
The Journal of Financial Data Science 1Fall 2020

*All articles are now
categorized by topics
and subtopics. View at
PM-Research.com.

Jiayi Du
is a graduate student at New
York University Center for Data
Science in New York, NY.
jd4138@nyu.edu

Muyang Jin
is a graduate student at New
York University Center for Data
Science in New York, NY.
mj1477@nyu.edu

Petter n. KolM
is a clinical professor and
director of the Mathematics
in Finance Master’s Program
at the Courant Institute
of Mathematical Sciences
at New York University
in New York, NY.
petter.kolm@nyu.edu

gorDon ritter
is an adjunct professor at
the Courant Institute of
Mathematical Sciences,
New York University Tandon
School of Engineering,
Baruch College, and Rutgers
University and a partner
at Ritter Alpha, LP.
ritter@post.harvard.edu

yixuan Wang
is a graduate student at New
York University Center for Data
Science in New York, NY.
yw1708@nyu.edu

Bofei Zhang
is a graduate student at New
York University Center for Data
Science in New York, NY.
bz1030@nyu.edu

Deep Reinforcement Learning
for Option Replication
and Hedging
Jiayi Du, Muyang Jin, Petter n. KolM, gorDon ritter,
yixuan Wang, anD Bofei Zhang

ABSTRACT: The authors propose models
for the solution of the fundamental problem of
option replication subject to discrete trading, round
lotting, and nonlinear transaction costs using
state-of-the-art methods in deep reinforcement
learning (DRL), including deep Q-learning,
deep Q-learning with Pop-Art, and proximal
policy optimization (PPO). Each DRL model
is trained to hedge a whole range of strikes, and
no retraining is needed when the user changes to
another strike within the range. The models are
general, allowing the user to plug in any option
pricing and simulation library and then train them
with no further modifications to hedge arbitrary
option portfolios. Through a series of simula-
tions, the authors show that the DRL models
learn similar or better strategies as compared to
delta hedging. Out of all models, PPO performs
the best in terms of profit and loss, training time,
and amount of data needed for training.

TOPICS: Big data/machine learning,
options, risk management, simulations*

R eplication and hedging of deriv-
 atives are fundamental problems
 in finance. Following the sem-
 inal work of Black and Scholes

(1973) and Merton (1973)—jointly referred to
as BSM throughout this article—on option
pricing and dynamic hedging, an impressive
number of articles have focused on pricing
and replicating options. At the heart of BSM
is the insight that in a complete and friction-
less market, one can perfectly replicate the
option by using a continuously rebalanced
dynamic trading strategy in the stock and
riskless security.

Because of frictions such as trading
costs, continuous trading of the underlying

• The authors propose models for the replication of options over a whole range of strikes
subject to discrete trading, round lotting, and nonlinear transaction costs based on state-
of-the-art methods in deep reinforcement learning including deep Q-learning and prox-
imal policy optimization.

• The models allow the user to plug in any option pricing and simulation library and then
train them with no further modifications to hedge arbitrary option portfolios.

• A series of simulations demonstrates that the deep reinforcement learning models learn
similar or better strategies as compared to delta hedging.

• Proximal policy optimization outperforms the other models in terms of profit and loss,
training time, and amount of data needed for training.

KEY FINDINGS

 a
t N

ew
 Y

or
k

U
ni

ve
rs

ity
 o

n
Se

pt
em

be
r

14
, 2

02
0.

 C
op

yr
ig

ht
 2

02
0

Pa
ge

an
t M

ed
ia

 L
td

.
ht

tp
s:

//j
fd

s.
pm

-r
es

ea
rc

h.
co

m
D

ow
nl

oa
de

d
fr

om

http://www.PM-Research.com
mailto:jd4138@nyu.edu
mailto:mj1477@nyu.edu
mailto:petter.kolm@nyu.edu
mailto:ritter@post.harvard.edu
mailto:yw1708@nyu.edu
mailto:bz1030@nyu.edu
https://www.iijournals.com/topic/big-datamachine-learning
https://www.iijournals.com/topic/options
https://www.iijournals.com/topic/simulations
https://jfds.pm-research.com

2 Deep Reinforcement Learning for Option Replication and Hedging Fall 2020

stock is prohibitively costly in the real world. Conse-
quently, the replicating portfolio can only be rebalanced
at discrete times to keep trading costs low. Perfect rep-
lication is no longer possible, and an optimal hedging
strategy depends on the trade-off between hedging
error and trading costs.

Leland (1985) was the f irst to address discrete
hedging under transaction costs. Since then, a number
of other authors have contributed to this important area,
including Boyle and Vorst (1992), Figlewski (1989),
Grannan and Swindle (1996), Henrotte (1993), Martellini
(2000), Toft (1996), and Whalley and Wilmott (1997).
Although these articles mainly examine the case of pro-
portional transaction costs, more recent studies consider
option pricing and replication under nonlinear market
impact, including work by Almgren and Li (2016);
Bank, Soner, and Voß (2017); Rogers and Singh (2010);
and Saito and Takahashi (2017). Notably, all of the afore-
mentioned models are based on tools from intertemporal
finance, such as stochastic control, dynamic program-
ming, and classical utility theory.

Interestingly, the reinforcement learning (RL)
literature developed largely independently from inter-
temporal f inance.1 RL provides a way to train com-
puter models, referred to as RL agents or just agents, that,
through reinforcement, learn to interact with an envi-
ronment, with the goal of optimizing some reward over
time. An agent does this through simple trial and error
by receiving positive or negative feedback about each
action it takes. Deep reinforcement learning (DRL), RL
based on deep neural nets, has been shown to exceed
the performance of traditional RL. Trained based on
a penalty–reward mechanism, RL agents have been
adopted in various real-world applications outside of
finance. Perhaps the most well-known examples include
deep Q-learning (DQN) systems that learned to play
a large number of video games at a superhuman level
(see Mnih et al. 2013, 2015) and AlphaGo Zero, which
defeated the world’s best Go player after learning the
game from scratch without human guidance by playing
against itself (see Silver et al. 2017). Additionally, policy
gradient methods, including trust region policy opti-
mization (TRPO) and proximal policy optimization
(PPO), reach superhuman-level performance in various
tasks such as robotics locomotion and game playing (see
Schulman et al. 2015a, 2017). Recently, RL agents have

1 See Kaelbling, Littman, and Moore (1996) and Sutton and
Barto (2018) for an introduction to RL.

been deployed in areas such as autonomous driving and
healthcare. For instance, Wang, Chan, and de La Fortelle
(2018) demonstrated that RL agents for autonomous
driving can learn to make smooth and eff icient lane
changes under a diverse set of scenarios. Komorowski
et al. (2018) developed an RL agent, called the artifi-
cial intelligence clinician (AIC), that can address the
complex sequential decision-making problem arising
in sepsis treatment. Remarkably, the outcome of the
treatment selected by the AIC on average exceeds that
of experienced human clinicians.

Recently, Kolm, and Ritter (2019) demonstrated
how to apply RL to optimally hedge options in a real-
istic setting subject to discrete trading, round lotting,
and nonlinear trading costs. Kolm and Ritter (2020)
elucidated the direct link between the dynamic opti-
mization problems in intertemporal f inance and RL.
They showed how to formulate intertemporal deci-
sion problems (e.g., option replication, optimal order
execution, and dynamic portfolio optimization) as RL-
based machine learning problems. A few other studies,
including those by Buehler et al. (2018), Halperin (2019),
Cao et al. (2020), and Cannelli et al. (2020), explored
machine learning–based methods for option replication.
Buehler et al. (2018) evaluated a neural network–based
hedging approach under convex risk measures and pro-
portional transaction costs. Halperin (2017) applied an
RL-based model to pricing and hedging of options but
does not consider transaction costs. Cannelli et al. (2020)
compared the risk-averse contextual k-armed bandit to
DQN for the hedging of options in the BSM setting,
showing the former outperforms in terms of sample
efficiency and hedging error. More closely related to
our article, Cao et al. (2020) explored DRL methods
for option replication in BSM and stochastic volatility
setups, comparing the performance of accounting profit
and loss (P&L) and cash f low approaches.

This article makes three main contributions. First,
we develop a system based on the state-of-the-art DRL
models, referred to as DQN; DQN with “preserving
outputs precisely, while adaptively rescaling targets”
(DQN with Pop-Art); and PPO, which learns to opti-
mally replicate options with different strikes subject to
discrete trading, round lotting, and nonlinear transac-
tion costs.2 We emphasize that each model is trained

2 For DQN, DQN with Pop-Art, and PPO, we refer the
reader to van Hasselt et al. (2016), Mnih et al. (2013, 2015),
Schulman et al. (2015a, 2017), and Silver et al. (2017).

 a
t N

ew
 Y

or
k

U
ni

ve
rs

ity
 o

n
Se

pt
em

be
r

14
, 2

02
0.

 C
op

yr
ig

ht
 2

02
0

Pa
ge

an
t M

ed
ia

 L
td

.
ht

tp
s:

//j
fd

s.
pm

-r
es

ea
rc

h.
co

m
D

ow
nl

oa
de

d
fr

om

https://jfds.pm-research.com

The Journal of Financial Data Science 3Fall 2020

to hedge a whole range of strikes, and no retraining is
needed when the user changes to another strike within
the range.

Second, we show in a series of simulations that the
DRL models learn similar or better strategies as com-
pared to delta hedging. Out of all models, PPO performs
the best in terms of P&L, training time, and amount of
data needed for training.

Third, the models are general, allowing the user
to plug in any option pricing and simulation library and
then train them with no further modifications to hedge
arbitrary option portfolios.

DEEP REINFORCEMENT LEARNING

In this section, we brief ly review the aspects of
DRL that we use throughout this article. RL provides
a way to train computer models, referred to as agents,
that learn to interact with an environment by means of
the sequency of actions they take, with the goal of opti-
mizing a cumulative reward over time. At each time step
t, the agent observes the current state of the environ-
ment st ∈ S and chooses an action at ∈ A. This choice
inf luences both the transition to the next state, st+1, and
the reward, Rt+1, the agent receives. The agent’s goal is
to choose actions to maximize the expected cumulative
reward:

 E E[] : []1 2
2

3G R R Rt t t t= + γ + γ + …+ + + (1)

where the constant γ ∈ [0, 1] is referred to as the discount
factor. The sum in Equation 1 can be either finite or
infinite, depending on the problem at hand. If rewards
are bounded, then γ < 1 ensures convergence when the
sum (Equation 1) is infinite. A policy π is a strategy for
determining an action at, conditional on the current
state st. Polices can be deterministic or stochastic. In
the deterministic case, π maps S → A; in the stochastic
case, π maps a state s ∈ S to a probability distribution
π(a|s) on A.

In this article, we focus on Q-learning and policy
gradient methods based on deep neural networks
(DNNs).

Q-Learning

The action-value function Qπ : S × A → ℝ,
also known as the Q-function, expresses the value of

starting in state s, taking action a, and following policy
π thereafter:

 E(,) : [| ,]Q s a G s s a at t t= = =π
π (2)

where Eπ denotes the expectation under the assumption
that policy π is followed. The state-value function is
defined as the action-value function in which the first
action also comes from the policy π; that is

 E() : [|] (, ())V s G S s Q s st t= = = ππ
π

π (3)

Policy π is defined to be at least as good as π′ if

 () ()V s V s≥π ′π (4)

for all states s. An optimal policy is defined as one that is
at least as good as any other policy. All optimal policies
share the same optimal action-value function Q*, the
optimal action-value function. The goal of Q-learning
is to learn Q*. The optimal action-value function satis-
fies the Bellman equation:

 E(,) [max (,)| ,]Q s a R Q s a s a
a

= + γ ′ ′∗

′

∗ (5)

The basic idea of Q-learning is to turn the
Bellman equation into the update Qi+1(s,a)=E[R + γ

Q s a s aa i ′ ′′max (,)| ,] and iterate this scheme until con-
vergence, Qi → Q* (see, for example, Sutton and Barto
2018). Once one has determined the optimal action-
value function, the optimal policy can be computed via

 π =∗

∈

∗s Q s a
a

() arg max (,)
A

 (6)

Deep Q-Learning

In deep Q-learning the action-value function is
approximated with a DNN, Q(s, a; q) ≈ Q* (s, a), in
which q represents the network parameters. The DNN
is then trained by minimizing the following sequence
of loss functions:

E() [((, ;)

max (, ;))|(, , ,) ~ ()]

L L Q s a R

Q s a s a R s U D

i i i

a
i

θ = θ −

− γ ′ ′ θ ′
δ

′

− (7)

where Ld is the Huber loss

 a
t N

ew
 Y

or
k

U
ni

ve
rs

ity
 o

n
Se

pt
em

be
r

14
, 2

02
0.

 C
op

yr
ig

ht
 2

02
0

Pa
ge

an
t M

ed
ia

 L
td

.
ht

tp
s:

//j
fd

s.
pm

-r
es

ea
rc

h.
co

m
D

ow
nl

oa
de

d
fr

om

https://jfds.pm-research.com

4 Deep Reinforcement Learning for Option Replication and Hedging Fall 2020

 L x
x x

x
=

≤ δ

δ − δ

δ()

1
2

, | | ,

(| |
1
2

), otherwise

2

 (8)

In the loss functions in Equation 7, Q(s, a; qi),
(, ;)Q s a iθ− , and U(D) are referred to as the policy net-

work, target network, and behavior distribution, respec-
tively. Although qi is updated at every iteration, iθ− is
updated only every M steps. In our computational exam-
ples, we train the DQN models using experience replay
and control the exploration and exploitation trade-off
using the ε-greedy approach as done by Mnih et al.
(2015, Algorithm 1).

Deep Q-Learning with Adaptive Scaling

DQN can experience stability issues in problems in
which rewards vary significantly in magnitude, resulting
in poor performance. Mnih et al. (2015) used reward
clipping to address this issue. However, deciding on an
acceptable range for the rewards is ad hoc and can also
change the learning objective, thereby resulting in dif-
ferent policies.

van Hasselt et al. (2016) proposed an adaptive
approach to normalize rewards that they called Pop-
Art and demonstrated how it improves the stability
and performance of DQN on a number of Atari 2600
games.

DQN with Pop-Art preserves the output of the
unnormalized Q-function, Q, by creating a trainable
square linear layer with weights W ∈ ℝn×n and bias b ∈
ℝn to represent a modified Q-function

 (, ;) (, ;)Q s a WQ s a b θ = θ + (9)

where n is the size of the action space A. Let us define
the target Yj := Rj + γ maxa Q(sj+1, a; qj). After initializing
W ≡ Σ = I and b ≡ μ = 0 at the beginning of training,
they are subsequently updated according to

, ()new new
1

new new
1

newW W b b← Σ Σ ← Σ Σ + µ − µ− − (10)

where Σnew and μnew are chosen such that the scaled tar-

gets { ()}new
1

new 1Yj j
iΣ − µ−

= are normalized.

Policy Gradient Methods

We assume that each action at is generated by a sto-
chastic policy such that ~ (|)a a st t tπθ with parameters q.
In contrast to improving the approximation of the action-
value function as is done in Q-learning, policy gra-
dient methods aim to directly learn the policy πθ

∗ that
maximizes the cumulative reward (Equation 1) by per-
forming a gradient update of q, such that

 |1 Ji i i i
θ = θ + α ∇+ θ θ=θ (11)

where E() : []J Gtθ = πθ
 and αi > 0 is the learning rate at

step i. Policy gradient methods differ in terms of how
gradients are estimated. Most are guaranteed to con-
verge to the optimal policy, and in practice they often
converge faster than Q-learning.

Frequently, the following gradient estimator is
used:

 θ = ∇ πθ θg a s At t t tˆ() [log (|) ˆ]E (12)

where Et
 denotes the empirical average over a finite

batch of samples, and Ât is an estimate of the advan-
tage function : (,) ()A Q s a V st t t t= −π πθ θ at time step t (see
Schulman et al. 2017). Computationally, it is convenient
to work directly with the loss function LPG (q) defined
such that () ˆ()L gPG∇ θ ≡ θθ ; that is

 () : [log (|) ˆ]L a s APG
t t t tEθ = πθ (13)

Proximal Policy Optimization

A challenge with policy gradient methods is that
estimates of the gradients have high variance, resulting
in a lack of robustness and poor convergence. Addi-
tionally, basic policy gradient methods are often not
data eff icient. We choose to use PPO because it has
been shown to be data efficient and robust in a number
of practical applications (see Schulman et al. 2015a,
2017). PPO is based on several recent developments in
policy gradients, and a full description is beyond the
scope of this article. In the following, we highlight
some aspects of PPO that are important for the models
in this article and refer the reader to Schulman et al.
(2017) for details.

 a
t N

ew
 Y

or
k

U
ni

ve
rs

ity
 o

n
Se

pt
em

be
r

14
, 2

02
0.

 C
op

yr
ig

ht
 2

02
0

Pa
ge

an
t M

ed
ia

 L
td

.
ht

tp
s:

//j
fd

s.
pm

-r
es

ea
rc

h.
co

m
D

ow
nl

oa
de

d
fr

om

https://jfds.pm-research.com

The Journal of Financial Data Science 5Fall 2020

By combining several objectives, the PPO loss
function is defined as

 E() : [() () []()]PPO CLIP
1

VF
2L L c L c S st t t t

θ = θ − θ + πθ (14)

where ()CLIPLt θ is a clipped surrogate objective,
() : (())VF target 2L V s Vt tθ = −πθ is the squared-error between

predicted and realized value functions, and S[πq] denotes
an entropy bonus. The entropy bonus controls the
exploration–exploitation trade-off during training.
The hyperparameters c1, c2 ≥ 0 determine the trade-
offs among the terms in the loss function. Schulman
et al. (2017) proposed the clipped surrogate objective,

()CLIPLt θ , as a modification of the surrogate objective
used in TRPO (see Schulman et al. 2015a), defined as

 () : min
(|)

(|)
,clip

(|)

(|)
,1 , 1 ˆCLIP

old old

L
a s

a s

a s

a s
At

t t

t t

t t

t t
tε εθ =

π
π

π
π

− +

θ

θ

θ

θ

(15)

where ε > 0, πq (at|st) and πoldq (at|st) are the new and

current policies and Ât is an estimate of the advantage
function at time step t. In our computational exam-
ples, we used general advantage estimation (GAE) (see
Schulman et al. 2015b) to estimate the advantage func-
tion, ˆ : ˆGAE(,)A At t= γ λ . The clipping operation limits the
policy to the interval [1 - ε, 1 + ε], thereby reducing
the variance of the policy gradient estimate.

AUTOMATIC HEDGING

Kolm and Ritter (2019) defined automatic hedging
as “the practice of using trained reinforcement learning
agents to handle the hedging of certain derivative posi-
tions.” Although the approach in this article in principle
can be applied to arbitrary portfolios of derivative securi-
ties, here we consider the training of DQN agents for the
purpose of replicating static long positions in European
call options of different strikes by trading the underlying
stock. In a complete market with continuous and fric-
tionless trading, such as in the BSM model, there is a
dynamic trading strategy in the stock that replicates the
option position perfectly. Specifically, the P&L of the
hedged portfolio, defined as the P&L of the option posi-
tion minus the replication strategy, has zero variance.
When frictions are no longer absent and only discrete
trading is possible, then the goal of replication becomes

minimizing (1) the variance of the P&L of the hedged
portfolio and (2) the cost of replication.

We consider a complete market in which stock
prices follow a geometric Brownian motion (GBM) with
initial price S0 and a daily lognormal volatility of σ/day.
We assume options are European and mature in T days
and that the risk-free rate is zero.

In RL, at each time step t the agent observes the
state of the environment, takes an action, and then
receives a reward. In the following, we describe the
state and action spaces, reward function, and trading
costs we use in training the models.

State Space

The state must contain the information relevant for
making the optimal decision. Information that is not rel-
evant to the problem, or that can be derived from other
state variables, does not need to be included. For the
replication of European options with different strikes, a
natural state space is given by

 : {(, , ,)| 0, 0, , }2 S n K S n K� � � � �S = × × = τ > τ > ∈ ∈+
 (16)

Consequently, at each time step t, the agent
observes the four-dimensional state vector st = (St, τ,
nt, K) where St is the price of the stock at time t; τ :=
T - t > 0 is the time remaining to maturity of the
option; nt is the current number of shares held; and K
is the option strike. We emphasize that the state does
not need to include the option Greeks because they are
functions of the variables the agent has access to via
the state. With enough training data, we expect the
agent will learn such nonlinear functions on its own
as needed.

Action Space

After observing the state, the agent takes an action
at by choosing the integer amount of the underlyer to
trade from the action space:

 A L L= − ⋅ … ⋅: { 100 , ,100 } (17)

where L is the number of option contracts held, each
for 100 shares.

 a
t N

ew
 Y

or
k

U
ni

ve
rs

ity
 o

n
Se

pt
em

be
r

14
, 2

02
0.

 C
op

yr
ig

ht
 2

02
0

Pa
ge

an
t M

ed
ia

 L
td

.
ht

tp
s:

//j
fd

s.
pm

-r
es

ea
rc

h.
co

m
D

ow
nl

oa
de

d
fr

om

https://jfds.pm-research.com

6 Deep Reinforcement Learning for Option Replication and Hedging Fall 2020

Reward Function

Next, we turn to deriving the reward function.
We assume agents have quadratic utility,3 which implies
that their optimal portfolios are given as solutions of the
mean–variance optimization problem

 E Vmax []
2

[]w wT T− κ

π

 (18)

with κ denoting an agent’s risk aversion and π the
optimal policy, and where the f inal wealth wT is the
sum of individual wealth increments dwt

 0
1

w w wT
t

T

t∑= + δ
=

 (19)

It is easy to see that wealth increments can be
decomposed as

 w q ct t tδ = − (20)

where qt follows a random walk, and ct is the total
trading cost in period t. Trading costs can include com-
missions, bid–offer spread cost, market impact cost,
and other sources of slippage. Observe that when the
risk-free rate is zero, from Equation 20, it immedi-
ately follows that E E[] []w ct tδ = − , and the objective
function in Equation 18 then describes the trade-off
between cost and variance of P&L as measured by the
risk-aversion, κ.

To solve the replication problem using RL, we need
to choose a reward Rt such that E E V() [] []2R w wt t t= δ − δκ .
One possibility is

2

(ˆ)2w wt tδ − κ δ − µ (21)

where µ̂ is an estimate of E: []wtµ = δ , the expected
wealth increment over one period. Often in trading
problems in which the time increment t is small, µ̂ is
negligible; hence, E E[(ˆ)] [()]2 2w wt tδ − µ ≈ δ .4 We define
the one-period reward function as

3 See Ritter (2017) for a discussion of how the mean–variance
assumption fits within a general utility framework.

4 See Ritter 2017 for an RL approach that avoids this
approximation.

 :
2

()2R w wt t t= δ − κ δ (22)

and use it to compute the values in Equation 1.

Rebalancing and Trading Costs

We allow agents to rebalance their replicating
portfolio D times per day such that each episode has a
total of T ⋅ D time steps. All trades are subject to trading
costs defined by

 cost() TickSize (| | 0.01)2n C n n= ⋅ ⋅ + (23)

where n is the number of shares traded and C is a cost
multiplier. The term TickSize ⋅ |n| represents the cost
of crossing a bid–offer spread that is two ticks wide. The
quadratic term in Equation 23 is a simplistic model for
market impact. An advantage of the RL approach is
that it does not make any assumptions about the form
of the cost function (Equation 23). It will learn to opti-
mize expected utility under whatever cost function one
prefers.

BSM Benchmark and Parameter Settings

We compare the performance of the agents with
the delta hedging baseline policy

 () 100 round(())s s nDH t t tπ = − ⋅ ∆ − (24)

where nt is the current stock holdings of an agent fol-
lowing a standard delta hedging policy, 100 is the
number of stocks controlled by one call option, and
∆(st) is the corresponding BSM delta of the option posi-
tion at time t.

In the computational examples, we use the fol-
lowing parameter settings: σ = 0.01, S0 = 100, T = 10,
D = 5, K ∈ {98, 99, 100, 101, 102}, C ∈ {0, 1, 3, 5},
and TickSize = 0.1.

COMPUTATIONAL EXAMPLES

Simulation Environment

To train RL agents, one needs a lot of data.
The majority of the most successful RL applications
to date rely on generating training data in simulation

 a
t N

ew
 Y

or
k

U
ni

ve
rs

ity
 o

n
Se

pt
em

be
r

14
, 2

02
0.

 C
op

yr
ig

ht
 2

02
0

Pa
ge

an
t M

ed
ia

 L
td

.
ht

tp
s:

//j
fd

s.
pm

-r
es

ea
rc

h.
co

m
D

ow
nl

oa
de

d
fr

om

https://jfds.pm-research.com

The Journal of Financial Data Science 7Fall 2020

environments, rather than training on historical data.
With a simulator of the environment, one can generate
as much data as one needs to accurately train the models.

We implemented a simulation environment for
options trading in OpenAI Gym using Python and
PyTorch (see https://keras.io/ and Paszke et al. 2019).
Although our simulation environment is similar to that
of Kolm and Ritter (2019), who considered the training
of an option with a chosen fixed strike price, our imple-
mentation allows training options with the same under-
lier for a range of strike prices simultaneously.

The simulator has three main steps. First, it gener-
ates training data by sampling episodes of stock returns
from a price process. Second, it samples a strike price
from a selected range of strikes and, based on the state
representation, computes the corresponding option
price for the current time step. Third, after receiving
the action chosen by the RL agent, the current state
vector is updated, and the simulator increments the time
step. The environment computes the reward according
to Equation 22, and the reward and state vector are
recorded into the replay memory to be used in future
training. One epoch consists of 3,000 episodes, in which
each episode is one complete path of 50 price observa-
tions (i.e., T ⋅ L = 10 ⋅ 5). We update the data only every
five epochs.

In the computational examples in this article, the
price process is a GBM initialized as by Kolm and Ritter
(2019), and we consider an agent holding a long position
in a call option, controlling 100 shares of stocks, with
strike K in some range.

Model Architecture and Hyperparameters

We use a standard multilayer perceptron archi-
tecture with five hidden layers with ReLU activation
functions for DQN and PPO. In our computational
experiments, we found that five hidden layers provided
the best trade-off between training time and hedging
performance. To improve the speed of convergence in
the training phases, we use batch normalization before
each ReLU in the hidden layers. For DQN, the network
outputs a vector of the same size as the action space, each
component representing the value of the Q-function
conditional on the corresponding action. For PPO, the
outputs from the f inal hidden layer are fed into two
individual linear layers to produce a policy vector of the
same size as the action space, where each component
represents the probability of each action and a scalar for

the value function (Equation 3). In the case of DQN
with Pop-Art, we normalize the Q-function according
to the formulas in Equations 9 and 10.

To train the DQN and PPO models, we use the
Adam optimizer with an initial learning rate of 10–4. We
train DQN with Pop-Art using stochastic gradient descent
with a fixed learning rate of 10–4. In all of the models, we
clip gradients such that their norm is less than one.

We perform grid search on the set of hyperparam-
eters and select the configuration with the best out-of-
sample performance. We found that a discount factor, γ,
in the range of [0.8, 0.9] gave the best performance for
DQN and for DQN with Pop-Art. For PPO, one needs
to tune the hyperparameter λ used in GAE. Theoreti-
cally, λ should be close to one for the best performance.
However, Schulman et al. (2015b) showed that large
λ can lead to gradient estimates with high variance,
resulting in slow convergence.

In our computational experiments, we observed
that a larger entropy bonus in the PPO loss function
(Equation 14) results in well-behaved and financially
intuitive policies, whereas a smaller entropy bonus
sometimes leads to unstable and nonintuitive polices.
For the PPO loss function (Equation 14), we fix c1 =
0.5 and tune c2, finding that c2 = 0.2 provides the best-
performing policies.

We conduct our computational experiments on
an NVIDIA GTX 1080 GPU. Unlike Kolm and Ritter
(2019), we simultaneously train a whole range of strikes,
K ∈ {98, 99, 100, 101, 102}, for each model. For trading
costs (Equation 23), we use the cost multipliers C ∈ {0,
1, 3, 5}, corresponding to no, low, moderate, and high
costs. For out-of-sample validation, we use 38,500 ran-
domly generated episodes as our test set.

Training Time and Convergence

It is well known that training networks for DRL
can be time consuming (see, for example, Cruz, Du,
and Taylor 2017). Therefore, we first examine training
times and convergence of our models. Exhibits 1 and
2 show average time in GPU seconds and the number
of data points used until convergence. Here, one data
point represents the state and corresponding reward. We
observe that, on average, it takes DQN about 104 GPU
seconds to converge on a single GPU, whereas PPO only
needs about 102 GPU seconds. PPO converges more
quickly because, on average, DQN requires an order
of magnitude more data points. In fact, the training

 a
t N

ew
 Y

or
k

U
ni

ve
rs

ity
 o

n
Se

pt
em

be
r

14
, 2

02
0.

 C
op

yr
ig

ht
 2

02
0

Pa
ge

an
t M

ed
ia

 L
td

.
ht

tp
s:

//j
fd

s.
pm

-r
es

ea
rc

h.
co

m
D

ow
nl

oa
de

d
fr

om

https://jfds.pm-research.com

8 Deep Reinforcement Learning for Option Replication and Hedging Fall 2020

e x h i B i t 1
Average Reward versus Training Time for DQN and PPO

Notes: The left panel shows average reward versus GPU seconds for the DQN agent in the one (dashes) and five strike (crosses) scenarios. The right panel
shows the average reward versus GPU seconds for the PPO agent in the one (dashes) and five strike (crosses) scenarios.

0

–200

–400

–600

R
ew

ar
d

–800

102 103

GPU Seconds

DQN

104

0

–200

–400

–600

R
ew

ar
d

–1000

–1200

–800

101

GPU Seconds

PPO

102

One Strike Five Strike

e x h i B i t 2
Average Reward versus Training Data Size for DQN and PPO

Notes: The left panel shows the average reward versus training data size for the DQN agent in the one (dashes) and five strike (crosses) scenarios. The right
panel shows the average reward versus training data size for the PPO agent in the one (dashes) and five strike (crosses) scenarios.

0

–200

–400

–600

R
ew

ar
d

–800

104 105

Data Points

DQN

106

0

–200

–400

–600

R
ew

ar
d

–1000

–1200

–800

103

Data Points

PPO

104102

One Strike Five Strike

 a
t N

ew
 Y

or
k

U
ni

ve
rs

ity
 o

n
Se

pt
em

be
r

14
, 2

02
0.

 C
op

yr
ig

ht
 2

02
0

Pa
ge

an
t M

ed
ia

 L
td

.
ht

tp
s:

//j
fd

s.
pm

-r
es

ea
rc

h.
co

m
D

ow
nl

oa
de

d
fr

om

https://jfds.pm-research.com

The Journal of Financial Data Science 9Fall 2020

of DQN involves sampling around 5 ⋅ 105 versus 104
data points for PPO; equivalently, DQN and PPO need
approximately 150 versus 6 epochs to converge.

The left panels in Exhibits 1 and 2 indicate some
instability issues in the training of DQN. We deter-
mined that these are due to scaling issues of the rewards.
By applying the Pop-Art normalization to DQN as dis-
cussed earlier, we obtain stable training behavior (see
Exhibit 3).

Exhibit 4 provides a comparison of the policies
of DQN and DQN with Pop-Art for an option struck
at K = 100, close to maturity, and with cost multiplier
C = 1. In the exhibit, one can examine the policies
for out-of-, at-, and in-the-money cases corresponding
to the stock price at 98, 100, and 102, respectively.
The upward sloping lines represent the corresponding
policies from the BSM model (i.e., the trades resulting
from changes in delta). We observe in the left and right
panels that the agents have correctly learned that, under
discrete trading with costs, the resulting actions are
piecewise constant as a function of the current stock
position. Additionally, they have rightly identified the
existence of a no-trade region—that is, a range of states
(stock positions) for which the action is a zero trade.

Notice the DQN policies (in the left panel) are not
strictly increasing but exhibit some wiggles, indicating
that the training of the agent did not fully converge.
However, more training does not improve upon this
behavior, as already suggested by the results from
Exhibits 1 and 2. Perhaps a different training approach
for DQN than ours may lead to better performance.
Nonetheless, after examining our DQN training data,
we reached the conclusion that data scaling issues cause
the instabilities. Rather than modifying our approach
to training DQN, we chose to implement the Pop-Art
normalization described previously. As we see in the
right panel in Exhibits 3 and 4 and 3, DQN with Pop-
Art leads to stable training performance and strictly
increasing policies.

To summarize, the aforementioned results show
that (1) training is quite rapid, especially for PPO; (2)
DQN with Pop-Art addresses the instability issues of
DQN; (3) for all models, the training time is not affected
by whether one or several options of the same under-
lier are trained; and (4) for all the models, the training
time for each model is not affected by the choice of cost
multiplier. For the remaining computational examples in
this article, we train all models for the multistrike case.

e x h i B i t 3
Average Reward versus Training Time and Data Size for DQN with Pop-Art

Notes: The left panel shows the average reward versus training time by the DQN with Pop-Art agent in the one (dashes) and five strike (crosses) scenarios.
The right panel shows the average reward versus training data size by the DQN with Pop-Art agent in the one (dashes) and five strike (crosses) scenarios.

0

–200

–400

–600R
ew

ar
d

–800

–1000
101 102

GPU Seconds

Pop-Art

103 104

0

–200

–400

–600

R
ew

ar
d

–1000

–800

103102

Data Points

Pop-Art

106105104

One Strike Five Strike

 a
t N

ew
 Y

or
k

U
ni

ve
rs

ity
 o

n
Se

pt
em

be
r

14
, 2

02
0.

 C
op

yr
ig

ht
 2

02
0

Pa
ge

an
t M

ed
ia

 L
td

.
ht

tp
s:

//j
fd

s.
pm

-r
es

ea
rc

h.
co

m
D

ow
nl

oa
de

d
fr

om

https://jfds.pm-research.com

10 Deep Reinforcement Learning for Option Replication and Hedging Fall 2020

Out-of-Sample Performance

In this section, we examine the out-of-sample per-
formance of the trained models. For this purpose, we
generate 38,500 random out-of-sample paths using our
simulator.

First, we examine the behavior of the models for
one representative out-of-sample path. In Exhibit 5, the
left and right panels depict the PPO agent’s performance
for the at-the-money no-cost and high-cost cases for this
sample path. The performance of DQN and DQN with
Pop-Art is similar to that of PPO and is omitted. In the
no-cost cases, we notice that the agents’ stock positions
track the BSM delta position, showing that all agents
have learned to hedge. In the high-cost case, although
able to maintain a hedge, the agents are trading in a
more cost-conscious way, suggested by a much smoother
curve than the BSM delta, which naturally f luctuates
with the GBM process.

To summarize the results from all 38,500 out-of-
sample paths, we compute the realized volatility, total
cost, and P&L of each path, representing them as kernel

density plots. Exhibit 6 shows the results for at the money
options in the high-cost setting. The left and right panels
demonstrate that DQN agents are able to learn poli-
cies that, in comparison to the BSM model, result in
lower realized P&L volatility at lower cost. One can
evaluate efficacy of an automatic hedging model by how
often the total P&L (including the hedging and trading
costs) is significantly less than zero. The middle panel in
Exhibit 6 displays density plots of the t-statistics of total
P&L for the agents and BSM model. We observe that
DQN and PPO perform the best in that their t-statistics
are more frequently close to zero than the other models.

CONCLUSIONS

In this article, we developed a system based on (1)
deep Q-learning, (2) deep Q-learning with Pop-Art,
and (3) proximal policy optimization, all state-of-the-art
DRL models that learn to optimally replicate options
with different strikes subject to realistic conditions,
including discrete trading, round lotting, and nonlinear
transaction costs. A feature of the system is that each

e x h i B i t 4
Policy Plot for DQN and DQN with Pop-Art

Notes: Policies for DQN (left panel) and DQN with Pop-Art (right panel) for strike K = 100, close to maturity and cost multiplier C = 1. Policy plots
show three different situations: (1) out of the money (St = 98, stars for agents, dotted line for delta), (b) at the money (St = 100, dots for agents, dashed line
for delta), and in the money (St = 102, triangles for agents, dash-dotted line for delta).

100
DQN Policy Plot

75

50

25

–25

–50

–75

–100

Sh
or

t
A

ct
io

ns
L

on
g

–20 –30 –40 –50
Stock Position

–60 –70 –80 –90 –100

0

100
DQN with Pop-Art Policy Plot

75

50

25

–25

–50

–75

–100

Sh
or

t
A

ct
io

ns
L

on
g

–20 –30 –40 –50
Stock Position

–60 –70 –80 –90 –100

0

Delta At the Money
Delta In the Money
DQN Out of Money

Delta Out of Money

DQN At the Money
DQN In the Money

Delta At the Money
Delta In the Money
DQN with Pop-Art Out of Money

Delta Out of Money

DQN with Pop-Art At the Money
DQN with Pop-Art In the Money

 a
t N

ew
 Y

or
k

U
ni

ve
rs

ity
 o

n
Se

pt
em

be
r

14
, 2

02
0.

 C
op

yr
ig

ht
 2

02
0

Pa
ge

an
t M

ed
ia

 L
td

.
ht

tp
s:

//j
fd

s.
pm

-r
es

ea
rc

h.
co

m
D

ow
nl

oa
de

d
fr

om

https://jfds.pm-research.com

The Journal of Financial Data Science 11Fall 2020

model is trained to hedge a whole range of strikes, and
no retraining is needed when the user changes to another
strike within the range.

In a series of simulations, we demonstrated that the
DRL models learn similar or better strategies as com-
pared to delta hedging. Out of all models, we concluded
that PPO performs the best in terms of P&L, training
time, and amount of data needed for training.

Our proposed models are general, allowing the
user to plug in any option pricing and simulation library
and then train them with no further modifications to
hedge arbitrary option portfolios.

In closing, we comment on some of the advantages
of the RL system we proposed for the replication of
derivatives. The system is model-free, not requiring many
assumptions. Specifically, no assumptions are required

e x h i B i t 5
An Out-of-Sample Simulation of PPO

Notes: The left panel shows cumulative stock, option, and total P&L; RL agent’s position in shares (stock.pos.shares); and –100 ⋅ round(∆(st)) (delta.
hedge.shares) for cost multiplier C = 0. The right panel shows cumulative stock, option, and total P&L; RL agent’s position in shares (stock.pos.shares);
and –100 ⋅ round(∆(st)) (delta.hedge.shares) for cost multiplier C = 5.

150

Cost Multiplier 0

100

50

0

–50

–100Va
lu

e
(d

ol
la

rs
 o

r
sh

ar
es

)

–150

0 10 20 30
Time

40 50

150

Cost Multiplier 5

100

50

0

–50

–100

Va
lu

e
(d

ol
la

rs
 o

r
sh

ar
es

)

–150

–200

0 10 20 30
Time

40 50

Stock.pos.share Delta.hedge.shares Stock.P&L Option.P&L

e x h i B i t 6
Kernel Density Plots for At-the-Money Options

Notes: Kernel density plots of realized volatility (left panel), t-statistic of total P&L (middle panel), and total costs (right panel) of the BSM model and the
PPO, DQN and DQN with Pop-Art agents hedging options struck at the money (K = 100) for cost multiplier C = 5.

0.0
0 5 10 15 20

0.2

0.4

0.6

0.8

D
en

si
ty

Realized Vol

Vol Kernel Density
1.0

0.0
–10 –8 –6 –4 –2 0 2 4

0.15
0.10
0.05

0.20
0.25
0.30

D
en

si
ty

Student t-statistics Total P&L

Total P&L t-test Kernel Density
0.35

0.000
0 50 100 150 200 250 300

0.015
0.010
0.005

0.020
0.025

D
en

si
ty

Total Cost

Total T-Cost Kernel Density
0.030

PPO Delta DQN DQN with Pop-Art

 a
t N

ew
 Y

or
k

U
ni

ve
rs

ity
 o

n
Se

pt
em

be
r

14
, 2

02
0.

 C
op

yr
ig

ht
 2

02
0

Pa
ge

an
t M

ed
ia

 L
td

.
ht

tp
s:

//j
fd

s.
pm

-r
es

ea
rc

h.
co

m
D

ow
nl

oa
de

d
fr

om

https://jfds.pm-research.com

12 Deep Reinforcement Learning for Option Replication and Hedging Fall 2020

about price processes of the derivatives and hedging secu-
rities or transaction costs incurred from trading. All the
system needs is a good simulator, in which price processes
and transaction costs are accurately simulated. The system
does not depend on the existence of a perfect dynamic
trading strategy replicating the derivatives. Rather, it
learns to trade off variance and cost as best as possible
using any hedging securities provided. In particular, the
system will find the best minimum-variance dynamic
replication strategy, whether or not the minimum-vari-
ance is actually zero, in contrast to classical derivative
pricing models in complete markets. This is an impor-
tant point because in the real world markets cannot be
assumed to be complete; hence, some securities required
for perfect replication may not exist.

REFERENCES

Almgren, R., and T. M. Li. 2016. “Option Hedging with
Smooth Market Impact.” Market Microstructure and Liquidity
2 (1): 1650002.

Bank, P., H. M. Soner, and M. Voß. 2017. “Hedging with
Temporary Price Impact.” Mathematics and Financial Economics
11 (2): 215–239.

Black, F., and M. Scholes. 1973. “The Pricing of Options
and Corporate Liabilities.” Journal of Political Economy 81 (3):
637–654.

Boyle, P. P., and T. Vorst. 1992. “Option Replication in Dis-
crete Time with Transaction Costs.” The Journal of Finance
47 (1): 271–293.

Buehler, H., L. Gonon, J. Teichmann, and B. Wood. 2018.
“Deep Hedging.” arXiv 1802.03042.

Cannelli, L., G. Nuti, M. Sala, and O. Szehr. 2020. “Hedging
Using Reinforcement Learning: Contextual k-Armed Bandit
versus Q-Learning.” arXiv 2007.01623.

Cao, J., J. Chen, J. C. Hull, and Z. Poulos. 2020. “Deep
Hedging of Derivatives Using Reinforcement Learning.”
SSRN 3514586.

Cruz Jr., G. V., Y. Du, and M. E. Taylor. 2017. “Pre-Training
Neural Networks with Human Demonstrations for Deep
Reinforcement Learning.” arXiv 1709.04083.

Figlewski, S. 1989. “Options Arbitrage in Imperfect Mar-
kets.” The Journal of Finance 44 (5): 1289–1311.

Grannan, E. R., and G. H. Swindle. 1996. “Minimizing
Transaction Costs of Option Hedging Strategies.” Math-
ematical Finance 6 (4): 341–364.

Halperin, I. 2017. “QLBS: Q-Learner in the Black–Scholes
(–Merton) Worlds.” arXiv 1712.04609.

——. 2019. “The QLBS Q-Learner Goes NuQLear: Fitted
Q Iteration, Inverse RL, and Option Portfolios.” Quantitative
Finance 19 (9): 1543–1553.

Henrotte, P. “Transaction Costs and Duplication Strategies.”
Graduate School of Business, Stanford University, 1993.

Kaelbling, L. P., M. L. Littman, and A. W. Moore. 1996.
“Reinforcement Learning: A Survey.” Journal of Artificial Intel-
ligence Research 4: 237–285.

Kolm, P. N., and G. Ritter. 2019. “Dynamic Replication and
Hedging: A Reinforcement Learning Approach.” The Journal
of Financial Data Science 1, no. 1 (Jan): 159–171.

——. 2020. “Modern Perspectives on Reinforcement
Learning in Finance.” The Journal of Machine Learning in
Finance 1 (1).

Komorowski, M., L. A. Celi, O. Badawi, A. C. Gordon,
and A. A. Faisal. 2018. “The Artificial Intelligence Clinician
Learns Optimal Treatment Strategies for Sepsis in Intensive
Care.” Nature Medicine 24 (11): 1716–1720.

Leland, H. E. 1985. “Option Pricing and Replication with
Transactions Costs.” The Journal of Finance 40 (5): 1283–1301.

Martellini, L. 2000. “Efficient Option Replication in the
Presence of Transactions Costs.” Review of Derivatives Research
4 (2): 107–131.

Merton, R. 1973. “Theory of Rational Option Pricing.” The
Bell Journal of Economics and Management Science 4 (1): 141–183.

Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antono-
glou, D. Wierstra, and M. A. Riedmiller. 2013. “Playing
Atari with Deep Reinforcement Learning.” arXiv 1312. 5602.
http://arxiv.org/abs/1312.5602.

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J.Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antono-
glou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D.
Hassabis. 2015. “Human-Level Control through Deep Rein-
forcement Learning.” Nature 518 no. 7540 (Feb): 529–533.

 a
t N

ew
 Y

or
k

U
ni

ve
rs

ity
 o

n
Se

pt
em

be
r

14
, 2

02
0.

 C
op

yr
ig

ht
 2

02
0

Pa
ge

an
t M

ed
ia

 L
td

.
ht

tp
s:

//j
fd

s.
pm

-r
es

ea
rc

h.
co

m
D

ow
nl

oa
de

d
fr

om

https://jfds.pm-research.com

The Journal of Financial Data Science 13Fall 2020

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A.
Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A.
Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S.
Chintala. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library.” In Advances in Neural Information Pro-
cessing Systems, 32nd ed., edited by, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett, pp.
8024–8035. Red Hook, NY: Curran Associates, 2019.

Ritter, G. 2017. “Machine Learning for Trading.” Risk 30
(10): 84–89.

Rogers, L. C. G., and S. Singh. 2010. “The Cost of Illi-
quidity and Its Effects on Hedging.” Mathematical Finance
20 (4): 597–615.

Saito, T., and A. Takahashi. 2017. “Derivatives Pricing
with Market Impact and Limit Order Book.” Automatica 86:
154–165.

Schulman, J., S. Levine, P. Moritz, M. I. Jordan, and P.
Abbeel. 2015a. “Trust Region Policy Optimization.” arXiv
1502.05477.

Schulman, J., P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel.
2015b. “High-Dimensional Continuous Control Using Gen-
eralized Advantage Estimation.” CoRR abs/1506.02438.

Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O.
Klimov. 2017. “Proximal Policy Optimization Algorithms.”
arXiv 1707.06347.

Silver, D., J. Schrittwieser, K. Simonyan, I. Antonoglou, A.
Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y.
Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T.
Graepel, and D. Hassabis. 2017. “Mastering the Game of Go
without Human Knowledge.” Nature 550 (7676): 354–359.

Sutton, R. S., and A. G. Barto. Reinforcement Learning: An
Introduction, 2nd ed. Cambridge: MIT Press, 2018.

Toft, K. B. 1996. “On the Mean–Variance Tradeoff in Option
Replication with Transactions Costs.” Journal of Financial and
Quantitative Analysis 31 (2): 233–263.

van Hasselt, H. P., A. Guez, M. Hessel, V. Mnih, and D.
Silver. “Learning Values across Many Orders of Magnitude.”
In NIPS’16: Proceedings of the 30th International Conference on
Neural Information Processing Systems, edited by D. D. Lee and
U. von Luxburg, pp. 4287–4295. Red Hook, NY: Curran
Associates, 2016.

Wang, P., C. Chan, and A. de La Fortelle. “A Reinforce-
ment Learning Based Approach for Automated Lane Change
Maneuvers.” In 2018 IEEE Intelligent Vehicles Symposium (IV),
pp. 1379–1384.

Whalley, A. E., and P. Wilmott. 1997. “An Asymptotic Anal-
ysis of an Optimal Hedging Model for Option Pricing with
Transaction Costs.” Mathematical Finance 7 (3): 307–324.

To order reprints of this article, please contact David Rowe at
d.rowe@pageantmedia.com or 646-891-2157.

ADDITIONAL READING

Dynamic Replication and Hedging:
A Reinforcement Learning Approach
Petter N. Kolm aNd GordoN ritter

The Journal of Financial Data Science
https://jfds.pm-research.com/content/1/1/159

ABSTRACT: The authors of this article address the problem of how
to optimally hedge an options book in a practical setting, where trading
decisions are discrete and trading costs can be nonlinear and difficult
to model. Based on reinforcement learning (RL), a well-established
machine learning technique, the authors propose a model that is f lex-
ible, accurate and very promising for real-world applications. A key
strength of the RL approach is that it does not make any assumptions
about the form of trading cost. RL learns the minimum variance hedge
subject to whatever transaction cost function one provides. All that
it needs is a good simulator, in which transaction costs and options
prices are simulated accurately.

Greedy Online Classification of Persistent
Market States Using Realized Intraday
Volatility Features
Peter NystruP, Petter N. Kolm,
aNd eriK liNdström

The Journal of Financial Data Science
https://jfds.pm-research.com/content/2/3/25

ABSTRACT: In many financial applications, it is important to
classify time-series data without any latency while maintaining per-
sistence in the identified states. The authors propose a greedy online
classifier that contemporaneously determines which hidden state a new
observation belongs to without the need to parse historical observa-
tions and without compromising persistence. Their classifier is based
on the idea of clustering temporal features while explicitly penalizing
jumps between states by a fixed-cost regularization term that can be

 a
t N

ew
 Y

or
k

U
ni

ve
rs

ity
 o

n
Se

pt
em

be
r

14
, 2

02
0.

 C
op

yr
ig

ht
 2

02
0

Pa
ge

an
t M

ed
ia

 L
td

.
ht

tp
s:

//j
fd

s.
pm

-r
es

ea
rc

h.
co

m
D

ow
nl

oa
de

d
fr

om

https://jfds.pm-research.com/content/1/1/159
https://jfds.pm-research.com

14 Deep Reinforcement Learning for Option Replication and Hedging Fall 2020

calibrated to achieve a desired level of persistence. Through a series
of return simulations, the authors show that in most settings their
new classifier remarkably obtains a higher accuracy than the correctly
specified maximum likelihood estimator. They illustrate that the new
classifier is more robust to misspecification and yields state sequences
that are significantly more persistent both in and out of sample. They
demonstrate how classification accuracy can be further improved by
including features that are based on intraday data. Finally, the authors
apply the new classifier to estimate persistent states of the S&P 500
Index.

A Simple Framework for Time Diversification
FraNK J. Fabozzi, serGio m. Focardi,
aNd Petter N. Kolm

The Journal of Investing
https://joi.pm-research.com/content/15/3/8

ABSTRACT: In this article the authors provide a simple but rig-
orous mathematical framework for time diversification. Based on this
framework, we provide a measure of time diversification that can be
computed for any return distribution model and any risk measure;
this measure of time diversification can be empirically ascertained
with non-parametric estimates of risk and with bootstrap techniques
to simulate the return distribution. The authors argue that the critical
issue of time diversification is not how to interpret time diversification
in sequences of IID returns, but how to make long-term forecasts. The
latter involves complex issues related to the distributional properties
of returns, as well as memory effects and regime shifts. The authors
then discuss how the distributional properties of stock returns, long
memory, and regime shifts affect time diversification.

 a
t N

ew
 Y

or
k

U
ni

ve
rs

ity
 o

n
Se

pt
em

be
r

14
, 2

02
0.

 C
op

yr
ig

ht
 2

02
0

Pa
ge

an
t M

ed
ia

 L
td

.
ht

tp
s:

//j
fd

s.
pm

-r
es

ea
rc

h.
co

m
D

ow
nl

oa
de

d
fr

om

https://jfds.pm-research.com

