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Abstract: We give a mathematical construction of Euclidean quantum field theory on
certain curved backgrounds. We focus on generalizing Osterwalder Schrader quantiza-
tion, as these methods have proved useful to establish estimates for interacting fields
on flat space-times. In this picture, a static Killing vector generates translations in
Euclidean time, and the role of physical positivity is played by positivity under reflec-
tion of Euclidean time. We discuss the quantization of flows which correspond to clas-
sical space-time symmetries, and give a general set of conditions which imply that
broad classes of operators in the classical picture give rise to well-defined operators
on the quantum-field Hilbert space. In particular, Killing fields on spatial sections give
rise to unitary groups on the quantum-field Hilbert space, and corresponding densely-
defined self-adjoint generators. We construct the Schrödinger representation using a
method which involves localizing certain integrals over the full manifold to integrals
over a codimension-one submanifold. This method is called sharp-time localization,
and implies reflection positivity.

Introduction

This article presents a construction of a Euclidean quantum field theory on time-inde-
pendent, curved backgrounds. Earlier work on field theories on curved space-time
(Kay [33], Dimock [14], Bros et al. [7]) uses real-time/Lorentzian signature and alge-
braic techniques reminiscent of P(ϕ)2 theory from the Hamiltonian point of view
[22]. In contrast, the present treatment uses the Euclidean functional integral [23] and
Osterwalder-Schrader quantization [38, 39]. Experience with constructive field theory
on R

d shows that the Euclidean functional integral provides a powerful tool, so it is
interesting also to develop Euclidean functional integral methods for manifolds.

Euclidean methods are known to be useful in the study of black holes, and a stan-
dard strategy for studying black hole (BH) thermodynamics is to analytically continue
time in the BH metric [10]. The present paper implies a mathematical construction of
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scalar fields on any static, Euclidean black hole background. The applicability of the
Osterwalder-Schrader quantization procedure to curved space depends on unitarity of
the time translation group and the time reflection map which we prove (Theorem 2.5). The
Osterwalder-Schrader construction has universal applicability; it contains the Euclidean
functional integral associated with scalar boson fields, a generalization of the Berezin
integral for fermions, and a further generalization for gauge fields [2]. It also appears
valid for fields on Riemann surfaces [28], conformal field theory [17], and may be appli-
cable to string theory. The present paper extends this construction to models on curved
backgrounds.

Our paper has many relations with other work. Wald [42] studied metrics with
Euclidean signature, although he treated the functional integral from a physical rather
than a mathematical point of view. Brunetti et al [8] developed the algebraic approach
(Haag-Kastler theory) for curved space-times and generalized the work of Dimock [13].
They describe covariant functors between the category of globally hyperbolic space-
times with isometric embeddings, and the category of ∗-algebras with unital injective
∗-monomorphisms.

The examples studied in this paper—scalar quantum field theories on static space-
times—have physical relevance. A first approximation to a full quantum theory (involv-
ing the gravitational field as well as scalar fields) arises from treating the sources of
the gravitational field classically and independently of the dynamics of the quantized
scalar fields [6]. The weakness of gravitational interactions, compared with elementary
particle interactions of the standard model, leads one to believe that this approximation
is reasonable. It exhibits nontrivial physical effects which are not present for the scalar
field on a flat spacetime, such as the Hawking effect [25] or the Fulling-Unruh effect
[41]. Density perturbations in the cosmic microwave background (CMB) are calculated
using scalar field theory on certain curved backgrounds [35]. Further, Witten [45] used
quantum field theory on Euclidean anti-de Sitter space in the context of the AdS/CFT
correspondence [24, 36].

Some of the methods discussed here in Sect. 2 have been developed for the flat case
in lecture courses; see [27].

Notation and conventions. We use notation, wherever possible, compatible with stan-
dard references on relativity [44] and quantum field theory [23]. We use Latin indices
a, b = 0 . . . d − 1 for spacetime indices, reserving Greek indices µ, ν = 1 . . . d − 1 for
spatial directions. We include in our definition of ‘Riemannian manifold’ that the under-
lying topological space must be paracompact (every open cover has a locally finite open
refinement) and connected. The notation L2(M) is used when M is a C∞ Riemannian
manifold, and implicitly refers to the Riemannian volume measure on M , which we
sometimes denote by dvol. Also U(H) denotes the group of unitary operators on H. Let
G = I (M) = Iso(M) denote the isometry group, while K is its Lie algebra, the global
Killing fields. Forψ a smooth map between manifolds, we useψ∗ to denote the pullback
operator (ψ∗ f )(p) = f (ψ(p)). The notation∆ = ∆M means the Laplace operator for
the Riemannian metric on M .

1. Reflection Positivity

1.1. Analytic continuation. The Euclidean approach to quantum field theory on a curved
background has advantages since elliptic operators are easier to deal with than hyper-
bolic operators. To obtain physically meaningful results one must perform the analytic
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continuation back to real time. In general, Lorentzian spacetimes of interest may not
be sections of 4-dimensional complex manifolds which also have Riemannian sections,
and even if they are, the Riemannian section need not be unique. Thus, the general pic-
ture of extracting physics from the Euclidean approach is a difficult one where further
investigation is needed.

Fortunately, for the class of spacetimes treated in the present paper (static spacetimes),
the embedding within a complex 4-manifold with a Euclidean section is guaranteed, and
in such a way that Einstein’s equation is preserved [11].

1.2. Time reflection. Reflection in Euclidean time plays a fundamental role in Euclidean
quantum field theory, as shown by Osterwalder and Schrader [38, 39].

Definition 1.1 (Time reflection). Let M be a Riemannian manifold. A time reflection
θ : M → M is an isometric involution which fixes pointwise a smooth codimension-one
hypersurface Σ . This means that θ ∈ Iso(M), θ2 = 1 and θ(x) = x for all x ∈ Σ .

We now discuss time reflection for static manifolds, which is the example that we
will study in this paper.

Example 1.1 (Static manifolds). Suppose there exists a globally defined, static Killing
field ξ . Fix a hypersurface Σ ⊂ M to which ξ is orthogonal. Define a global function
t : M → R by setting t = 0 onΣ , and otherwise define t (p) to be the unique number t
such that φt (x) = p for some x ∈ Σ , where {φt } is the one-parameter group of isome-
tries determined by ξ . Finally, define θ to map a point p ∈ M to the corresponding point
on the same ξ -trajectory but with t (θ(p)) = −t (p). This defines a decomposition

M = Ω− ∪Σ ∪Ω+, θΩ± = Ω∓, θΣ = Σ. (1.1)

In past work [28], we have considered time-reflection maps which fall outside the
bounds of Example 1.1 ([28] applies to compact Riemann surfaces, which cannot support
Killing fields), but we will not do so here.

The time-reflection map given by a hypersurface-orthogonal Killing field is not
unique, but depends on a choice of the initial hypersurface, which we fix. The ini-
tial hypersurface will be used to define time-zero fields. Reflection of the Euclidean
time coordinate t → −t analytically continues to Hermitian conjugation of e−i t H .

1.3. Fundamental assumptions. Let C = (−∆ + m2)−1 be the resolvent of the Lapla-
cian, also called the free covariance, where m2 > 0. Then C is a bounded self-adjoint
operator on L2(M). For each s ∈ R, the Sobolev space Hs(M) is a real Hilbert space,
which can be defined as completion of C∞

c (M) in the norm

‖ f ‖2
s = 〈 f,C−s f 〉. (1.2)

We work with test functions in H−1(M). This is a convenient choice for several
reasons: the norm (1.2) with s = −1 is related in a simple way to the free covariance,
and further, Dimock [15] has given an elegant proof of reflection positivity for Sobolev
test functions. Another motivation is as follows. Suppose we wish to prove that ϕ(h) is a
bounded perturbation of the free Hamiltonian H0 for a scalar field on R

d . The first-order
perturbation is

−〈Ω1, H0Ω1〉 = −1

2

∫ |ĥ( p)|2
ω( p)2

d p, (1.3)
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where we used Ω1 = −H−1
0 ϕ(h)Ω . Existence of (1.3) is equivalent to h ∈ H−1(R

d),
so this is a natural condition for test functions. Therefore we choose H−1(M) for the
generalization to curved manifolds.

The Sobolev spaces give rise to a natural rigging, or Gelfand triple, and various
associated Gaussian measures [18, 40]. The inclusion Hs+k ↪→ Hs for k > 0 is
Hilbert-Schmidt, so the spaces

H∞ ≡
⋂

s

Hs(M) ⊂ H−1(M) ⊂
⋃

s

Hs(M) ≡ H−∞

form a Gelfand triple, and H∞ is a nuclear space. There is a unique Gaussian measure
µ defined on the dual H−∞ with covariance C . This means that

S( f ) ≡
∫

H−∞

eiΦ( f ) dµ(Φ) = e− 1
2 〈 f,C f 〉, f ∈ H∞.

Define

E := L2(H−∞, µ).

The space E is unitarily equivalent to Euclidean Fock space over H−1(M) (see for exam-
ple [40, Theorem I.11]). The algebra generated by monomials of the formΦ( f1) . . . Φ( fn)

is dense in E . This is a special case of a general construction discussed in the reference.

Definition 1.2 (Standard domain). For an open setΩ ⊆ M, the standard domain in E
corresponding to Ω is:

EΩ = span{eiΦ( f ) : f ∈ H−1(M), supp( f ) ⊂ Ω}.
Let EΩ denote the closure in E of EΩ .

Definition 1.2 refers to subspaces of E generated by functions supported in an open
set. This includes empty products, so 1 ∈ EΩ for any Ω . Of particular importance for
Euclidean field theory is the positive-time subspace

E+ := EΩ+ ,

where the notation Ω+ refers to the decomposition (1.1). A linear operator on E which
maps E+ → E+ is said to be positive-time invariant.

1.4. Operator induced by a diffeomorphism. We will consider the effect which diffe-
omorphisms of the underlying spacetime manifold have on the Hilbert space opera-
tors which arise in the quantization of a classical field theory. For f ∈ C∞(M) and
ψ : M → M a diffeomorphism, define

f ψ ≡ ψ∗ f = (ψ−1)∗ f = f ◦ ψ−1. (1.4)

The reason for using ψ−1 here is so that Definition 1.3 gives a group representation.
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Definition 1.3 (Induced operator). Letψ be a diffeomorphism, and A(Φ)=Φ( f1) . . . Φ

( fn) ∈ E a monomial. Define

Γ (ψ) : A : ≡ : Φ( f1
ψ) · · ·Φ( fn

ψ) : . (1.5)

This extends linearly to a dense domain in E . We refer to Γ (ψ) as the operator induced
by the diffeomorphism ψ .

Note that if ψ is an isometry, then (1.5) is equivalent to the definition Γ (ψ)A ≡
Φ( f1

ψ) . . . Φ( fn
ψ) without Wick ordering, as follows from (1.8) below.

The induced operators Γ (ψ) are not necessarily bounded on E . In fact, for a general
diffeomorphism ψ , the operator ψ∗ may fail to be bounded on L2(M) or H−1(M). If
the Jacobian |dψ | satisfies uniform upper and lower bounds, i.e.

(∃ c1, c2 > 0) c1 < sup
x∈M

|dψx | < c2, (1.6)

then (ψ−1)∗ is bounded on L2(M), but Γ (ψ)may still be unbounded on E , because the
operator norm ofΓ (ψ) on the degree-n subspace of E may fail to have a limit as n → ∞.
In this situation, Γ (ψ) is to be regarded as a densely-defined unbounded operator whose
domain includes all finite particle vectors.

If (ψ−1)∗ is a contraction on H−1(M), then Γ (ψ) is a contraction on E (in particular,
bounded). A special case of this is ψ ∈ Iso(M), which implies that Γ (ψ) is unitary and
‖Γ (ψ)‖E = 1.

Lemma 1.1 (Naturalness property). Let ψ : M → M be a diffeomorphism, and con-
sider the pullback ψ∗ acting on L2(M), with its Hermitian adjoint (ψ∗)†. Then

det(dψ) = 1 ⇔ (ψ∗)† = (ψ−1)∗ ⇔ ψ is volume-preserving. (1.7)

Furthermore,

ψ ∈ Iso(M) ⇔ Γ (ψ) ∈ U(E) ⇔ [ψ∗,∆] = 0 ⇔ [ψ∗,C] = 0. (1.8)

The last part of (1.8) follows from [32, Theorem III.6.5], while the rest of the state-
ments in (1.7) and (1.8) are standard calculations. It follows that Γ restricts to a unitary
representation of G = Iso(M) on E .

For an open set Ω ⊂ M , define

Iso(M,Ω) = {ψ ∈ Iso(M) : ψ(Ω) ⊂ Ω},
and similarly Diff(M,Ω). These are not subgroups of Diff(M) but they are semigroups
under composition. If ψ ∈ Diff(M,Ω) we say ψ preserves Ω .

Lemma 1.2 (Presheaf property). Let ψ : U → V be a diffeomorphism, where U, V
are open sets in M. Let EU , EV be the corresponding standard domains (cf. Definition
1.2). Then

Γ (ψ)EU = EV .

In particular, ifψ : M → M preservesΩ ⊂ M, thenΓ (ψ) preserves the corresponding
subspace EΩ ⊂ E .
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For maps ψ : U → V which are subset inclusions U ⊆ V , Lemma 1.2 asserts that
the association U → EU is a presheaf. It also follows from Lemma 1.2 that the mappings
U → EU and ψ → Γ (ψ) define a covariant functor from the category of open subsets
of M with invertible, smooth maps between them into the category of Hilbert spaces
and densely defined operators.

Lemma 1.2 implies that ifψ(Ω+) ⊂ Ω+ then Γ (ψ) is positive-time invariant. This is
necessary but not sufficient forΓ (ψ) to have a quantization. A sufficient condition is that
Γ (ψ) and ΘΓ (ψ)†Θ both preserve E+, where Θ = Γ (θ), as shown by Theorem 2.1.

1.5. Continuity results

Lemma 1.3 (Sobolev continuity). For the free covariance C = (−∆ + m2)−1,

{ f1, . . . , fn} �−→ A(Φ) := Φ( f1) . . . Φ( fn) ∈ E

is a continuous map from (H−1)
n → E , where we take the product of the Sobolev

topologies on (H−1)
n.

Proof. Since Φ is linear, it is sufficient to show that ‖A(Φ)‖E is bounded by
const.

∏
i ‖ fi‖−1. As a consequence of the Gaussian property of the measure dµC ,

one needs only bound the linear case. But

‖Φ( f )‖E =
∣∣∣
∫
(Φ( f )Φ( f )) dµC

∣∣∣1/2 = ‖ f ‖−1 . (1.9)

��
Theorem 1.1 (Strong continuity). Let {ψn} be a sequence of orientation-preserving
isometries which converge to ψ in the compact-open topology. Then Γ (ψn) → Γ (ψ)

in the strong operator topology on B(E).

The proof of Theorem 1.1 follows standard arguments in analysis. Let us give a sense
of how it is to be used. If all the elements of a certain one-parameter group of isometries
ψt are such that Γ (ψt ) have bounded quantizations, then t → Γ̂ (ψt ) defines a one-
parameter group of operators on H (the quantum-field Hilbert space). In this situation,
Theorem 1.1 justifies the application of Stone’s theorem. This picture is to be developed
in Sect. 2.

1.6. Reflection positivity

Definition 1.4. With θ as in Definition 1.1, let Θ = Γ (θ) be the induced reflection on
E . A measure µ on H−∞ is said to be reflection positive if

∫
Θ(F) F dµ ≥ 0 for all F ∈ E+ . (1.10)

A bounded operator T on L2(M) is said to be reflection positive if

supp f ⊆ Ω+ ⇒ 〈 f, θT f 〉L2(M) ≥ 0. (1.11)
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Reflection positivity for the measure µ is equivalent to the following inequality for
operators on E = L2(dµ):

0 ≤ Π+ΘΠ+,

where Π+ : E → E+ is the canonical projection.
A Gaussian measure with mean zero and covariance C is reflection positive iff C is

reflection positive in the operator sense, Eq. (1.11). An equivalent condition is that for any
finite sequence { fi } of real functions supported inΩ+, the matrix Mi j = exp 〈 fi , θC f j 〉
has no negative eigenvalues.

For Riemannian manifolds which possess an isometric involution whose fixed-point
set has codimension one, there is a simple potential-theoretic proof of reflection posi-
tivity [12]. The relation between reflection positivity and operator monotonicity under
change of boundary conditions for the Laplacian was discovered in [21]. A different
proof of reflection positivity on curved spaces was given by Dimock [15], based on
Nelson’s proof using the Markov property [37]. We give a third proof later in this paper
based on our sharp-time localization theorem. The result is summarized as follows.

Theorem 1.2 (Reflection positivity). Let M be a Riemannian manifold with a time
reflection. Then the covariance C = (−∆ + m2)−1 and its associated Gaussian mea-
sure are reflection positive.

2. Osterwalder-Schrader Quantization and the Feynman-Kac Formula

The Osterwalder-Schrader construction is a standard feature of quantum field theory.
It begins with a “classical” Euclidean Hilbert space E and leads to the construction of
a Hilbert space H = ΠE+, which is the projection Π of the Euclidean space E+. It
also yields a quantization map T �→ T̂ from a classical operator T on E to a quantized
operator T̂ acting on H. In this section we review this construction, dwelling on the
quantization of bounded operators T on E that may yield a bounded or an unbounded
quantization T̂ , as well as the quantization of an unbounded operator T on E . We give a
variation of the previously unpublished treatment in [27], adapted to curved space-time.

2.1. The Hilbert space. Define a bilinear form (A, B) on E+ by

(A, B) = 〈ΘA, B〉E for A, B ∈ E+ . (2.1)

Using self-adjointness of Θ on E , one can show that this form is sesquilinear,

(B, A) =
∫
ΘB A dµ =

(∫
BΘA dµ

)∗
= (A, B) . (2.2)

If θ is not an isometry, thenΘ is non-unitary in which case Osterwalder-Schrader quan-
tization is not possible. Therefore, it is essential that θ ∈ Iso(M). The form (2.1) is
degenerate, and has an infinite-dimensional kernel which we denote N . Therefore (2.1)
determines a nondegenerate inner product 〈 , 〉H onE+/N , making the latter a pre-Hilbert
space.
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Definition 2.1 (Hilbert space). The (Osterwalder-Schrader) physical Hilbert space H
is the completion of E+/N , with inner product 〈 , 〉H. Let Π : E+ → H denote the nat-
ural quotient map, a contraction mapping from A ∈ E+ to Â := Π A. There is an exact
sequence:

0 �� N incl. �� E+
Π �� �� H �� 0 .

2.2. Quantization of operators. Assume that T is a densely defined, closable operator
on E with domain D ⊂ E . Define T + := ΘT ∗Θ , and assume there exists a subdomain
D0 ⊂ D ∩ E+ on which T + is defined and for which both

T : D0 → E+, and T +: D0 → E+ . (2.3)

Theorem 2.1 (Condition for quantization). Assume that D̂0 := Π(D0) is dense in H.
Condition (2.3) ensures that T has a quantization T̂ with domain D̂0. Furthermore T̂ ∗
is defined, T̂ has a closure, and on D̂0, we have:

T̂ ∗ = T̂ + . (2.4)

Proof. First, we check that T̂ is well-defined. Suppose A ∈ N ∩ D0. Let B ∈ E+ range
over a set of vectors in the domain of ΘT ∗Θ such that the image of this set under Π is
dense in H. Then

0 = 〈(ΘT ∗ΘB
) ˆ , Â〉H = 〈T ∗ΘB, A〉E = 〈ΘB, T A〉E = 〈B̂, T̂ A〉H .

Thus T A ∈ N , and hence T is well-defined on D0/D0 ∩ N . To check (2.4) is a routine
calculation. ��

The main content of Theorem 2.1 can be expressed as a commutative diagram. For
bounded transformations, Theorem 2.1 simply means that if T : E+ → E+ and the dotted
arrow in the following diagram is well-defined, then so are the two solid arrows:

0 �� N incl. ��

T
��

E+
Π ��

ΘT ∗Θ
��

H

T̂
��

�� 0

0 �� N incl. �� E+
Π �� H �� 0

Lemma 2.1 (Contraction property). Let T be a bounded transformation on E such
that T and ΘT ∗Θ each preserve E+. Then T̂ is a bounded transformation on H and

‖T̂ ‖H ≤ ‖T ‖E . (2.5)

Proof. This proceeds by the multiple reflection method [23]. ��
We now discuss some examples of operators satisfying the hypotheses of

Theorem 2.1.

Theorem 2.2 (Self-adjointness). Let U be unitary on E , and U (E+) ⊂ E+. If U−1Θ =
ΘU then U admits a quantization Û and Û is self-adjoint. (Do not assume U−1 preserves
E+.)
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Proof. The operator ΘU∗Θ = Θ2U = U preserves E+, so Theorem 2.1 ⇒ U has a
quantization Û . Self-adjointness of Û follows from Eq. (2.4). ��
Theorem 2.3 (Unitarity). Let U be unitary on E , and U±1(E+) ⊂ E+. If [U,Θ] = 0
then U admits a quantization Û and Û is unitary.

Proof. The operator ΘU∗Θ = U∗ = U−1 preserves E+ by assumption, so U has a
quantization. Also, Θ(U−1)∗Θ = U preserves E+, so U−1 also has a quantization.
Obviously, the quantization of U−1 is the inverse of Û . Equation (2.4) implies that the
adjoint of Û is the quantization of ΘU∗Θ = U∗ = U−1. ��

Examples of operators satisfying the conditions of Theorems 2.2 and 2.3 arise from
isometries on M with special properties. We now discuss two classes of isometries,
which give rise to self-adjoint and unitary operators as above.

Example 2.1 (Reflected Isometries). An element ψ ∈ Iso(M) is said to be a reflected
isometry if

ψ−1 ◦ θ = θ ◦ ψ . (2.6)

If additionally ψ(Ω+) ⊆ Ω+ then Theorem 2.2 implies that Γ̂ (ψ) : H → H exists
and is self-adjoint. If ψ satisfies (2.6) then so does ψ−1; hence if ψ−1(Ω+) ⊆ Ω+, then
Γ (ψ−1) has a quantization and Γ̂ (ψ−1) is the inverse of Γ̂ (ψ).

Example 2.2 (Reflection-Invariant Isometries). A reflection-invariant isometry is an
element ψ ∈ Iso(M) that commutes with time-reflection, ψθ = θψ . It follows that
[Γ (ψ),Θ] = 0. If ψ and ψ−1 both preserve Ω+ then Γ (ψ±1)E+ ⊂ E+, and Theorem
2.3 implies that Γ̂ (ψ) : H → H is unitary. The set of reflection-invariant isometries
form a subgroup of the full isometry group.

2.3. Quantization domains. Quantization domains are subsets ofΩ+ which give rise to
dense domains in H after quantization. This is important for the analysis of unbounded
operators on H. For example, an isometry which satisfies (2.6) may only map a proper
subset O ⊂ Ω+ intoΩ+, and in this caseΓ (ψ) is only defined on a non-dense subdomain
of E+. If O is a quantization domain, then ΠEO may still be dense in H, and can serve
as a domain of definition for Γ̂ (ψ).

Definition 2.2. A quantization domain is a subspace Ω ⊂ Ω+ with the property that
Π (EΩ) is dense in H.

Example 2.3. Perhaps the simplest quantization domain is a half-space at times greater
than T > 0,

O+,T =
{

x ∈ R
d : x0 > T

}
. (2.7)

Let D+,T = EO+,T = Γ (ψT )E+ where ψT (x, t) = (x, t + T ); then Π(D+,T ) is dense
in H, as follows from Theorem 2.4.

Theorem 2.4 generalizes (2.7) to curved spacetimes, and also allows one to replace
the simple half-space O+,T with a more general connected subset of Ω+.
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Theorem 2.4 (Construction of quantization domains). Suppose that O := ψ(Ω+) ⊂
Ω+. If [Γ (ψ),Θ] = 0 or Γ (ψ)Θ = ΘΓ (ψ−1) (i.e. ψ is reflection-invariant or re-
flected) then O is a quantization domain.

Proof. By Lemma 1.2, we have

EO = Γ (ψ)E+ . (2.8)

Let Ĉ ∈ H be orthogonal to every vector Â ∈ Π(EO). Choose B ∈ E+ and let A :=
Γ (ψ)B ∈ EO. Then

0 = 〈Ĉ, Â〉H = 〈Ĉ,Π(Γ (ψ)B)〉H = 〈ΘC, Γ (ψ)B〉E .
Since Γ (ψ)−1 is unitary on E , apply it to the inner product to yield

〈Γ (ψ−1)ΘC, B〉E = 0 (∀ B ∈ E+).

Therefore Γ (ψ−1)ΘC is orthogonal (in E) to the entire subspace E+.
First, suppose that [Γ (ψ−1),Θ] = 0. Then we infer

0 = 〈ΘΓ (ψ−1)C, B〉E = 〈Γ̂ (ψ−1)Ĉ, B̂〉H (∀ B̂ ∈ Π(E+)),

i.e. Ĉ ∈ ker Γ̂ (ψ−1). Therefore,

(Π(EO))⊥ = ker Γ̂ (ψ−1). (2.9)

Since [Γ (ψ−1),Θ] = 0, Theorem 2.3 implies that Γ̂ (ψ) is unitary, hence the kernel
of Γ̂ (ψ−1) is trivial and Π(EO) is dense in H. We have thus completed the proof in
this case.

Now, assume that Γ (ψ)Θ = ΘΓ (ψ−1). Example 2.1 implies that Γ̂ (ψ) exists and
is self-adjoint on H, and moreover (by the same argument used above),

(Π(EO))⊥ = ker Γ̂ (ψ) .

Ifψ = ψt , where {ψs} is a one-parameter group of isometries, and if Γ̂ (ψt ) is a strongly
continuous semigroup, then by Stone’s theorem, Γ̂ (ψt ) = e−t K for K self-adjoint. Since
e−t K clearly has zero kernel, the proof is also complete in the second case. ��
Corollary 2.1. The set O+,T is a quantization domain.

The problem of characterizing all quantization domains appears to be open.

2.4. Construction of the Hamiltonian and ground state.

Theorem 2.5 (Time-translation semigroup). Let ξ = ∂/∂t be the time-translation
Killing field on the static spacetime M. Let the associated one-parameter group of isom-
etries be denoted φt : M → M. For t ≥ 0, U (t) = Γ (φt ) has a quantization, which
we denote R(t). Further, R(t) is a well-defined one-parameter family of self-adjoint
operators on H satisfying the semigroup law.
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Proof. Lemma 1.1 implies that U (t) is unitary on E , and it is clearly a one-parameter
group. Also,

φt ◦ θ = θ ◦ φ−t

and U (t)E+ ⊂ E+ for t ≥ 0, so this is a reflected isometry; see Example 2.1. Theorem
2.2 implies R(t) = Û (t) is a self-adjoint transformation on H for t ≥ 0, which satisfies
the group law

R(t)R(s) = R(t + s) for t, s ≥ 0

wherever it is defined. ��
Theorem 2.6 (Hamiltonian and ground state). R(t) is a strongly continuous contrac-
tion semigroup, which leaves invariant the vector Ω0 := 1̂. There exists a densely
defined, positive, self-adjoint operator H such that

R(t) = exp(−t H), and HΩ0 = 0.

Thus Ω0 is a quantum-mechanical ground state.

Proof. It is immediate that R(t)Ω0 = Ω0. The contraction property R(t) ≤ I follows
from the multiple reflection method, as explained in [23]. The remaining statements are
consequences of Stone’s theorem. ��

The operator H is the quantum mechanical generator (in the Euclidean picture) of
translations in the direction ξ . When ξ = ∂/∂t , then H is called the Hamiltonian. It is
immediate from the definition that Ω0 is also invariant under the quantizations of any
spacetime symmetries.

2.5. Feynman-Kac theorem.

Theorem 2.7 (Feynman-Kac). Let Â, B̂ ∈ H, and let H be the Hamiltonian con-
structed in Theorem 2.6. Each matrix element of the heat kernel e−t H is given by a
Euclidean functional integral,

〈 Â, e−t H B̂〉H =
∫
ΘA U (t)B dµ(Φ). (2.10)

The right-hand side of (2.10) is the Euclidean path integral [16] of quantum field the-
ory. Mark Kac’ method [30, 31] for calculating the distribution of the integral

∫ T
0 v(Xt )dt ,

where v is a function defined on the state space of a Markov process X , gives a rigorous
version of Feynman’s work, valid at imaginary time.

In the present setup, (2.10) requires no proof, since the functional integral on the
right-hand side is how we defined the matrix element on the left-hand side. However,
some work is required (even for flat spacetime, M = R

d ) to see that the Hilbert space
and Hamiltonian given by this procedure take the usual form arising in physics. This is
true, and was carried out for R

d by Osterwalder and Schrader [38] and summarized in
[23, Ch. 6].

Since H is positive and self-adjoint, the heat kernels can be analytically continued
t → i t . We therefore define the Schrödinger group acting on H to be the unitary group

R(i t) = e−i t H .
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Given a time-zero field operator, action of the Schrödinger group then defines the
corresponding real-time field.

For flat spacetimes in d ≤ 3 it is known [23] that Theorem 2.7 has a generalization
to non-Gaussian integrals, i.e. interacting quantum field theories:

〈 Â, e−t HV B̂〉H =
〈
ΘA, exp

(
−
∫ t

0
dt ′

∫
dx V (Φ(x, t ′))

)
Bt

〉
E

=
∫
ΘA e−SV

0,t Bt dµ(Φ). (2.11)

Construction of the non-Gaussian measure (2.11) in finite volume can presumably be
completed by a straightforward extension of present methods, while the infinite-volume
limit seems to require a cluster expansion. Work is in progress to address these issues
for curved spacetimes.

2.6. Quantization of subgroups of the isometry group. Physics dictates that after quan-
tization, a spacetime symmetry with p parameters should correspond to a unitary repre-
sentation of a p-dimensional Lie group acting on H. The group of spacetime symmetries
for Euclidean quantum field theory should be related to the group for the real-time theory
by analytic continuation; this was shown for flat spacetime by Klein and Landau [34].
For curved spacetimes, no such construction is known, and due to the intrinsic interest of
such a construction, we give further details, and show that the methods already discussed
in this paper suffice to give a unitary representation of the purely spatial symmetries on H.

Example 2.2 introduced reflection-invariant isometries. We now discuss an important
subclass of these, the purely spatial isometries, which are guaranteed to have well-defined
quantizations. We continue to assume we have a static manifold M with notation as in
Example 1.1. There is a natural subgroup Gspace of G = Iso(M) consisting of isometries
which map each spatial section into itself. We term these purely spatial isometries. The
classic constructions [29] of finite-volume interactions in two dimensions work on a cyl-
inder M = S1 × R, in which case Gspace is the subgroup of Iso(S1 × R) corresponding
to rotations around the central axis.

Since Gspace ⊂ G as a Lie subgroup, gsp = Lie(Gspace) is a subalgebra of K, the Lie
algebra of global Killing fields.

Consider the restriction of the unitary representation Γ to the subgroup Gspace. By a
standard construction, the derivative DΓ is a unitary Lie algebra representation of gsp
on E , for which E+ is an invariant subspace. The latter property is crucial; if E+ is not an
invariant subspace for an operator, then that operator does not have a quantization.

As with many aspects of Osterwalder-Schrader quantization, a commutative diagram
is helpful:

Gspace
Γ ��

Lie
��

U(E)

Lie
��

gsp
DΓ

�� u(E)

(2.12)

Note that U(E) is an infinite-dimensional Lie group. Further, there are delicate analytic
questions involving the domains of the symmetric operators in u(E). In the present paper
we investigate only the algebraic structure.
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By Theorem 2.3, each one-parameter unitary group U (t) on E+ coming from a one-
parameter subgroup of Gspace has a well-defined quantization Û (t) which is a unitary
group on H. The methods of Sect. 1.5 establish strong continuity for these unitary groups,
so their generators are densely-defined self-adjoint operators as guaranteed by Stone’s
theorem.

Suppose that [X,Y ] = Z for three elements X,Y, Z ∈ gsp. Let X̂ : H → H be
the quantization of DΓ (X), and similarly for Y and Z . Our assumptions guarantee that
[DΓ (X), DΓ (Y )] = DΓ (Z) is null-invariant, therefore we have

[X̂ , Ŷ ] = Ẑ , (2.13)

valid on the domain of vectors in H where the expressions are defined.
One-parameter subgroups coming from Gspace always admit unitary representations

on H, but for other subgroups of G, the analogous theory is much more subtle. Since
any element of K is a vector field acting on functions as a differential operator, it is local
(does not change supports) and hence positive-time invariant, so quantization applied
directly to infinitesimal generators may be possible. There, one runs into delicate domain
issues. A discussion of the domains of some self-adjoint operators obtained by this pro-
cedure was given in Sect. 2.3, and some variant of this could possibly be used to treat
the domains of the quantized generators.

When applied to isometry groups, Osterwalder-Schrader quantization of operators
involves the procedure of taking the derivative of a representation, applied to the infi-
nite-dimensional group U(E). Thus, it is not surprising that it is functorial, adding to
its intrinsic mathematical interest. These connections are likely to lead to an interesting
new direction in representation theory, especially for noncompact groups.

3. Variation of the Metric

3.1. Metric dependence of matrix elements in quantum field theory. We wish to obtain
rigorous analytic control over how quantum field theory on a curved background depends
upon the metric.

Definition 3.1 (Stable family). Let Mλ denote the Riemannian manifold diffeomorphic
to R × S, endowed with the product metric

ds2
λ := dt2 + Gµν(λ)dxµdxν, (3.1)

where G(λ) is a metric on S, and Gµν(λ) depends smoothly on λ ∈ R. We refer to a
family {Mλ}λ∈R satisfying these properties as a stable family. We denote the full metric
(3.1) as g(λ) or gλ.

For a stable family, it is clearly possible to chooseΩ±,Σ in a way that is independent
of λ. Let t denote the coordinate which is defined so that t |Σ = 0 and ξ = ∂/∂t . Then
the data (Ω−,Σ,Ω+, ξ, t) is constant in λ.

However, the Hilbert spaces L2(Mλ), the covariance

C(λ) = Cλ := (−∆g(λ) + m2−1
) ,

and the test function space H−1(Mλ) all depend upon λ, as does the Gaussian measure
described in Sect. 1.3. These dependences create many subtleties in the quantization
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procedure. In particular, the usual theory of smooth or analytic families of bounded oper-
ators does not apply to the family of operators λ → C(λ), because if λ �= λ′ then C(λ)
and C(λ′) act on different Hilbert spaces. It is clearly of interest to have some framework
in which we can make sense out of the statement “λ → C(λ) is smooth.” More generally,
we would like a framework to analyze the λ-dependence of the Osterwalder-Schrader
quantization.

Our approach to this set of problems is based on the observation that, for a stable
family, there exist test functions f : M → R which are elements of H−1(Mλ) for all λ.
For example,

C∞
c (M) ⊂ H−1 :=

⋂
λ∈R

H−1(Mλ). (3.2)

Such test functions can be used to give meaning to formally ill-defined expressions such
as ∂Cλ/∂λ. To give meaning to the naive expression

∂Cλ
∂λ

f := lim
ε→0

1

ε
(Cλ f − Cλ+ε f ) , (3.3)

we must specify the topology in which the limit is to be taken. Suppose that f ∈ C∞
c as

before. A natural choice is the topology of L2(Mλ), but some justification is necessary
in the noncompact case. Clearly Cλ f ∈ L2(Mλ), but it is not clear that Cλ+ε f also
determines an element of L2(Mλ). After all, the covariance operators are nonlocal, and
Cλ+ε f generally does not have compact support (unless of course M itself is compact).

In order that the limit (3.3) can be taken in the topology of L2(Mλ), it is necessary
and sufficient that ∃ ε1 > 0 such that Cλ+ε f ∈ L2(Mλ) for all ε < ε1. In other words,
the limit (3.3) makes sense iff F(ε) ≡ ∫

M |Cλ+ε f |2√|gλ| dx < ∞ for all ε < ε1. Since
obviously F(0) < ∞, it suffices to show F(ε) is continuous at ε = 0. If we write the
expressions in terms of coordinate charts and assume f > 0, then we can translate the
problem into one of classical analysis. Indeed,

F(ε) =
∫

M

dx
√|gλ(x)|

⎛
⎜⎝

∫

supp f

dy
√|gλ+ε(y)| Cλ+ε(x, y) f (y)

⎞
⎟⎠

2

. (3.4)

Thus the condition for differentiability of F(ε) at ε = 0 becomes one of “differentiating
under the integral,” which can be treated by standard methods. The overall conclusion:
if F(ε) is continuous at ε = 0, then (3.3) makes sense. Anticipating what is to come,
this condition implies that (3.7) also makes sense.

We now return to the study of the full quantum theory on Mλ. Define

Eλ := L2(dµλ),

where dµλ is the unique Gaussian probability measure associated to C(λ) by Minlos’
theorem.1 If f ∈ H−1, then

A f,λ = : e−iΦ( f ) : C(λ) (3.5)

1 As before, E+,λ = span
{
eiΦ( f ) | f ∈ H−1(Mλ), supp( f ) ⊂ Ω+

}
, with completion

E+,λ = E+,λ .

Also define Eλ to be the (incomplete) linear span of eiΦ( f ) for f ∈ H−1(Mλ).
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defines a canonical element of Eλ for each λ. Then

〈A f,λ, Ag,λ〉E,λ = exp
(〈 f,Cλg〉L2(Mλ)

)
. (3.6)

Lemma 3.1 (Smoothness of covariance). Assume that {Mλ}λ∈R is a stable family. Then
〈 f,C(λ)g〉L2(Mλ)

is a smooth function of λ, for any f, g ∈ C∞
c (M).

Proof. The integral 〈 f,C(λ)g〉L2(Mλ)
= ∫

M f Cλg
√|gλ| dx is localized over the sup-

port of f , which is compact. The dominated convergence theorem shows that we can
interchange ∂/∂λ with the integral. ��

It follows immediately that the matrix element (3.6) on E of the canonical elements
A f,λ and Ag,λ is a smooth function of the parameter λ.

When we change λ, the measure dµλ follows a path in the space of all Gaussian
measures. This change in the measure can be controlled through operator estimates on
the covariance. Using formula 9.1.33 from [23, p. 208] we have:

d

dλ

∫
A dµλ = 1

2

∫
(∆dC/dλA) dµλ. (3.7)

In particular, if C(λ) is smooth then so is
∫

A dφC(λ). Here we must interpret dC/dλ as
in the discussion following (3.3).

The null space Nλ of OS quantization also depends on the metric, as we discuss
presently. When it is necessary to distinguish the time direction, we denote local coor-
dinates by x = (x, t). The subspace of Nλ corresponding to monomials in the field is
canonically isomorphic to the space of test functions f such that2∫

M

f (x,−t) (Cλ f ) (x, t)
√|gλ(x)| dx = 0. (3.8)

All of the quantities in the integrand (3.8) which depend on λ do so smoothly. Assuming
the applicability of dominated convergence arguments similar to those used above, it
should be possible to show that Nλ varies continuously in the Hilbert Grassmannian,
but we do not address this here.

For each λ, the Osterwalder-Schrader theory gives unambiguously a quantization

H(λ) ≡ E+,λ/Nλ.

Theorem 3.1 (Smoothness of matrix elements in H). Assume that {Mλ}λ∈R is a stable
family. Define the canonical element A f,λ as in (3.5). Then

λ → 〈 Â f,λ, Rλ(t) Âg,λ〉H(λ)
is smooth.

Proof. Calculate 〈 Â, Rλ(t)B̂〉H(λ) = exp 〈θ f, (Cλh) ◦ φ−1
λ,t 〉, where φλ,t is the time t

map of the Killing field ∂/∂t on the spacetime Mλ. Since f has compact support, the
dominated convergence theorem applies to the integral 〈θ f, (Cλh) ◦ φ−1

λ,t 〉. ��
One class of examples which merits further consideration is the class formulated on

M = R
d+1 with ds2 = dt2 + g(λ)i j dxi dx j , i, j = 1 . . . d. Assume that G(λ)i j depends

analytically on λ ∈ C, and to order zero it is the flat metric δi j . Theorem 3.1 implies
that the matrix elements of H have a well-defined series expansion about λ = 0, and we
know that precisely at λ = 0 they take their usual flat-space values.

2 For integrals such as this one, we can factorize the Laplacian as in Sect. 4.
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3.2. Stably symmetric variations. It is of interest to extend the considerations of the
previous section to the quantizations of symmetry generators. For this we continue to
consider variations of an ultrastatic metric, as in Eq. (3.1). One important aspect of the
quantization that is generally not λ-invariant is the symmetry structure of the Riemann-
ian manifold. We assume M = R× M ′, where M ′ is a Riemannian manifold with metric
gµν(λ). In this section we study a special case in which the perturbation does not break
the symmetry. Let Kλ denote the algebra of global Killing fields on (M ′, g(λ)). In certain
very special cases we may have the following.

Definition 3.2 (Stable symmetry). The family of metrics λ → g(λ) is said to be sta-
bly symmetric over the subinterval I ⊂ R if for each λ ∈ I , there exists a basis
{ξi (λ) : 1 ≤ i ≤ n} of Kλ, and the family of bases can be chosen in such a way that
λ → ξi (λ) is smooth ∀ i .

Equivalently, the condition of stable symmetry is that Kλ = K F(Mλ) gives a rank n
vector bundle over R (or some subinterval thereof) and we have chosen a complete set
{ξi : i = 1 . . . n} of smooth sections.

Example 3.1. (Curvature variation) The most general constant-curvature hyperbolic
metric on H has arc length

ds = c

�(z) |dz| (3.9)

and curvature −c−2. Consider the spacetime R × H(c) where H(c) is the upper half-
plane with metric (3.9). Variation of the curvature parameter c satisfies the assumptions
of Definition 3.2.

Example 3.2. (ADM mass, charge, etc.) Many spacetimes considered in physics seem to
have the property of stable symmetry under variation of parameters, at least for certain
ranges of those parameters. For the Euclidean continuation of the Reissner-Nordström
black hole, where λ plays the role of either mass m or charge e, one may observe that
the assumptions of Definition 3.2 hold. However, the Euclidean RN metrics are not ultr-
astatic as was assumed above. Therefore, it would be interesting to extend the analysis
of this section to static metrics of the form F(λ, x)dt2 + G(λ, x)dx2, where x is a d − 1
dimensional coordinate.

For each i, λ, the Killing field ξi (λ) gives rise to a one-parameter group of isome-
tries on M , which we denote by φi,λ,x ∈ Iso(M), where x ∈ R is the flow parameter.
These flows act on the spatial section of M for each fixed time; they are purely spatial
isometries in the sense considered above. Therefore, the map

Ti (λ, x) = Γ (φi,λ,x ) : E −→ E (3.10)

is positive-time invariant, null-invariant, and has a unitary quantization

T̂i (λ, x) : H −→ H . (3.11)

None of the following constructions depend on i , so for the moment we fix i and
suppress it in the notation. Since each T (λ, x) depends on a Killing field ξ , the first step
is to determine how the Killing fields vary as a function of the metric. Since the Kill-
ing fields are solutions to a first-order partial differential equation, one possible method
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of attack could proceed by exploiting known regularity properties of solutions to that
equation. If one were to pursue that, some simplification may be possible due to the fact
that a Killing field is completely determined by its first-order data at a point. We obtain
a more direct proof.

The T operators depend on the Killing field through its associated one-parameter
flow. For each fixed λ, the construction gives a one-parameter subgroup (in particular, a
curve) in Gspace. If we vary λ ∈ [a, b], we have a free homotopy between two paths in
Gspace. Each cross-section of this homotopy, such as λ → φλ,x (p) with the pair (x, p)
held fixed, describes a continuous path in a particular spatial section of M .

Theorem 3.2. Assume stable symmetry and define T (λ, x) as in (3.10). Then for each
x (held fixed), the map

λ �−→ T̂ (λ, x) ∈ U(H)
is a strongly continuous operator-valued function of λ.

Proof. First, we claim that λ → φλ,x is continuous in the compact-open topology. The
latter follows from standard regularity theorems for solutions of ODEs, since we have
assumed λ → ξ(λ) is smooth, and φλ,x (p) is the solution curve of the differential
operator ξ(λ)p. Theorem 1.1 implies that Γ (φλ,x ) ∈ U(E) is strongly continuous with
respect to λ. By Theorem 2.1, the embedding of bounded operators on E into B(H) is
norm-continuous. Composing these continuous maps gives the desired result. ��

4. Sharp-time Localization

The goal of this section is to establish an analog of [23, Theorem 6.2.6] for quantiza-
tion in curved space, and to show that the Hilbert space of Euclidean quantum field
theory may be expressed in terms of data local to the zero-time slice. This is known as
sharp-time localization. We first define the type of spacetime to which our results apply.

Definition 4.1. A quantizable static spacetime is a complete, connected Riemannian
manifold M with a globally defined (smooth) Killing field ξ which is orthogonal to a
codimension one hypersurfaceΣ ⊂ M, such that the orbits of ξ are complete and each
orbit intersects Σ exactly once.

Under the assumptions for a quantizable static spacetime, but with Lorentz signature,
Ishibashi and Wald [26] have shown that the Klein-Gordon equation gives sensible clas-
sical dynamics, for sufficiently nice initial data. These assumptions guarantee that we
are in the situation of Definition 1.1.

The main difficulty in establishing sharp-time localization comes when trying to
prove the analog of formula (6.2.16) of [23] in the curved space case, which would
imply that the restriction to E0 of the quantization map is surjective. The proof given in
[23] relies on the formula (6.2.15) from Prop. 6.2.5, and it is the latter formula that we
must generalize.

4.1. Localization on flat spacetime. The Euclidean propagator on R
d is given explicitly

by the momentum representation

C(x; y) = C(x − y) = 1

(2π)d

∫

Rd

1

p2 + m2 e−i p·(x−y) dp ,
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for x, p ∈ R
d . Let f = f (x) denote a function on R

d−1, and define

ft (x, t ′) = f (x)δ(t − t ′) .
Theorem 4.1 (Flat-space localization). Let M = R

d with the standard Euclidean met-
ric. Then

〈 ft ,Cgs〉L2(Rd ) =
〈

f,
1

2µ
e(t−s)µg

〉
L2(Rd−1)

,

where µ is the operator with momentum-space kernel µ( p) = (
p 2 + m2

)1/2
.

4.2. Splitting the Laplacian on static spacetimes. Consider a quantizable static space-
time M , defined in Definition 4.1. Use Latin indices a, b, etc. to run from 0 to d − 1 and
Greek indices µ, ν = 1 . . . d − 1. Denote the spatial coordinates by

x = (x1, . . . , xd−1) = (xµ) ,

and set t = x0. Write g in manifestly static form,

gab =
(

F 0
0 Gµν

)
, with inverse gab =

(
1/F 0

0 Gµν

)
, (4.1)

where F and G depend only on x, and not on t = x0. It is then clear that

G := det(gab) = FG, where G = det(Gµν) . (4.2)

It follows that g0ν = gµ0 = 0, and g00 = F−1 = g00
−1, does not depend upon time.

Using the formula, ∆ f = G−1/2∂a
(
G1/2 gab∂b f

)
, the Laplacian on M may be seen to

be

∆M = 1

F
∂2

t + Q, where (4.3)

Q := 1√
G
∂µ(

√
G Gµν ∂ν). (4.4)

The operator Q is related to the Laplacian ∆Σ for the induced metric on Σ . Applying
the product rule to (4.3) yields

Q = 1

2
∂α(ln F)Gαβ∂β +∆Σ . (4.5)

Note that a formula generalizing (4.5) to “warped products” appears in Bertola et.al. [5].
In order that the operator µ = (−Q + m2)1/2 exists for all m2 > 0, we require that

−Q is a positive, self-adjoint operator on an appropriately-defined Hilbert space. The
correct Hilbert space is

KΣ := L2(Σ,
√

G dx) . (4.6)

Here
√

G dx denotes the Borel measure onΣ which has the indicated form in each local
coordinate system, and G = FG as in Eq. (4.2).

Spectral theory of the operator −Q considered on KΣ is mathematically equivalent
to that of the “wave operator” A defined by Wald [42, 43] and Wald and Ishibashi [26].
In those references, the Klein-Gordon equation has the form (∂2

t + A)φ = 0. The relation
between Wald’s notation and ours is that Q = −(1/F)A − m2, and Wald’s function V
is our F1/2. As pointed out by Wald, we have the following,
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Theorem 4.2 (Q is symmetric and negative). Let (M, gab) be a quantizable static
spacetime. Then −Q is a symmetric, positive operator on the domain C∞

c (Σ) ⊂ KΣ .

Proof. It is easy to see that Q is symmetric on C∞
c (Σ)with the metric of KΣ ; it remains

to show −Q ≥ 0 on the same domain. Using (4.4), the associated quadratic form is

〈 f, (−Q) f 〉KΣ
= −

∫
f

1√
G
∂µ(

√
G Gµν∂ν f )

√
G dx

=
∫

‖∇ f ‖2
G

√
G dx ≥ 0,

where we used integration by parts to go from the first line to the second. ��

4.3. Hyperbolic space. It is instructive to calculate Q in the explicit example of H
d ,

often called Euclidean AdS in the physics literature because its analytic continuation is
the Anti-de Sitter spacetime. The metric is

ds2 = r−2
d−1∑
i=0

dx2
i , r = xd−1 .

The hyperbolic Laplacian in d dimensions is (see for instance [4]):

∆H d = (2 − d)r
∂

∂r
+ r2∆Rd . (4.7)

Any vector field ∂/∂xi where i �= d − 1 is a static Killing field. We have set up the
coordinates so that it is convenient to define t = x0 as before, and we can quantize in
the t direction.

Comparing (4.4) with (4.7), we find that F = r−2 and

Q = (2 − d)r
∂

∂r
+ r2

d−1∑
i=1

∂2

∂x2
i

= −r
∂

∂r
+∆H d−1 , (4.8)

which matches (4.5) perfectly. We return to this example spacetime in Appendix A,
where we calculate its Green function, and discuss the analytic continuation.

4.4. Curved space localization. To generalize Theorem 4.1 to curved space, choose
static coordinates x, t near the time-zero sliceΣ . If f = f (x) is a function on the slice
Σ , we define

ft (x, t ′) = f (x)δ(t − t ′),

which is a distribution on the patch of M covered by this coordinate chart. For the
moment, we assume that this coordinate patch is the region of interest. By Eq. (4.4), we
infer that the integral kernel C(x, y) of the operator C = (−∆+m2)−1 is time-translation
invariant, so that we may write

C(x, y) = C(x, y, x0 − y0).
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In order to apply spectral theory to Q, we choose a self-adjoint extension of the symmet-
ric operator constructed by Theorem 4.2. For definiteness, we may choose the Friedrichs
extension, but any ambiguity inherent in the choice of a self-adjoint extension will not
enter into the following analysis. We denote the self-adjoint extension also by Q, which
is an unbounded operator on KΣ . The following is a generalization of Theorem 4.1 to
curved space.

Theorem 4.3 (Localization of sharp-time integrals). Let M be a quantizable static
spacetime (Definition 4.1). Then:

〈 ft ,Cgs〉M =
〈

f,

(
F1/2 e−|t−s|ω

2ω
F1/2

)
g

〉
KΣ

, (4.9)

where µ = (−Q + m2)1/2 and ω = (
√

Fµ2
√

F)1/2. Hence C is reflection positive on
L2(M).

Proof. Because M was assumed to be a quantizable static spacetime, F = 〈ξ, ξ 〉Σ ≥ 0.
Moreover, if F(p) = 0 then ξp = 0, for any p ∈ Σ . A non-trivial Killing field cannot
vanish on an open set, so the zero-set of F has measure zero inΣ . From this we infer that
multiplication by the function F−1 defines a (possibly-unbounded) but densely-defined
self-adjoint multiplication operator on KΣ .

For simplicity of notation, assume f is real-valued. Perform a partial Fourier trans-
form with respect to the time variable:

〈 ft ,Cgs〉M =
∫

f (x)

(
1

2π

∫
d E

ei E(t−s)

F−1 E2 − Q + m2 g

)
(x)

√
G dx . (4.10)

Define µ := (−Q + m2
)1/2

, where the square root is defined through the spectral
calculus on KΣ . As a consequence of Theorem 4.2, µ and ω are positive, self-adjoint
operators on KΣ . The integrand of (4.10) contains the operator:

ei E(t−s)

F−1 E2 + µ2 = ei E(t−s)

F−1/2
(
E2 + F1/2µ2 F1/2

)
F−1/2

= F1/2 ei E(t−s)

E2 + ω2 F1/2 .

We next establish that ω is invertible. Since µ2 > ε I , where ε > 0, we have

ω2 = √
Fµ2

√
F > εF

and therefore,

ω−2 < (
√

Fµ2
√

F)−1 <
1

εF
.

Since 1/F is a densely defined operator on KΣ , it follows thatω2 (henceω) is invertible.
For λ > 0,

∫
ei Eτ

E2 + λ2 d E = πe−|τ |λ

λ
. (4.11)
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Decompose the operator ω according to its spectral resolution, with ω = ∫
λ d Pλ and

I = ∫
d Pλ the corresponding resolution of the identity, and apply (4.11) in this decom-

position to conclude
∫

ei E(t−s)

F−1 E2 + µ2 d E = F1/2πe−|t−s|ω

ω
F1/2. (4.12)

Inserting (4.12) into (4.10) gives

〈 ft ,Cgs〉M =
∫

Σ

(
F1/2 f

)
(x)

(
e−|t−s|ω

2ω
(F1/2g)

)
(x)

√
G dx

=
〈

f, F1/2 e−|t−s|ω

2ω
F1/2g

〉
KΣ

, (4.13)

also demonstrating reflection positivity. ��
The operator ω2 may be calculated explicitly if the metric is known, and is generally

not much more complicated than Q. For example, using the conventions of Sect. 4.3,
one may calculate ω2 for H

d :

ω2 = −
d−1∑
i=1

∂2
i + d r−1∂r + (m2 − d)r−2.

For H
2, the eigenvalue problem ω2 f = λ f becomes a second-order ODE which is

equivalent to Bessel’s equation. The two linearly independent solutions are

r3/2 J 1
2

√
4m2+1(r

√
λ) and r3/2Y 1

2

√
4m2+1(r

√
λ).

The spectrum of ω2 on H
2 is then [0,+∞).

Given a function f on Σ , we obtain a distribution ft supported at time t as follows:

ft (x, t ′) = f (x)δ(t − t ′).

It may appear that this is not well-defined because it depends on a coordinate. However,
given a static Killing vector, the global time coordinate is fixed up to an overall shift
by a constant, which we have determined by the choice of an orthogonal hypersurface
where t = 0. Thus a pair (p, t), where p ∈ Σ and t ∈ R uniquely specify a point in M .

Theorem 4.4 (Localization of H). Let M be a quantizable static spacetime. Then the
vectors exp(iΦ( f0)) lie in E+, and quantization maps the span of these vectors isomet-
rically onto H.

Proof. Since E+ is the closure of the set E+ of vectors exp(iΦ( f ))with supp( f ) ⊂ Ω+,
it follows that any sequence in E+ which converges in the topology of E has its limit in
E+. The L2 norm in E ,∫ ∣∣∣eiΦ( f ) − eiΦ(g)

∣∣∣2 dµC (Φ) = 2(1 − e− 1
2 ‖ f −g‖−1),

is controlled in terms of the norm ‖ ‖−1 on Sobolev space, which is the space of test
functions. This will give us the first part of the theorem.
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If t > 0, then there exists a sequence of smooth test functions {gn} with compact,
positive-time support such that

lim
n→∞ gn = ft

in the Sobolev topology, hence exp(iΦ( ft )) ∈ E+. Define the time-t subspace Et ⊂ E+
to be the subspace generated by vectors of the form exp(iΦ( ft )). By taking the t → 0
limit, we see that exp(iΦ( f0)) ∈ E+ and the first part is proved.

It is straightforward to see that the quantization map Π(A) ≡ Â is isometric when
restricted to vectors of the form exp(iΦ( f0)), since the time-reflection θ acts trivially
on these vectors. It remains to see that the restriction to such vectors is onto H. Then we
wish to prove

(E0) ˆ ⊃
(⋃

t>0

Et

)
ˆ . (4.14)

First, let us see why (4.14), if true, finishes the proof. We must show that
⋃

t>0 Et is
dense in E+. Of course, E+ is spanned by polynomials in classical fields of the form

Φ( f ) =
∫
Φ(x, t) f (x, t)

√
G dxdt .

Write the t integral as a Riemann sum:

Φ( f ) = lim
N→∞

N∑
i=1

(δt)i Φ
(
( fi )ti

)
, (4.15)

where Φ
(
( fi )ti

) =
∫
Φ(x, ti ) fi (x)

√
G dx, (4.16)

and where fi (x) = f (x, ti ).
Equation (4.15) represents Φ( f ) as a limit of linear combinations of elements

Φ( fti ) ∈ Eti . A similar argument applies to polynomials A(Φ) of classical fields, and to
L2 limits of such polynomials. Thus

⋃
t>0 Et is dense in E+. Then (4.14) implies (E0) ˆ

is also dense in E+.
Equation (4.14) is proved by means of the following identity:

〈 Â, : exp(i Φ( ft )) : ˆ 〉H = 〈 Â, : exp(i Φ( f t
0)) : ˆ 〉H, (4.17)

where

f t := (F−1/2e−tωF1/2) f, (4.18)

where f is a function on Σ , and hence so is f t . Thus

f t
0(p, t ′) = δ(t ′)(F−1/2e−tωF1/2 f )(p) for p ∈ Σ .

To prove (4.17), we first suppose A = : eiΦ(gs ) : where g ∈ TΣ and s > 0. Then

〈 Â, : exp(iΦ( ft )) : ˆ 〉H = 〈 : eiΦ(θgs ) : , : eiΦ( ft ) : 〉E
= exp 〈θgs,C ft 〉M

= exp
〈
g, F1/2 e−(t+s)ω

2ω
F1/2 f

〉
KΣ
, (4.19)

where we have used localization (Theorem 4.3) in the last line.
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Computing the right side of (4.17) gives

〈 : eiΦ(θgs ) : , : eiΦ( f t
0) : 〉E = exp

〈
θgs, C( f t

0)
〉
M

= exp
〈
g, F1/2 e−sω

2ω
F1/2 f t 〉

KΣ

= exp
〈
g, F1/2 e−(t+s)ω

2ω
F1/2 f

〉
KΣ

= (4.19).

We conclude that Eqs. (4.17)–(4.18) hold true for A = : eiΦ(gs ) : . We then infer the
validity of (4.17) for all A in the span of

⋃
t>0 Et by linear combinations and limits.

Equation (4.17) says that for every vector v in a set that is dense in H, there exists
v′ ∈ (E0) ˆ such that L(v) = L(v′) for any linear functional L on H. If v �= v′ then we
could find some linear functional to separate them, so they are equal. Therefore (E0) ˆ
is a dense set, completing the proof of Theorem 4.4. ��

Theorem 4.4 implies that the physical Hilbert space is isometrically isomorphic to
E0, and to an L2 space of the Gaussian measure with covariance which can be found by
the t, s → 0 limit of (4.19), to be:

H = L2 (N∗
d−1, dφC

)
, where C = F1/2 1

2ω
F1/2 , (4.20)

and Nd−1 denotes the nuclear space over the (d − 1)-dimensional slice. Compare (4.20)
with [23], Eq. (6.3.1). By assumption, 0 lies in the resolvent set of ω, implying that C is
a bounded, self-adjoint operator on KΣ .

4.5. The ϕ bound. Here we prove that an estimate known in constructive field theory as
the Glimm-Jaffe ϕ bound (see [20]) is also true for curved spacetimes.

Theorem 4.5 (ϕ bound). Let T > 0. There exists a constant M such that
〈
Â, e−(H0+ϕ(h))T Â

〉
H ≤ exp(T ‖h‖2

G M)‖ Â‖2
H, (4.21)

where ‖h‖G = 〈h,Gh〉1/2 and G is the resolvent of Q at −m2.

Proof. Apply the Schwartz inequality (for the inner product on H) n times, to obtain

〈
Â, e−(H0+ϕ(h))T Â

〉
H ≤ ‖ Â‖H

〈
Â, e−2T (H0+ϕ(h)) Â

〉1/2
H

≤ ‖ Â‖2−2−(n−1)

H
〈
Â, e−2n T (H0+ϕ(h)) Â

〉2−n

H .

Apply the Feynman-Kac formula to the very last expression, to obtain

〈
Â, e−(H0+ϕ(h))T Â

〉
H ≤ ‖ Â‖2−2−(n−1)

H

〈
ΘA, e− ∫ 2n T

0 Φ(h,t)dtU (2nT )A

〉2−n

E
.

We cannot take the n → ∞ limit at this point, because the object depends on A. It
suffices to establish the desired result for A in a dense subspace, so take A ∈ L4 ∩ E+.
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We now use the Schwartz inequality on E as well as the fact that Θ is unitary on E , to
obtain

〈
Â, e−(H0+ϕ(h))T Â

〉
H ≤ ‖ Â‖2−2−(n−1)

H ‖A‖2−n

E
〈

A, e2
∫ 2n T

0 Φ(h,t)dt A

〉2−(n+1)

E
.

Now Hölder’s inequality with exponents 1
4 + 1

4 + 1
2 = 1 implies

〈 Â, e−(H0+ϕ(h))T Â〉H
≤ ‖ Â‖2−2−(n−1)

H ‖A‖2−n

E ‖A‖2−n

L4

(∫
e4

∫ 2n T
0 Φ(h,t)dt dµ0

)2−n−2

. (4.22)

Up to this point, the argument applies to a general measure dµ on path space. Now
assume that the measure is Gaussian. The function f = 4h(x)χ[0,2n T ](t) has the desir-

able property that Φ( f ) = 4
∫ 2n T

0 Φ(h, t)dt , so the Gaussian integral in (4.22) equals
S(i f ) = e〈 f,C f 〉/2. Therefore,

〈
Â, e−(H0+ϕ(h))T Â

〉
H ≤ ‖ Â‖2−2−(n−1)

H ‖A‖2−n

E ‖A‖2−n

L4 S(i f )2
−n−2

. (4.23)

For H1 and H2 self-adjoint operators with 0 ≤ H1 ≤ H2, we have (H2 + a)−1 ≤
(H1 + a)−1 for any a > 0. By Theorem 4.2, −Q ≥ 0, so take H1 = −Q, and
H2 = −(1/F)∂2

t − Q. We conclude3

C = (−∆ + m2)−1 ≤ (−Q + m2)−1 ≡ G.

Since ker(G) = {0}, G determines a norm ‖h‖G = 〈h,Gh〉1/2. Then

S(i f ) ≤ e8〈h,Gh〉2n T = e2n+3T ‖h‖2
G .

Raising this to the power 2−n−2, and taking the n → ∞ limit we see that the factors
‖A‖2−n

E ‖A‖2−n

L4 approach 1, and thus (4.23) becomes:

〈
Â, e−(H0+ϕ(h))T Â

〉
H ≤ e2T ‖h‖2

G ‖ Â‖2
H.

This establishes (4.21), completing the proof of Theorem 4.5. ��

4.6. Fock representation for time-zero fields. To obtain a Fock representation of the
time-zero fields we mimic the construction of [23, §6.3] with the covariance (4.20).

To simplify the constructions in this section, we assume the form ds2 = dt2 +
Gµνdxµdxν and F = 1. Then Q = ∆Σ , the Laplacian on the time-zero slice, and
µ = (−∆Σ + m2)1/2. The set of functions h ∈ L2(Σ) such that µph ∈ L2(Σ) is
precisely the Sobolev space Hp(Σ), which is also the set of h such that C−ph ∈ L2.
Sobolev spaces satisfy the reverse inclusion relation p ≥ q ⇒ Hq ⊆ Hp. Also
Cq f ∈ Hp ⇔ f ∈ Hq−p.

3 Compare this with the analogous estimate valid in R
d , C ≤ (−∇2

x + m2)−1, which may be proved by a
Fourier transform of the resolvent kernel.
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This allows us to determine the natural space of test functions for the definition of
the Fock representations:

a( f ) = 1

2
φ
(
C−1/2 f

)
+ iπ

(
C1/2 f

)
,

a∗( f ) = 1

2
φ
(
C−1/2 f

)
− iπ

(
C1/2 f

)
.

In particular, if the natural domain of φ is H−1 as discussed following Eq. (1.3), then f
must lie in the space where C−1/2 f ∈ H−1, i.e. f ∈ H1/2.

5. Conclusions and Outlook

We have successfully generalized Osterwalder-Schrader quantization and several basic
results of constructive field theory to the setting of static spacetimes.

Dimock [14] constructed an interacting P(ϕ)2 model with variable coefficients, with
interaction density ρ(t, x) : ϕ(x)4 :, and points out that a Riemannian (ϕ4)2 theory
may be reduced to a Euclidean (ϕ4)2 theory with variable coefficients. However, the
main constructions of [14] apply to the Lorentzian case and for curved spacetimes no
analytic continuation between them is known. Establishing the analytic continuation
is clearly a priority. Also, there are certain advantages to a perspective which remem-
bers the spacetime structure; for example, in this picture the procedure for quantizing
spacetime symmetries is more apparent.

In the present paper we have not treated the case of a non-linear field, though all of
the groundwork is in place. Such construction would necessarily involve a generaliza-
tion of the Feynman-Kac integral (2.11) to curved space, and would have far-reaching
implications, and one would like to establish properties of the particle spectrum for such
a theory.

The treatment of symmetry in this paper is only preliminary. We have isolated two
classes of isometries, the reflected and reflection-invariant isometries, which have well-
defined quantizations. We believe that this construction can be extended to yield a unitary
representation of the isometry group, and work on this is in progress. This, together with
suitable extensions of Sect. 2.6 could have implications for the representation theory of
Lie groups, as is already the case for the geometric quantization of classical Hamiltonian
systems.

The treatment of variation of the metric in Sect. 3 is also preliminary; it does not
cover the full class of static spacetimes. Geroch [19] gave a rigorous definition of the
limit of a family of spacetimes, which formalizes the sense in which the Reissner-Nord-
ström black hole becomes the Schwarzschild black hole in the limit of vanishing charge.
It would be interesting to combine the present framework with Geroch’s work to study
rigorously the properties of the quantum theory under a limit of spacetimes.

Another direction is to isolate specific spacetimes suggested by physics which have
high symmetry or other special properties, and then to extend the methods of constructive
field theory to obtain mathematically rigorous proofs of such properties. Several studies
along these lines exist [7, 26], but there is much more to be done. We hope that the
Euclidean functional integral methods developed here may facilitate further progress.
Rigorous analysis of thermal properties such as Hawking radiation should be possible.
Given that new mathematical methods are available which pertain to Euclidean quan-
tum field theory in AdS, a complete, rigorous understanding of the holographically dual
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theory on the boundary of Ad S suggested by Maldacena [1, 24, 36, 45] may be within
reach of present methods.

Constructive field theory on flat spacetimes has been developed over four decades
and comprises thousands of published journal articles. Every statement in each of those
articles is either: (i) an artifact of the zero curvature and high symmetry of R

d or T
d

or (ii) generalizable to curved spaces with less symmetry. The present paper shows that
the Osterwalder-Schrader construction and many of its consequences are in class (ii).
For each construction in class (ii), investigation is likely to yield non-trivial connections
between geometry, analysis, and physics.

Acknowledgements. We would like to thank Jonathan Weitsman and Joachim Krieger for interesting discus-
sions, and Jon Dimock for his earlier work [14, 15] which sparked our interest in these models.

A. Euclidean Anti-de Sitter and its Analytic Continuation

The Green’s function G on a general curved manifold is the inverse of the corresponding
positive transformation, so it satisfies

(∆− µ2)G = −g−1/2δ , (A.1)

where G(p, q) is a function of two spacetime points. By convention∆ acts on G in the
first variable, and δ denotes the Dirac distribution of the geodesic distance d = d(p, q).
Translation invariance implies that G only depends on p and q through d(p, q). We note
that solutions of the homogeneous equation (∆ − µ2)φ = 0 may be recovered from
the Green’s function. Conversely, we may deduce the Green’s function by solving the
homogeneous equation for d > 0 and enforcing the singularity at d = 0.

Equation (A.1) for the Green’s function takes a simple form in geodesic polar coor-
dinates on H

n with r = d = geodesic distance; the Green’s function has no dependence
on the angular variables and the radial equation yields

(
∂2

r + (n − 1) coth(r)∂r − µ2
)

G(r) = −δ(r) . (A.2)

We find it convenient to write the homogeneous equation in terms of the coordinate
u = cosh(r). When u �= 1, (A.2) becomes

(∆− µ2)G(u) = −(1 − u2)G ′′(u) + nuG ′(u)− µ2G(u) = 0 . (A.3)

For n = 2 andµ2 = ν(ν+1), Eq. (A.3) is equivalent to Legendre’s differential equation:

(1 − u2)Q′′
ν(u)− 2uQ′

ν(u) + ν(ν + 1)Qν(u) = 0 . (A.4)

Note that (A.4) has two independent solutions for each ν, called Legendre’s P and Q
functions, but the Q function is selected because it has the correct singularity at r = 0.
Thus

G2(r;µ2) = 1

2π
Qν(cosh r), where ν = −1

2
+

(
µ2 +

1

4

)1/2

. (A.5)

The caseµ2 = 0 is particularly simple; there the Legendre function becomes elementary:

G2(r; 0) = − 1

2π
ln
(

tanh
r

2

)
= 1

2π
Q0(cosh r) . (A.6)
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For n = 3, one has

G3(r;µ2) = 1

4π

e±r
√
µ2+1

sinh(r)
. (A.7)

Finally, we note that the analytic continuation of (A.5) gives the Wightman function on
Ad S2. The real-time theory on Anti-de Sitter, including its Wightman functions, were
discussed by Bros et al. [7]. In particular, our Eq. (A.5) analytically continues to their
Eq. (6.8).

Given a complete set of modes, one may also calculate the Feynman propagator by
using the relation iG F (x, x ′) = 〈 0 | T {φ(x)φ(x ′)} | 0 〉 and performing the mode sum
explicitly as in [9]; the answer may be seen to be related to the above by analytic con-
tinuation. Here, T denotes an Ad S-invariant time-ordering operator. A good general
reference is the classic paper [3].
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11. Chruściel, P.T.: On analyticity of static vacuum metrics at non-degenerate horizons. Acta Phys. Polon.
B 36(1), 17–26 (2005)

12. De Angelis, G.F., de Falco, D., Di Genova, G.: Random fields on Riemannian manifolds: a constructive
approach. Commun. Math. Phys. 103(2), 297–303 (1986)

13. Dimock, J.: Algebras of local observables on a manifold. Commun. Math. Phys. 77(3), 219–228 (1980)
14. Dimock, J.: P(ϕ)2 models with variable coefficients. Ann. Phys. 154(2), 283–307 (1984)
15. Dimock, J.: Markov quantum fields on a manifold. Rev. Math. Phys. 16(2), 243–255 (2004)
16. Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367–

387 (1948)
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