as our risk aversion parameter. Our stylised
alpha term structure is a simple sum of two exponential-decay curves:
model 1 is initially 25bp, with a half-life of four periods, while model 2
is initially�40bp with a shorter half-life of two periods. Adding these
two models produces a term structure that is negative, then positive,
then decays to almost zero within about 20 periods.

It is tempting to wonder whether a purely quadratic approximation
to cost (ie, �1 D 0 and some other value of �2) might suffice since
such a problem could be easily solved by the Kalman smoother. How-
ever, such approximations can be misleading. Consider the class of
problems with the same yt , � and ˙t as in the numerical example
above, but with purely quadratic costs; call this the ‘quadratic class’.
We propose that no solution in the quadratic class is particularly close
to the solution that globally optimises true utility (ie, utility computed
with the non-quadratic cost function) and the closest is the blue line
shown in figure 1.

The best possible Kalman path (blue line) places a larger number
of trades than the Viterbi path (red line), but the individual trades are
smaller. This is because the purely quadratic approximation is over-
estimating the cost of large trades and under-estimating the true cost
of small trades relative to (21), which happens to be closer to linear in
the region of interest. The absolute-value term in (21) allows sparse
solutions, as is familiar from elastic-net regression. The particle filter
and subsequent Viterbi estimation ran in a few seconds on a notebook
computer.

Conclusions
The framework presented here renders multiperiod optimisation and
multiperiod tracking problems computationally accessible, even with
realistic costs such as bid-ask spread pay and nonlinear market impact.
One of the more striking conclusions is that a sequence of single-asset
trading path optimisations provably converges to the globally optimal
multi-asset solution.
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The blue line (‘Kalman’) is the solution to a quadratic-cost problem
which has the highest true-utility among all solutions to all
quadratic-cost problems with the same yt ; �˙t . The red line (‘Viterbi’)
is the path which optimises true-utility over all possible paths

In our view, the main limitations of the model are as follows.We treat
the trading cost as non-stochastic, whereas in a real quantitative trading
scenario, a meaningful part of the volatility (and higher moments) may
arise from randomness in realised trading costs (or ‘slippage’). Liq-
uidity events such as that in August 2007, and the subsequent return of
liquidity, provide empirical evidence that realised slippage has mean-
ingful left and right tails. The model as presented here does not take
into account investors’ aversion to such higher moments.

In a related limitation, the model is formulated as if we expect to
completely fill each order. Hence it does not attempt to find the optimal
solution for a passive execution strategy in which order fill percentages
are stochastic. This is of great interest, however, as passive strategies
typically pay lower costs on the orders that are filled. These represent
exciting directions for future research. R
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