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ABSTRACT: The authors propose models 
for the solution of the fundamental problem of 
option replication subject to discrete trading, round 
lotting, and nonlinear transaction costs using 
state-of-the-art methods in deep reinforcement 
learning (DRL), including deep Q-learning, 
deep Q-learning with Pop-Art, and proximal 
policy optimization (PPO). Each DRL model 
is trained to hedge a whole range of strikes, and 
no retraining is needed when the user changes to 
another strike within the range. The models are 
general, allowing the user to plug in any option 
pricing and simulation library and then train them 
with no further modifications to hedge arbitrary 
option portfolios. Through a series of simula-
tions, the authors show that the DRL models 
learn similar or better strategies as compared to 
delta hedging. Out of all models, PPO performs 
the best in terms of profit and loss, training time, 
and amount of data needed for training.

TOPICS: Big data/machine learning, 
options, risk management, simulations*

R eplication and hedging of deriv- 
 atives are fundamental problems  
 in finance. Following the sem- 
 inal work of Black and Scholes  

(1973) and Merton (1973)—jointly referred to 
as BSM throughout this article—on option 
pricing and dynamic hedging, an impressive 
number of articles have focused on pricing 
and replicating options. At the heart of BSM 
is the insight that in a complete and friction-
less market, one can perfectly replicate the 
option by using a continuously rebalanced 
dynamic trading strategy in the stock and 
riskless security.

Because of frictions such as trading 
costs, continuous trading of the underlying 

• The authors propose models for the replication of options over a whole range of strikes 
subject to discrete trading, round lotting, and nonlinear transaction costs based on state-
of-the-art methods in deep reinforcement learning including deep Q-learning and prox-
imal policy optimization.

• The models allow the user to plug in any option pricing and simulation library and then 
train them with no further modifications to hedge arbitrary option portfolios.

• A series of simulations demonstrates that the deep reinforcement learning models learn 
similar or better strategies as compared to delta hedging.

• Proximal policy optimization outperforms the other models in terms of profit and loss, 
training time, and amount of data needed for training.

KEY FINDINGS
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stock is prohibitively costly in the real world. Conse-
quently, the replicating portfolio can only be rebalanced 
at discrete times to keep trading costs low. Perfect rep-
lication is no longer possible, and an optimal hedging 
strategy depends on the trade-off   between hedging 
error and trading costs.

Leland (1985) was the f irst to address discrete 
hedging under transaction costs. Since then, a number 
of other authors have contributed to this important area, 
including Boyle and Vorst (1992), Figlewski (1989), 
Grannan and Swindle (1996), Henrotte (1993), Martellini 
(2000), Toft (1996), and Whalley and Wilmott (1997). 
Although these articles mainly examine the case of pro-
portional transaction costs, more recent studies consider 
option pricing and replication under nonlinear market 
impact, including work by Almgren and Li (2016); 
Bank, Soner, and Voß (2017); Rogers and Singh (2010); 
and Saito and Takahashi (2017). Notably, all of the afore-
mentioned models are based on tools from intertemporal 
finance, such as stochastic control, dynamic program-
ming, and classical utility theory.

Interestingly, the reinforcement learning (RL) 
literature developed largely independently from inter-
temporal f inance.1 RL provides a way to train com-
puter models, referred to as RL agents or just agents, that, 
through reinforcement, learn to interact with an envi-
ronment, with the goal of optimizing some reward over 
time. An agent does this through simple trial and error 
by receiving positive or negative feedback about each 
action it takes. Deep reinforcement learning (DRL), RL 
based on deep neural nets, has been shown to exceed 
the performance of traditional RL. Trained based on 
a penalty–reward mechanism, RL agents have been 
adopted in various real-world applications outside of 
finance. Perhaps the most well-known examples include 
deep Q-learning (DQN) systems that learned to play 
a large number of video games at a superhuman level 
(see Mnih et al. 2013, 2015) and AlphaGo Zero, which 
defeated the world’s best Go player after learning the 
game from scratch without human guidance by playing 
against itself (see Silver et al. 2017). Additionally, policy 
gradient methods, including trust region policy opti-
mization (TRPO) and proximal policy optimization 
(PPO), reach superhuman-level performance in various 
tasks such as robotics locomotion and game playing (see 
Schulman et al. 2015a, 2017). Recently, RL agents have 

1 See Kaelbling, Littman, and Moore (1996) and Sutton and 
Barto (2018) for an introduction to RL.

been deployed in areas such as autonomous driving and 
healthcare. For instance, Wang, Chan, and de La Fortelle 
(2018) demonstrated that RL agents for autonomous 
driving can learn to make smooth and eff icient lane 
changes under a diverse set of scenarios. Komorowski 
et al. (2018) developed an RL agent, called the artifi-
cial intelligence clinician (AIC), that can address the 
complex sequential decision-making problem arising 
in sepsis treatment. Remarkably, the outcome of the 
treatment selected by the AIC on average exceeds that 
of experienced human clinicians.

Recently, Kolm, and Ritter (2019) demonstrated 
how to apply RL to optimally hedge options in a real-
istic setting subject to discrete trading, round lotting, 
and nonlinear trading costs. Kolm and Ritter (2020) 
elucidated the direct link between the dynamic opti-
mization problems in intertemporal f inance and RL. 
They showed how to formulate intertemporal deci-
sion problems (e.g., option replication, optimal order 
execution, and dynamic portfolio optimization) as RL-
based machine learning problems. A few other studies, 
including those by Buehler et al. (2018), Halperin (2019), 
Cao et al. (2020), and Cannelli et al. (2020), explored 
machine learning–based methods for option replication. 
Buehler et al. (2018) evaluated a neural network–based 
hedging approach under convex risk measures and pro-
portional transaction costs. Halperin (2017) applied an 
RL-based model to pricing and hedging of options but 
does not consider transaction costs. Cannelli et al. (2020) 
compared the risk-averse contextual k-armed bandit to 
DQN for the hedging of options in the BSM setting, 
showing the former outperforms in terms of sample 
efficiency and hedging error. More closely related to 
our article, Cao et al. (2020) explored DRL methods 
for option replication in BSM and stochastic volatility 
setups, comparing the performance of accounting profit 
and loss (P&L) and cash f low approaches.

This article makes three main contributions. First, 
we develop a system based on the state-of-the-art DRL 
models, referred to as DQN; DQN with “preserving 
outputs precisely, while adaptively rescaling targets” 
(DQN with Pop-Art); and PPO, which learns to opti-
mally replicate options with different strikes subject to 
discrete trading, round lotting, and nonlinear transac-
tion costs.2 We emphasize that each model is trained 

2 For DQN, DQN with Pop-Art, and PPO, we refer the 
reader to van Hasselt et al. (2016), Mnih et al. (2013, 2015), 
Schulman et al. (2015a, 2017), and Silver et al. (2017).
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to hedge a whole range of strikes, and no retraining is 
needed when the user changes to another strike within 
the range.

Second, we show in a series of simulations that the 
DRL models learn similar or better strategies as com-
pared to delta hedging. Out of all models, PPO performs 
the best in terms of P&L, training time, and amount of 
data needed for training.

Third, the models are general, allowing the user 
to plug in any option pricing and simulation library and 
then train them with no further modifications to hedge 
arbitrary option portfolios.

DEEP REINFORCEMENT LEARNING

In this section, we brief ly review the aspects of 
DRL that we use throughout this article. RL provides 
a way to train computer models, referred to as agents, 
that learn to interact with an environment by means of 
the sequency of actions they take, with the goal of opti-
mizing a cumulative reward over time. At each time step 
t, the agent observes the current state of the environ-
ment st ∈ S and chooses an action at ∈ A. This choice 
inf luences both the transition to the next state, st+1, and 
the reward, Rt+1, the agent receives. The agent’s goal is 
to choose actions to maximize the expected cumulative 
reward:

 E E[ ] : [ ]1 2
2

3G R R Rt t t t= + γ + γ + …+ + +  (1)

where the constant γ ∈ [0, 1] is referred to as the discount 
factor. The sum in Equation 1 can be either finite or 
infinite, depending on the problem at hand. If rewards 
are bounded, then γ < 1 ensures convergence when the 
sum (Equation 1) is infinite. A policy π is a strategy for 
determining an action at, conditional on the current 
state st. Polices can be deterministic or stochastic. In 
the deterministic case, π maps S → A; in the stochastic 
case, π maps a state s ∈ S to a probability distribution 
π(a|s) on A.

In this article, we focus on Q-learning and policy 
gradient methods based on deep neural networks 
(DNNs).

Q-Learning

The action-value function Qπ : S × A → ℝ, 
also known as the Q-function, expresses the value of 

starting in state s, taking action a, and following policy 
π thereafter:

 E( , ) : [ | , ]Q s a G s s a at t t= = =π
π  (2)

where Eπ denotes the expectation under the assumption 
that policy π is followed. The state-value function is 
defined as the action-value function in which the first 
action also comes from the policy π; that is

 E( ) : [ | ] ( , ( ))V s G S s Q s st t= = = ππ
π

π  (3)

Policy π is defined to be at least as good as π′ if

 ( ) ( )V s V s≥π ′π  (4)

for all states s. An optimal policy is defined as one that is 
at least as good as any other policy. All optimal policies 
share the same optimal action-value function Q*, the 
optimal action-value function. The goal of Q-learning 
is to learn Q*. The optimal action-value function satis-
fies the Bellman equation:

 E( , ) [ max ( , )| , ]Q s a R Q s a s a
a

= + γ ′ ′∗

′

∗  (5)

The basic idea of Q-learning is to turn the 
Bellman equation into the update Qi+1(s,a)=E[R + γ

Q s a s aa i ′ ′′max ( , )| , ] and iterate this scheme until con-
vergence, Qi → Q* (see, for example, Sutton and Barto 
2018). Once one has determined the optimal action-
value function, the optimal policy can be computed via

 π =∗

∈

∗s Q s a
a

( ) arg max ( , )
A

 (6)

Deep Q-Learning

In deep Q-learning the action-value function is 
approximated with a DNN, Q(s, a; q) ≈ Q* (s, a), in 
which q represents the network parameters. The DNN 
is then trained by minimizing the following sequence 
of loss functions:

 

E( ) [ ( ( , ; )

max ( , ; ))|( , , , ) ~ ( )]

L L Q s a R

Q s a s a R s U D

i i i

a
i

θ = θ −

− γ ′ ′ θ ′
δ

′

−  (7)

where Ld is the Huber loss
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 L x
x x

x
=

≤ δ

δ − δ










δ( )

1
2

, | | ,

(| |
1
2

), otherwise

2

 (8)

In the loss functions in Equation 7, Q(s, a; qi), 
( , ; )Q s a iθ− , and U(D) are referred to as the policy net-

work, target network, and behavior distribution, respec-
tively. Although qi is updated at every iteration, iθ−  is 
updated only every M steps. In our computational exam-
ples, we train the DQN models using experience replay 
and control the exploration and exploitation trade-off 
using the ε-greedy approach as done by Mnih et al. 
(2015, Algorithm 1).

Deep Q-Learning with Adaptive Scaling

DQN can experience stability issues in problems in 
which rewards vary significantly in magnitude, resulting 
in poor performance. Mnih et al. (2015) used reward 
clipping to address this issue. However, deciding on an 
acceptable range for the rewards is ad hoc and can also 
change the learning objective, thereby resulting in dif-
ferent policies.

van Hasselt et al. (2016) proposed an adaptive 
approach to normalize rewards that they called Pop-
Art and demonstrated how it improves the stability 
and performance of DQN on a number of Atari 2600 
games. 

DQN with Pop-Art preserves the output of the 
unnormalized Q-function, Q, by creating a trainable 
square linear layer with weights W ∈ ℝn×n and bias b ∈ 
ℝn to represent a modified Q-function

 ( , ; ) ( , ; )Q s a WQ s a b θ = θ +  (9)

where n is the size of the action space A. Let us define 
the target Yj := Rj + γ maxa Q(sj+1, a; qj). After initializing 
W ≡ Σ = I and b ≡ μ = 0 at the beginning of training, 
they are subsequently updated according to

, ( )new new
1

new new
1

newW W b b← Σ Σ ← Σ Σ + µ − µ− −  (10)

where Σnew and μnew are chosen such that the scaled tar-

gets { ( )}new
1

new 1Yj j
iΣ − µ−

=  are normalized.

Policy Gradient Methods

We assume that each action at is generated by a sto-
chastic policy such that ~ ( | )a a st t tπθ  with parameters q. 
In contrast to improving the approximation of the action-
value function as is done in Q-learning, policy gra-
dient methods aim to directly learn the policy πθ

∗  that 
maximizes the cumulative reward (Equation 1) by per-
forming a gradient update of q, such that

 |1 Ji i i i
θ = θ + α ∇+ θ θ=θ  (11)

where E( ) : [ ]J Gtθ = πθ
 and αi > 0 is the learning rate at 

step i. Policy gradient methods differ in terms of how 
gradients are estimated. Most are guaranteed to con-
verge to the optimal policy, and in practice they often 
converge faster than Q-learning.

Frequently, the following gradient estimator is 
used:

 θ = ∇ πθ θg a s At t t tˆ( ) [ log ( | ) ˆ ]E  (12)

where Et
  denotes the empirical average over a finite 

batch of samples, and Ât  is an estimate of the advan-
tage function : ( , ) ( )A Q s a V st t t t= −π πθ θ  at time step t (see 
Schulman et al. 2017). Computationally, it is convenient 
to work directly with the loss function LPG (q) defined 
such that ( ) ˆ( )L gPG∇ θ ≡ θθ ; that is

 ( ) : [log ( | ) ˆ ]L a s APG
t t t tEθ = πθ  (13)

Proximal Policy Optimization

A challenge with policy gradient methods is that 
estimates of the gradients have high variance, resulting 
in a lack of robustness and poor convergence. Addi-
tionally, basic policy gradient methods are often not 
data eff icient. We choose to use PPO because it has 
been shown to be data efficient and robust in a number 
of practical applications (see Schulman et al. 2015a, 
2017). PPO is based on several recent developments in 
policy gradients, and a full description is beyond the 
scope of this article. In the following, we highlight 
some aspects of PPO that are important for the models 
in this article and refer the reader to Schulman et al. 
(2017) for details.
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By combining several objectives, the PPO loss 
function is defined as

 E( ) : [ ( ) ( ) [ ]( )]PPO CLIP
1

VF
2L L c L c S st t t t

θ = θ − θ + πθ  (14)

where ( )CLIPLt θ  is a clipped surrogate objective, 
( ) : ( ( ) )VF target 2L V s Vt tθ = −πθ  is the squared-error between 

predicted and realized value functions, and S[πq] denotes 
an entropy bonus. The entropy bonus controls the 
exploration–exploitation trade-off during training. 
The hyperparameters c1, c2 ≥ 0 determine the trade-
offs among the terms in the loss function. Schulman 
et al. (2017) proposed the clipped surrogate objective, 

( )CLIPLt θ , as a modification of the surrogate objective 
used in TRPO (see Schulman et al. 2015a), defined as

 ( ) : min
( | )

( | )
,clip

( | )

( | )
,1 , 1 ˆCLIP

old old

L
a s

a s

a s

a s
At

t t

t t

t t

t t
tε εθ =

π
π

π
π

− +











θ

θ

θ

θ
 

  
(15)

where ε > 0, πq (at|st) and πoldq (at|st) are the new and 

current policies and Ât  is an estimate of the advantage 
function at time step t. In our computational exam-
ples, we used general advantage estimation (GAE) (see 
Schulman et al. 2015b) to estimate the advantage func-
tion, ˆ : ˆGAE( , )A At t= γ λ . The clipping operation limits the 
policy to the interval [1 - ε, 1 + ε], thereby reducing 
the variance of the policy gradient estimate.

AUTOMATIC HEDGING

Kolm and Ritter (2019) defined automatic hedging 
as “the practice of using trained reinforcement learning 
agents to handle the hedging of certain derivative posi-
tions.” Although the approach in this article in principle 
can be applied to arbitrary portfolios of derivative securi-
ties, here we consider the training of DQN agents for the 
purpose of replicating static long positions in European 
call options of different strikes by trading the underlying 
stock. In a complete market with continuous and fric-
tionless trading, such as in the BSM model, there is a 
dynamic trading strategy in the stock that replicates the 
option position perfectly. Specifically, the P&L of the 
hedged portfolio, defined as the P&L of the option posi-
tion minus the replication strategy, has zero variance. 
When frictions are no longer absent and only discrete 
trading is possible, then the goal of replication becomes 

minimizing (1) the variance of the P&L of the hedged 
portfolio and (2) the cost of replication.

We consider a complete market in which stock 
prices follow a geometric Brownian motion (GBM) with 
initial price S0 and a daily lognormal volatility of σ/day. 
We assume options are European and mature in T days 
and that the risk-free rate is zero.

In RL, at each time step t the agent observes the 
state of the environment, takes an action, and then 
receives a reward. In the following, we describe the 
state and action spaces, reward function, and trading 
costs we use in training the models.

State Space

The state must contain the information relevant for 
making the optimal decision. Information that is not rel-
evant to the problem, or that can be derived from other 
state variables, does not need to be included. For the 
replication of European options with different strikes, a 
natural state space is given by

 : {( , , , )| 0, 0, , }2 S n K S n K� � � � �S = × × = τ > τ > ∈ ∈+  
  (16)

Consequently, at each time step t, the agent 
observes the four-dimensional state vector st = (St, τ, 
nt, K ) where St is the price of the stock at time t; τ := 
T - t > 0 is the time remaining to maturity of the 
option; nt is the current number of shares held; and K 
is the option strike. We emphasize that the state does 
not need to include the option Greeks because they are 
functions of the variables the agent has access to via 
the state. With enough training data, we expect the 
agent will learn such nonlinear functions on its own 
as needed.

Action Space

After observing the state, the agent takes an action 
at by choosing the integer amount of the underlyer to 
trade from the action space:

 A L L= − ⋅ … ⋅: { 100 , ,100 }  (17)

where L is the number of option contracts held, each 
for 100 shares.
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Reward Function

Next, we turn to deriving the reward function. 
We assume agents have quadratic utility,3 which implies 
that their optimal portfolios are given as solutions of the 
mean–variance optimization problem

 E Vmax [ ]
2

[ ]w wT T− κ



π

 (18)

with κ denoting an agent’s risk aversion and π the 
optimal policy, and where the f inal wealth wT is the 
sum of individual wealth increments dwt

 0
1

w w wT
t

T

t∑= + δ
=

 (19)

It is easy to see that wealth increments can be 
decomposed as

 w q ct t tδ = −  (20)

where qt follows a random walk, and ct is the total 
trading cost in period t. Trading costs can include com-
missions, bid–offer spread cost, market impact cost, 
and other sources of slippage. Observe that when the 
risk-free rate is zero, from Equation 20, it immedi-
ately follows that E E[ ] [ ]w ct tδ = − , and the objective 
function in Equation 18 then describes the trade-off 
between cost and variance of P&L as measured by the 
risk-aversion, κ.

To solve the replication problem using RL, we need 
to choose a reward Rt such that E E V( ) [ ] [ ]2R w wt t t= δ − δκ . 
One possibility is

 
2

( ˆ )2w wt tδ − κ δ − µ  (21)

where µ̂  is an estimate of E: [ ]wtµ = δ , the expected 
wealth increment over one period. Often in trading 
problems in which the time increment t is small, µ̂  is 
negligible; hence, E E[( ˆ ) ] [( ) ]2 2w wt tδ − µ ≈ δ .4 We define 
the one-period reward function as

3 See Ritter (2017) for a discussion of how the mean–variance 
assumption fits within a general utility framework.

4 See Ritter 2017 for an RL approach that avoids this 
approximation.

 :
2

( )2R w wt t t= δ − κ δ  (22)

and use it to compute the values in Equation 1.

Rebalancing and Trading Costs

We allow agents to rebalance their replicating 
portfolio D times per day such that each episode has a 
total of T ⋅ D time steps. All trades are subject to trading 
costs defined by

 cost( ) TickSize (| | 0.01 )2n C n n= ⋅ ⋅ +  (23)

where n is the number of shares traded and C is a cost 
multiplier. The term TickSize ⋅ |n| represents the cost 
of crossing a bid–offer spread that is two ticks wide. The 
quadratic term in Equation 23 is a simplistic model for 
market impact. An advantage of the RL approach is 
that it does not make any assumptions about the form 
of the cost function (Equation 23). It will learn to opti-
mize expected utility under whatever cost function one 
prefers.

BSM Benchmark and Parameter Settings

We compare the performance of the agents with 
the delta hedging baseline policy

 ( ) 100 round( ( ))s s nDH t t tπ = − ⋅ ∆ −  (24)

where nt is the current stock holdings of an agent fol-
lowing a standard delta hedging policy, 100 is the 
number of stocks controlled by one call option, and 
∆(st) is the corresponding BSM delta of the option posi-
tion at time t.

In the computational examples, we use the fol-
lowing parameter settings: σ = 0.01, S0 = 100, T = 10, 
D = 5, K ∈ {98, 99, 100, 101, 102}, C ∈ {0, 1, 3, 5}, 
and TickSize = 0.1.

COMPUTATIONAL EXAMPLES

Simulation Environment

To train RL agents, one needs a lot of data. 
The majority of the most successful RL applications 
to date rely on generating training data in simulation 
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environments, rather than training on historical data. 
With a simulator of the environment, one can generate 
as much data as one needs to accurately train the models.

We implemented a simulation environment for 
options trading in OpenAI Gym using Python and 
PyTorch (see https://keras.io/ and Paszke et al. 2019). 
Although our simulation environment is similar to that 
of Kolm and Ritter (2019), who considered the training 
of an option with a chosen fixed strike price, our imple-
mentation allows training options with the same under-
lier for a range of strike prices simultaneously.

The simulator has three main steps. First, it gener-
ates training data by sampling episodes of stock returns 
from a price process. Second, it samples a strike price 
from a selected range of strikes and, based on the state 
representation, computes the corresponding option 
price for the current time step. Third, after receiving 
the action chosen by the RL agent, the current state 
vector is updated, and the simulator increments the time 
step. The environment computes the reward according 
to Equation 22, and the reward and state vector are 
recorded into the replay memory to be used in future 
training. One epoch consists of 3,000 episodes, in which 
each episode is one complete path of 50 price observa-
tions (i.e., T ⋅ L = 10 ⋅ 5). We update the data only every 
five epochs.

In the computational examples in this article, the 
price process is a GBM initialized as by Kolm and Ritter 
(2019), and we consider an agent holding a long position 
in a call option, controlling 100 shares of stocks, with 
strike K in some range.

Model Architecture and Hyperparameters

We use a standard multilayer perceptron archi-
tecture with five hidden layers with ReLU activation 
functions for DQN and PPO. In our computational 
experiments, we found that five hidden layers provided 
the best trade-off between training time and hedging 
performance. To improve the speed of convergence in 
the training phases, we use batch normalization before 
each ReLU in the hidden layers. For DQN, the network 
outputs a vector of the same size as the action space, each 
component representing the value of the Q-function 
conditional on the corresponding action. For PPO, the 
outputs from the f inal hidden layer are fed into two 
individual linear layers to produce a policy vector of the 
same size as the action space, where each component 
represents the probability of each action and a scalar for 

the value function (Equation 3). In the case of DQN 
with Pop-Art, we normalize the Q-function according 
to the formulas in Equations 9 and 10.

To train the DQN and PPO models, we use the 
Adam optimizer with an initial learning rate of 10–4. We 
train DQN with Pop-Art using stochastic gradient descent 
with a fixed learning rate of 10–4. In all of the models, we 
clip gradients such that their norm is less than one.

We perform grid search on the set of hyperparam-
eters and select the configuration with the best out-of-
sample performance. We found that a discount factor, γ, 
in the range of [0.8, 0.9] gave the best performance for 
DQN and for DQN with Pop-Art. For PPO, one needs 
to tune the hyperparameter λ used in GAE. Theoreti-
cally, λ should be close to one for the best performance. 
However, Schulman et al. (2015b) showed that large 
λ can lead to gradient estimates with high variance, 
resulting in slow convergence.

In our computational experiments, we observed 
that a larger entropy bonus in the PPO loss function 
(Equation 14) results in well-behaved and financially 
intuitive policies, whereas a smaller entropy bonus 
sometimes leads to unstable and nonintuitive polices. 
For the PPO loss function (Equation 14), we fix c1 = 
0.5 and tune c2, finding that c2 = 0.2 provides the best-
performing policies.

We conduct our computational experiments on 
an NVIDIA GTX 1080 GPU. Unlike Kolm and Ritter 
(2019), we simultaneously train a whole range of strikes, 
K ∈ {98, 99, 100, 101, 102}, for each model. For trading 
costs (Equation 23), we use the cost multipliers C ∈ {0, 
1, 3, 5}, corresponding to no, low, moderate, and high 
costs. For out-of-sample validation, we use 38,500 ran-
domly generated episodes as our test set.

Training Time and Convergence

It is well known that training networks for DRL 
can be time consuming (see, for example, Cruz, Du, 
and Taylor 2017). Therefore, we first examine training 
times and convergence of our models. Exhibits 1 and 
2 show average time in GPU seconds and the number 
of data points used until convergence. Here, one data 
point represents the state and corresponding reward. We 
observe that, on average, it takes DQN about 104 GPU 
seconds to converge on a single GPU, whereas PPO only 
needs about 102 GPU seconds. PPO converges more 
quickly because, on average, DQN requires an order 
of magnitude more data points. In fact, the training 
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e x h i B i t  1
Average Reward versus Training Time for DQN and PPO

Notes: The left panel shows average reward versus GPU seconds for the DQN agent in the one (dashes) and five strike (crosses) scenarios. The right panel 
shows the average reward versus GPU seconds for the PPO agent in the one (dashes) and five strike (crosses) scenarios.
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e x h i B i t  2
Average Reward versus Training Data Size for DQN and PPO

Notes: The left panel shows the average reward versus training data size for the DQN agent in the one (dashes) and five strike (crosses) scenarios. The right 
panel shows the average reward versus training data size for the PPO agent in the one (dashes) and five strike (crosses) scenarios.
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of DQN involves sampling around 5 ⋅ 105 versus 104 
data points for PPO; equivalently, DQN and PPO need 
approximately 150 versus 6 epochs to converge.

The left panels in Exhibits 1 and 2 indicate some 
instability issues in the training of DQN. We deter-
mined that these are due to scaling issues of the rewards. 
By applying the Pop-Art normalization to DQN as dis-
cussed earlier, we obtain stable training behavior (see 
Exhibit 3).

Exhibit 4 provides a comparison of the policies 
of DQN and DQN with Pop-Art for an option struck 
at K = 100, close to maturity, and with cost multiplier 
C = 1. In the exhibit, one can examine the policies 
for out-of-, at-, and in-the-money cases corresponding 
to the stock price at 98, 100, and 102, respectively. 
The upward sloping lines represent the corresponding 
policies from the BSM model (i.e., the trades resulting 
from changes in delta). We observe in the left and right 
panels that the agents have correctly learned that, under 
discrete trading with costs, the resulting actions are 
piecewise constant as a function of the current stock 
position. Additionally, they have rightly identified the 
existence of a no-trade region—that is, a range of states 
(stock positions) for which the action is a zero trade.  

Notice the DQN policies (in the left panel) are not 
strictly increasing but exhibit some wiggles, indicating 
that the training of the agent did not fully converge. 
However, more training does not improve upon this 
behavior, as already suggested by the results from 
Exhibits 1 and 2. Perhaps a different training approach 
for DQN than ours may lead to better performance. 
Nonetheless, after examining our DQN training data, 
we reached the conclusion that data scaling issues cause 
the instabilities. Rather than modifying our approach 
to training DQN, we chose to implement the Pop-Art 
normalization described previously. As we see in the 
right panel in Exhibits 3 and 4 and 3, DQN with Pop-
Art leads to stable training performance and strictly 
increasing policies.

To summarize, the aforementioned results show 
that (1) training is quite rapid, especially for PPO; (2) 
DQN with Pop-Art addresses the instability issues of 
DQN; (3) for all models, the training time is not affected 
by whether one or several options of the same under-
lier are trained; and (4) for all the models, the training 
time for each model is not affected by the choice of cost 
multiplier. For the remaining computational examples in 
this article, we train all models for the multistrike case.

e x h i B i t  3
Average Reward versus Training Time and Data Size for DQN with Pop-Art

Notes: The left panel shows the average reward versus training time by the DQN with Pop-Art agent in the one (dashes) and five strike (crosses) scenarios. 
The right panel shows the average reward versus training data size by the DQN with Pop-Art agent in the one (dashes) and five strike (crosses) scenarios.
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Out-of-Sample Performance

In this section, we examine the out-of-sample per-
formance of the trained models. For this purpose, we 
generate 38,500 random out-of-sample paths using our 
simulator.

First, we examine the behavior of the models for 
one representative out-of-sample path. In Exhibit 5, the 
left and right panels depict the PPO agent’s performance 
for the at-the-money no-cost and high-cost cases for this 
sample path. The performance of DQN and DQN with 
Pop-Art is similar to that of PPO and is omitted. In the 
no-cost cases, we notice that the agents’ stock positions 
track the BSM delta position, showing that all agents 
have learned to hedge. In the high-cost case, although 
able to maintain a hedge, the agents are trading in a 
more cost-conscious way, suggested by a much smoother 
curve than the BSM delta, which naturally f luctuates 
with the GBM process.

To summarize the results from all 38,500 out-of-
sample paths, we compute the realized volatility, total 
cost, and P&L of each path, representing them as kernel 

density plots. Exhibit 6 shows the results for at the money 
options in the high-cost setting. The left and right panels 
demonstrate that DQN agents are able to learn poli-
cies that, in comparison to the BSM model, result in 
lower realized P&L volatility at lower cost. One can 
evaluate efficacy of an automatic hedging model by how 
often the total P&L (including the hedging and trading 
costs) is significantly less than zero. The middle panel in 
Exhibit 6 displays density plots of the t-statistics of total 
P&L for the agents and BSM model. We observe that 
DQN and PPO perform the best in that their t-statistics 
are more frequently close to zero than the other models.

CONCLUSIONS

In this article, we developed a system based on (1) 
deep Q-learning, (2) deep Q-learning with Pop-Art, 
and (3) proximal policy optimization, all state-of-the-art 
DRL models that learn to optimally replicate options 
with different strikes subject to realistic conditions, 
including discrete trading, round lotting, and nonlinear 
transaction costs. A feature of the system is that each 

e x h i B i t  4
Policy Plot for DQN and DQN with Pop-Art

Notes: Policies for DQN (left panel) and DQN with Pop-Art (right panel) for strike K = 100, close to maturity and cost multiplier C = 1. Policy plots 
show three different situations: (1) out of the money (St = 98, stars for agents, dotted line for delta), (b) at the money (St = 100, dots for agents, dashed line 
for delta), and in the money (St = 102, triangles for agents, dash-dotted line for delta).
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model is trained to hedge a whole range of strikes, and 
no retraining is needed when the user changes to another 
strike within the range.

In a series of simulations, we demonstrated that the 
DRL models learn similar or better strategies as com-
pared to delta hedging. Out of all models, we concluded 
that PPO performs the best in terms of P&L, training 
time, and amount of data needed for training.

Our proposed models are general, allowing the 
user to plug in any option pricing and simulation library 
and then train them with no further modifications to 
hedge arbitrary option portfolios.

In closing, we comment on some of the advantages 
of the RL system we proposed for the replication of 
derivatives. The system is model-free, not requiring many 
assumptions. Specifically, no assumptions are required 

e x h i B i t  5
An Out-of-Sample Simulation of PPO

Notes: The left panel shows cumulative stock, option, and total P&L; RL agent’s position in shares (stock.pos.shares); and –100 ⋅ round(∆(st)) (delta.
hedge.shares) for cost multiplier C = 0. The right panel shows cumulative stock, option, and total P&L; RL agent’s position in shares (stock.pos.shares);  
and –100 ⋅ round(∆(st)) (delta.hedge.shares) for cost multiplier C = 5.
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e x h i B i t  6
Kernel Density Plots for At-the-Money Options

Notes: Kernel density plots of realized volatility (left panel), t-statistic of total P&L (middle panel), and total costs (right panel) of the BSM model and the 
PPO, DQN and DQN with Pop-Art agents hedging options struck at the money (K = 100) for cost multiplier C = 5.
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about price processes of the derivatives and hedging secu-
rities or transaction costs incurred from trading. All the 
system needs is a good simulator, in which price processes 
and transaction costs are accurately simulated. The system 
does not depend on the existence of a perfect dynamic 
trading strategy replicating the derivatives. Rather, it 
learns to trade off variance and cost as best as possible 
using any hedging securities provided. In particular, the 
system will find the best minimum-variance dynamic 
replication strategy, whether or not the minimum-vari-
ance is actually zero, in contrast to classical derivative 
pricing models in complete markets. This is an impor-
tant point because in the real world markets cannot be 
assumed to be complete; hence, some securities required 
for perfect replication may not exist.
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Dynamic Replication and Hedging:  
A Reinforcement Learning Approach
Petter N. Kolm aNd GordoN ritter

The Journal of Financial Data Science
https://jfds.pm-research.com/content/1/1/159

ABSTRACT: The authors of this article address the problem of how 
to optimally hedge an options book in a practical setting, where trading 
decisions are discrete and trading costs can be nonlinear and difficult 
to model. Based on reinforcement learning (RL), a well-established 
machine learning technique, the authors propose a model that is f lex-
ible, accurate and very promising for real-world applications. A key 
strength of the RL approach is that it does not make any assumptions 
about the form of trading cost. RL learns the minimum variance hedge 
subject to whatever transaction cost function one provides. All that 
it needs is a good simulator, in which transaction costs and options 
prices are simulated accurately.

Greedy Online Classification of Persistent 
Market States Using Realized Intraday  
Volatility Features
Peter NystruP, Petter N. Kolm,  
aNd eriK liNdström

The Journal of Financial Data Science
https://jfds.pm-research.com/content/2/3/25

ABSTRACT: In many financial applications, it is important to 
classify time-series data without any latency while maintaining per-
sistence in the identified states. The authors propose a greedy online 
classifier that contemporaneously determines which hidden state a new 
observation belongs to without the need to parse historical observa-
tions and without compromising persistence. Their classifier is based 
on the idea of clustering temporal features while explicitly penalizing 
jumps between states by a fixed-cost regularization term that can be 
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calibrated to achieve a desired level of persistence. Through a series 
of return simulations, the authors show that in most settings their 
new classifier remarkably obtains a higher accuracy than the correctly 
specified maximum likelihood estimator. They illustrate that the new 
classifier is more robust to misspecification and yields state sequences 
that are significantly more persistent both in and out of sample. They 
demonstrate how classification accuracy can be further improved by 
including features that are based on intraday data. Finally, the authors 
apply the new classifier to estimate persistent states of the S&P 500 
Index.

A Simple Framework for Time Diversification
FraNK J. Fabozzi, serGio m. Focardi,  
aNd Petter N. Kolm

The Journal of Investing
https://joi.pm-research.com/content/15/3/8

ABSTRACT: In this article the authors provide a simple but rig-
orous mathematical framework for time diversification. Based on this 
framework, we provide a measure of time diversification that can be 
computed for any return distribution model and any risk measure; 
this measure of time diversification can be empirically ascertained 
with non-parametric estimates of risk and with bootstrap techniques 
to simulate the return distribution. The authors argue that the critical 
issue of time diversification is not how to interpret time diversification 
in sequences of IID returns, but how to make long-term forecasts. The 
latter involves complex issues related to the distributional properties 
of returns, as well as memory effects and regime shifts. The authors 
then discuss how the distributional properties of stock returns, long 
memory, and regime shifts affect time diversification.
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