
Journal of Pure and Applied Algebra 212 (2008) 2147–2162

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

Abstract simplicity of complete Kac–Moody groups over finite fields
Lisa Carbone a, Mikhail Ershov b,∗, Gordon Ritter c
a Department of Mathematics, Hill Center, Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Rd Piscataway,
NJ 08854-8019, United States
b School of Mathematics, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, United States
c Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA 02138, United States

a r t i c l e i n f o

Article history:
Received 17 October 2006
Received in revised form 18 January 2008
Available online 5 May 2008
Communicated by C.A. Weibel

MSC:
Primary: 20E42
secondary: 20E32
17B67
20E18
22F50

a b s t r a c t

Let G be a Kac–Moody group over a finite field corresponding to a generalized Cartanmatrix
A, as constructed by Tits. It is known that G admits the structure of a BN-pair, and acts on
its corresponding building. We study the complete Kac–Moody group Ĝ which is defined
to be the closure of G in the automorphism group of its building. Our main goal is to
determine when complete Kac–Moody groups are abstractly simple, that is have no proper
non-trivial normal subgroups. Abstract simplicity of Ĝwas previously known to holdwhen
A is of affine type. We extend this result to many indefinite cases, including all hyperbolic
generalized Cartan matrices A of rank at least four. Our proof uses Tits’ simplicity theorem
for groups with a BN-pair and methods from the theory of pro-p groups.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let k denote a finite field which will remain fixed throughout the paper. Let A be a generalized Cartan matrix, and let
GA be the corresponding Kac–Moody group functor of simply-connected type, as constructed by Tits in [25]. The group
G(A) := GA(k) is usually called aminimal or incomplete Kac–Moody group.

Distinct constructions of complete Kac–Moody groups are given in the papers of Carbone and Garland [4] and Remy and
Ronan [20]; in both cases the group constructed is the completion of Tits’ group G(A) with respect to a certain topology.
In [20], the topology comes from the action of G(A) on its associated positive building; we denote the corresponding
completion by Ĝ(A).1 In [4], one starts with the integrable highest weight module Vλ for the Kac–Moody algebra g(A)
corresponding to a regular dominant integral weight λ, then considers a certain Z-form, VλZ of Vλ, and the action of G(A)
on a k-form, Vλk of VλZ . The corresponding completion of G (which depends on λ) will be denoted by Ĝλ(A). We describe these
constructions in detail in Section 2.

Though constructed in different ways, the groups Ĝ(A) and Ĝλ(A) have very similar structure. In particular, in both cases
the complete Kac–Moody group is locally compact and totally disconnected. Recently, Baumgartner and Remy showed2 that
for any weight λ, the Remy–Ronan completion Ĝ(A) is a homomorphic image of the Carbone–Garland completion Ĝλ(A) (see
Theorem 2.6 for a precise statement).

The main goal of this paper is to investigate when complete Kac–Moody groups are abstractly simple. Recall that a
topological group is called abstractly simple if it has no proper non-trivial normal subgroups, and topologically simple if it

∗ Corresponding address: University of Virginia, Department of Mathematics, Kerchof Hall, Charlottesville, VA 22904, United States.
E-mail addresses: carbonel@math.rutgers.edu (L. Carbone), ershov@virginia.edu (M. Ershov), ritter@post.harvard.edu (G. Ritter).

1 Such completions are called topological Kac–Moody groups in [20].
2 Private communication.

0022-4049/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.jpaa.2008.03.023

http://www.elsevier.com/locate/jpaa
http://www.elsevier.com/locate/jpaa
mailto:carbonel@math.rutgers.edu
mailto:ershov@virginia.edu
mailto:ritter@post.harvard.edu
http://dx.doi.org/10.1016/j.jpaa.2008.03.023


2148 L. Carbone et al. / Journal of Pure and Applied Algebra 212 (2008) 2147–2162

has no proper non-trivial closed normal subgroups. In view of Theorem 2.6, the simplicity question should be asked for
the smaller groups Ĝ(A). An obvious necessary condition for the simplicity of Ĝ(A) is that A should be indecomposable:
if A1, . . . , Ak are indecomposable blocks of A, then Ĝ(A) ∼=

∏k
i=1 Ĝ(Ai). Remy [18, Theorem 2.A.1] proved3 that if A is

indecomposable, then the group Ĝ(A) is topologically simple when |k| > 3, and asked whether abstract simplicity holds
as well [19, Question 30]. We answer this question in the affirmative for a large class of Kac–Moody groups.

Theorem 1.1. Let A be an indecomposable generalized Cartan matrix. Assume that one of the following holds:

(a) |k| > 3, p = char(k) > 2, A is symmetric, and any 2 × 2 submatrix of A is of finite or affine type;
(b) |k| > 3 and any 2 × 2 submatrix of A is of finite type.

Then the group Ĝ(A) is abstractly simple.

Remark. In the hypotheses of Theorem 1.1, a submatrix is not necessarily proper.

Abstract simplicity of Ĝ(A)was previously known only when A is of finite type (in which case Ĝ(A) is a finite group) or A is
of affine type, in which case Ĝ(A) is isomorphic to the group of K-points of a simple algebraic group defined over K = k((t))
[18]. The class of matrices covered by Theorem 1.1 includes many indefinite examples, including all hyperbolic matrices of
rank at least four — see Proposition 2.1.

Remark. Recently, Caprace and Remy [3] proved (abstract) simplicity of the incomplete group G(A) modulo its finite center
in the case when the associated Coxeter group is not affine and assuming that |k| is sufficiently large. If A is affine, the
incomplete group G(A) (modulo its center) is infinite and residually finite, and hence cannot be simple.

Briefly, our approach to proving Theorem1.1will be as follows. A celebrated theoremof Tits [2] gives sufficient conditions
(called “simplicity axioms”) for a group with a BN-pair to be simple. The group Ĝ(A) routinely satisfies most of these axioms
if |k| > 3 (for arbitrary A), which already implies topological simplicity of Ĝ(A). It is not clear if the remaining axioms
hold in general; however, they do hold if the “positive unipotent” subgroup Û(A) is topologically finitely generated — see
Theorem 4.1 (Û(A) is defined as the completion of the group U(A) generated by all positive root subgroups). This follows
from the fact that Û(A) is a pro-p group and basic properties of pro-p groups (see [7, Chapter 1]).

Thus our main task is to prove (topological) finite generation of Û(A) under the hypotheses of Theorem 1.1. If any
2 × 2 submatrix of A is of finite type and |k| > 3, then U(A) is finitely generated (as an abstract group) by a theorem of
Abramenko [1], which immediately implies finite generation of Û(A). This proves Theorem 1.1(b).

In Section 6, we show (see Theorem 6.1) that Û(A) is finitely generated as long as
(a) A is symmetric;
(b) for every 2 × 2 submatrix C of A, the group Û(C) is “well behaved”.
The latter is a certain technical condition which is “almost” equivalent to generation by simple root subgroups. In

Section 7, we show that the group Û(C) is well behaved when C is a 2 × 2 matrix of finite or affine type (assuming p > 3),
using an explicit realization of Û(C). This completes the proof of Theorem 1.1(a). When C is a 2 × 2 hyperbolic matrix, we
do not know if Û(C) is well behaved or even if Û(C) is finitely generated. It seems that essentially new ideas are needed to
settle this case.
Some conventions about topological groups. Let G be a topological group. By a base (resp. subbase) for the topology of G we
will mean a base (resp. subbase) of neighborhoods of the identity. Recall that a topological group G is topologically generated
by a set S if the subgroup abstractly generated by S is dense in G. When discussing finite generation of pro-p groups, we will
always be interested in topological generating sets, so the word ‘topological’ will often be omitted. Since (infinite) pro-p
groups are never finitely generated as abstract groups, this convention should not cause any confusion.

2. Kac–Moody algebras and groups

2.1. Generalized Cartan matrices

Let I = {1, 2, . . . , l} be a finite set. A matrix A = (aij)i,j∈I is called a generalized Cartan matrix if its entries satisfy the
following conditions:

(a) aij ∈ Z for i, j ∈ I, (b) aii = 2, for i ∈ I

(c) aij ≤ 0 if i 6= j (d) aij = 0 ⇔ aji = 0.

By a submatrix of A, we mean a matrix of the form

AJ = (aij)i,j∈J,

3 Remy considers a more general class of quasi-split Kac–Moody groups.
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where J is a subset of I. We say that the submatrix AJ is proper if J 6= I. The matrix A is called indecomposable if there is no
partition of the set I into two non-empty subsets so that aij = 0 whenever i belongs to the first subset, while j belongs to the
second. A submatrix AJ is called an indecomposable block of A if AJ is indecomposable, and J is maximal with this property.

A generalized Cartan matrix A is said to be of

finite (classical) type if A is positive definite; in this case, A is the Cartan matrix of a finite-dimensional semi-simple Lie
algebra,
affine type if A is positive semi-definite, but not positive definite,
indefinite type if A is neither of finite nor affine type.

An indefinite matrix is said to be of hyperbolic type (in the sense of [9, 5.10, p. 66]) if every proper indecomposable
submatrix of A is of finite or affine type.

Proposition 2.1. Let A be an indecomposable l × l matrix, and let B be an s × s submatrix of A. Assume that either

(i) A is of finite type,
(ii) A is of affine type and s ≤ l − 1 (that is, B is a proper submatrix of A),
(iii) A is of hyperbolic type and s ≤ l − 2.

Then B is of finite type.

Proof. Case (i) is obvious, and case (ii) is well known [9, Chapter 4]. Now let A be hyperbolic and s ≤ l − 2. We can assume
that B is indecomposable, since if every indecomposable block of B is of finite type, then so is B. Since A is indecomposable,
there exists an indecomposable (s + 1) × (s + 1) submatrix C of A such that C contains B. Since s + 1 < l, the matrix C must
be of finite or affine type, whence B is of finite type by cases (i) and (ii). �

2.2. Kac–Moody algebras

For the rest of this section, fix a generalized Cartan matrix A = (aij)i,j∈I , and let l = |I|. A realization of A over Q is a triple
(h,Π ,Π∨)where h is a vector space overQ of dimension 2l−rank(A), andΠ = {α1, . . . ,αl} ⊆ h∗ andΠ∨

= {α∨

1 , . . . ,α∨

l } ⊆ h

are linearly independent sets, such that 〈αj,α
∨

i 〉 = aij for i, j ∈ I. As usual, 〈·, ·〉 denotes the natural pairing between h and h∗.
Elements of Π are called simple roots and elements of Π∨ simple coroots.

The associated Kac–Moody algebra g = gA is a Lie algebra over Q, generated by h and elements (ei)i∈I , (fi)i∈I subject to the
Serre–Kac relations:

(1) [h, h] = 0 (5) [ei, fj] = 0, i 6= j

(2) [h, ei] = 〈αi, h〉ei, h ∈ h (6) (ad ei)
−aij+1(ej) = 0, i 6= j

(3) [h, fi] = −〈αi, h〉fi, h ∈ h (7) (ad fi)
−aij+1(fj) = 0, i 6= j

(4) [ei, fi] = α∨

i .

It is easy to see that gA depends only on A and not on its realization (see [9, 1.1]).
Relative to h, the Lie algebra g has decomposition g = h ⊕

⊔
α∈∆ gα, where

gα = {x ∈ g | [h, x] = 〈α, h〉x, h ∈ h},

and ∆ = {α ∈ h∗
\ {0} | gα 6= 0}. Elements of ∆ are called the roots of g. Each root has the form

∑
i∈I niαi where ni ∈ Z and

either ni ≥ 0 for all i, or ni ≤ 0 for all i. The roots are called positive or negative accordingly; the set of positive (resp. negative)
roots will be denoted by ∆+ (resp. ∆−). The height of a root α =

∑l
i=1 niαi is defined to be the integer

∑
i ni.

2.3. Real roots and the Weyl group

For i ∈ I definewi ∈ Aut(h∗) by settingwi(α) = α−〈α,α∨

i 〉αi. The groupW = 〈{wi}〉 generated by thewi is called theWeyl
group associated to A. The set Φ = W(Π ) is a subset of ∆, called the set of real roots. The remaining roots ∆ \ Φ are called
imaginary roots.

The Weyl group W has a faithful action on h defined by wi(h) = h − 〈αi, h〉α∨

i . Moreover, the pairing 〈·, ·〉 is W-invariant,
that is, 〈wα,wh〉 = 〈α, h〉 for α ∈ h∗, h ∈ h and w ∈ W.

For each real root α, define the corresponding coroot α∨ as follows: write α in the form wαi for some w ∈ W and i ∈ I and
set α∨

= wα∨

i . One can show (see [9]) that α∨ is independent of the above choice. The correspondence α 7→ α∨ is not linear;
however, it does satisfy some nice properties:

Proposition 2.2. The following hold:

(a) For each α ∈ Φ, the coroot α∨ is an integral linear combination of {α∨

i }, and the coefficients are all non-negative (resp.
non-positive) if α ∈ Φ+ (resp. α ∈ Φ−). Furthermore, (−α)∨

= −α∨.
(b) Given α,β ∈ Φ, we have 〈α,β∨

〉 > 0 (resp. = 0,< 0) ⇔ 〈β,α∨
〉 > 0 (resp. = 0,< 0).

(c) For every α ∈ Φ, we have 〈α,α∨
〉 = 2.
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In order to define Kac–Moody groups, we introduce a related group W∗
⊆ Aut(g). By definition, W∗ is generated by

elements {w∗

i }i∈I , where

w∗

i = exp(ad ei) exp(− ad fi) exp(ad ei) = exp(− ad fi) exp(ad ei) exp(− ad fi).

The group W∗ is a central extension of W. More specifically, there is a surjective homomorphism ε : W∗
→ W which sends

w∗

i to wi for all i; the kernel of ε is an elementary abelian group of exponent 2 generated by {(w∗

i )
2
}, as follows immediately

from [25, 3.3].
Finally, we define certain elements {eα ∈ g}α∈Φ . Given α ∈ Φ, write α in the form wαj for some j ∈ I and w ∈ W, choose

w∗
∈ W∗ which maps onto w, and set eα = w∗eαj . It is clear from [25, (3.3.2)] that eα belongs to gα, eα is uniquely determined

up to sign, and for all i ∈ I,w∗

i eα = ηα,iewiα for some constants ηα,i ∈ {±1}. These constants {ηα,i} will appear in the definition
of Kac–Moody groups.

2.4. Kac–Moody groups and Tits’ presentation

The construction of (incomplete) Kac–Moody groups over arbitrary fields is due to Tits [25]. Onemay define these groups
by generators and relators. While not explicitly stated in Tits’ paper, such a presentation appears in the papers of Carter [5]
and (in a slightly different form) Morita and Rehmann [13].

The group G = G(A) defined below is called the incomplete simply-connected Kac–Moody group corresponding to A. The
presentation we use is “almost canonical” except for the choice of elements {eα} which determine the constants {ηα,i}.

By definition, G(A) is generated by the set of symbols {χα(u) | α ∈ Φ, u ∈ k} satisfying relations (R1)–(R7). In all the
relations i, j are elements of I, u, v are elements of k (arbitrary, unless mentioned otherwise) and α and β are real roots.

(R1) χα(u + v) = χα(u)χα(v);
(R2) Let (α,β) be a prenilpotent pair, that is, there exist w, w′

∈ W such that

wα, wβ ∈ Φ+ and w′α, w′β ∈ Φ−.

Then

[χα(u),χβ(v)] =
∏

m,n≥1
χmα+nβ(Cmnαβu

mvn),

where the product on the right-hand side is taken over all real roots of the formmα+ nβ,m, n ≥ 1, in some fixed order, and
Cmnαβ are integers independent of k (but depending on the order).

For each i ∈ I and u ∈ k∗ set

χ±i(u) = χ±αi(u),

w̃i(u) = χi(u)χ−i(−u−1)χi(u),

w̃i = w̃i(1) and hi(u) = w̃i(u)w̃
−1
i .

The remaining relations are

(R3) w̃iχα(v)w̃
−1
i = χwiα(ηα,iu),

(R4) hi(u)χα(v)hi(u)−1
= χα(vu−〈α,α∨

i 〉) for u ∈ k∗,
(R5) w̃ihj(u)w̃

−1
i = hj(u)hi(u−aji),

(R6) hi(uv) = hi(u)hi(v) for u, v ∈ k∗, and
(R7) [hi(u), hj(v)] = 1 for u, v ∈ k∗.

An immediate consequence of relations (R3) is that G(A) is generated by {χ±i(u)}.

Remark. In [10, Proposition 2.3], it is shown that a pair {α,β} is prenilpotent if and only ifα 6= −β and |(Z>0α+Z>0β)∩Φ| <
∞. Thus the product on the right-hand side of (R2) is finite.

Intuitively, one should think of the above presentation as an analogue of the Steinberg presentation for classical
groups with χα(u) playing the role of exp(ueα). In the next subsection we give a representation-theoretic interpretation
of Kac–Moody groups which makes the above analogy precise.

Next we introduce several subgroups of G = G(A):

1. Root subgroups Uα. For each α ∈ Φ let Uα = {χα(u) | u ∈ k}. By relations (R1), each Uα is isomorphic to the additive group
of k.

2. The “extended”Weyl group W̃. Let W̃ be the subgroup ofG generated by elements {w̃i}i∈I . One can show that W̃ is isomorphic
to the group W∗ introduced before, so there is a surjective homomorphism ε : W̃ → W such that ε(w̃i) = wi for i ∈ I.
Given w̃ ∈ W̃ and w ∈ W, we will say that w̃ is a representative of w if ε(w̃) = w. It will be convenient to identify
(non-canonically) W with a subset (not a subgroup) of W̃ which contains exactly one representative of every element of
W. By abuse of notation, the set of those representatives will also be denoted by W. It follows from relations (R3) that
wUαw−1

= Uwα for any α ∈ Φ and w ∈ W.
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3. “Unipotent” subgroups. Let U+
= 〈Uα | α ∈ Φ+

〉, and U−
= 〈Uα | α ∈ Φ−

〉.
4. “Torus” (“diagonal” subgroup). Let H = 〈{hi(u) | i ∈ I, u ∈ k}〉. One can show that relations (R6)–(R7) are defining relations

for H, so H is isomorphic to the direct sum of l copies of k∗.
5. “Borel” subgroups. Let B+

= 〈U+,H〉 and B−
= 〈U−,H〉. By relations (R4), H normalizes both U+ and U−, so we have

B+
= HU+

= U+H and B−
= HU−

= U−H.
6. “Normalizer.” Let N be the subgroup generated by W̃ and H. Since W̃ normalizes H, we have N = W̃H. It is also easy to see

that N/H ∼= W.

Tits [25] proved that (B+,N) and (B−,N) are BN-pairs4 of G. In fact, G admits the stronger structure of a twin BN-pair, but
we will not use it. Let X+ and X− be the buildings associated with (B+,N) and (B−,N), respectively. Since the field k is finite,
the buildings X+ and X− are locally finite as chamber complexes. In fact, X+ and X− have constant thickness |k| + 1 (see [6,
Appendix KMT]).

Below we list some of the fundamental properties of these BN-pairs. We will work mostly with the positive BN-pair
(B+,N), and from now on, write B for B+ and U for U+.
(a) B ∩ N = H, so the Coxeter group associated to (B,N) is isomorphic to the Weyl group W = W(A);
(b) Bruhat decomposition: G = BWB;
(c) Birkhoff decomposition: G = U−WB = B−WU = UWB−

= BWU−.

Of course, (b) follows directly from (B,N) being a BN-pair, and the proof of (c) uses the twin BN-pair structure (see [10]).
Finally, we shall need a presentation by generators and relators for the group U established by Tits [24, Proposition 5].

Theorem 2.3. The group U is generated by the elements {χα(u) | α ∈ Φ+, u ∈ k} subject to relations (R1) and (R2) defined
earlier in this section.

2.5. Representation-theoretic interpretation of Kac–Moody groups

The following interpretation of Kac–Moody groupswas given byCarbone andGarland [4] (see also [26]). This construction
generalizes that of Chevalley groups [22]. Let U be the universal enveloping algebra of g. Let Λ ⊆ h∗ be the linear span of αi,
for i ∈ I, and Λ∨

⊆ h be the linear span of α∨

i , for i ∈ I. Let UZ ⊆ U be the Z-subalgebra generated by emi /m!, fmi /m!, and
(

h
m

)
,

for i ∈ I, h ∈ Λ∨ and m ≥ 0. Then UZ is a Z-form of U, i.e. UZ is a subring and the canonical map UZ ⊗ Q −→ U is bijective.
For a field K, let UK = UZ ⊗ K, and gK = gZ ⊗ K.

Now let λ ∈ h∗ be a regular dominant integral weight, that is, 〈λ,α∨

i 〉 ∈ Z>0 for every i ∈ I. Let Vλ be the corresponding
irreducible highest weight module. Choose a highest weight vector vλ ∈ Vλ, and let VλZ ⊂ Vλ be the orbit of vλ under the
action of UZ. Then VλZ is a Z-form of Vλ as well as a UZ-module. Similarly, Vλk := k⊗Z VλZ is a Uk-module.

It is straightforward to establish the following (see [26, Proposition 3]).

Proposition 2.4. There is a (unique) homomorphism πλ : G → Aut(Vλk ) such that

πλ(χαi(u)) =

∞∑
m=0

um emi
m!

for i ∈ I and u ∈ k,

πλ(χ−αi(u)) =

∞∑
m=0

um fmi
m!

for i ∈ I and u ∈ k.

The expressions on the right-hand side are well-defined automorphisms of Vλk since ei and fi are locally nilpotent on Vλk .
Let Gλ = πλ(G). As we will see later in this section, the kernel of πλ is finite, central and contained in H.

2.6. Complete Kac–Moody groups

As mentioned in the introduction, distinct completions of G(A) were given in the papers of Carbone and Garland [4] and
Remy and Ronan [20]. We now briefly review these constructions, starting with the Remy–Ronan completion. As above, let
X+ be the building associatedwith the positive BN-pair (B,N), and consider the action ofGon X+. Recall that X+ is locally finite
as a chamber complex. Define the topology on G by the subbase5 consisting of stabilizers of vertices of X+ or, equivalently,
fixators (pointwise stabilizers) of chambers of X+. We shall call this topology the building topology. The completion of G in
its building topology will be referred to as the Remy–Ronan completion and denoted by Ĝ.

We will make few references to the action of G on its building in this work. All we will need is the description of the
building topology in purely group-theoretic terms. Since (B,N) is a BN-pair, we know that
(a) The subgroup B of G is a chamber fixator,
(b) G acts transitively on the set of chambers of X+.

Therefore, the family {gBg−1
}g∈G is a subbase for the building topology.

4 Recall that BN-pairs are also called Tits systems.
5 Recall that by ‘subbase’ for a topology on a group, we mean a ‘subbase of neighborhoods of the identity’.
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Let Z be the kernel of the natural map G → Ĝ (or, equivalently, the kernel of the action of G on X+). Using results of Kac
and Peterson [10], Remy and Ronan [20, 1.B] showed that Z is a subgroup of H (and hence finite); furthermore, Z coincides
with the center of G.

Now let B̂ (resp. Û) be the closure of B (resp. U) in Ĝ. The natural images of N and H in Ĝ are discrete, and therefore we
will denote them by the same symbols (without hats). This involves some abuse of notation since the image of H in Ĝ is
isomorphic to H/Z.

The following theorem is a collection of results from [17,20]:

Theorem 2.5. Let Ĝ, B̂ and N be as above. The following hold:

(a) The pair (̂B,N) is a BN-pair of Ĝ. Moreover, if X̂+ is the associated building, there exists a Ĝ-equivariant isomorphism between
X+ and X̂+. In particular, the Coxeter group associated to (̂B,N) is isomorphic to W = W(A).

(b) The group B̂ is an open profinite subgroup of Ĝ. Furthermore, Û is an open pro-p subgroup of B̂.

Now we turn to the Carbone–Garland completion. Let λ be a regular weight, and let Gλ = Gλ(A) and Vλk be defined as
in the previous subsection. Now we define the weight topology on Gλ by taking stabilizers of elements of Vλk as a subbase of
neighborhoods of the identity. The completion of Gλ in this topology will be referred to as the Carbone–Garland completion
and denoted by Ĝλ(A). Since Gλ(A) is a homomorphic image of G(A), we can think of Ĝλ(A) as a completion of G (and not Gλ).
Let B̂λ (resp. Ûλ) be the closures of B (resp. U) in Ĝλ(A). Then the obvious analogue of Theorem 2.5 holds; the fact that Ûλ is a
pro-p group will be proved at the end of this section (see Proposition 2.7); for all other assertions see [4, Section 6].

The following relationship between the Remy–Ronan and Carbone–Garland completions was established6 by
Baumgartner and Remy:

Theorem 2.6. For any regular weight λ, there exists a (canonical) continuous surjective homomorphism ελ : Ĝλ → Ĝ. The kernel
Kλ of ελ is equal to

⋂
g∈Ĝ gB̂λg−1.

It follows from Theorem 2.6 that the kernel of the map πλ : G → Gλ is finite and central. Indeed, consider the sequence
of homomorphisms

G
πλ

−−−−−→ Gλ −−−−−→ Ĝλ
ελ

−−−−−→ Ĝ

Clearly, the composition of these three maps is the natural map from G to Ĝ. We know that the kernel of the latter map is
finite and central, hence the same should be true for πλ.

In the case when A is an affine matrix, Garland [8] showed that Kλ is a central subgroup of H ⊆ B̂λ (and hence finite). It is
not clear to us how large Kλ can be in general. Since B̂λ is a profinite group, so is Kλ; furthermore, Kλ has a finite index pro-p
subgroup, which follows from Proposition 2.7.

Proposition 2.7. Let Ûλ be the closure of U in Ĝλ. The group Ûλ is a pro-p group.

Proof. In [4], it is shown that the k-vector space Vλk admits a basis Ψ = {v1, v2, v3, . . .} consisting of weight vectors, that is,
for each i ∈ N there exists a weightµi of Vλ such that vi lies in the weight component Vλµi

. Each weightµ of Vλ is of the form
µ = λ−

∑l
i=1 kiαi, where ki ∈ Z≥0. Define the depth of µ to be depth(µ) =

∑l
i=1 ki. For convenience, we order the elements

of Ψ such that depth(µi) ≤ depth(µj) if i < j.
For each n ≥ 1 let Vn be the k-span of the set {v1, v2, . . . , vn}. The group U stabilizes Vn; moreover, it acts by upper-

unitriangular matrices (with respect to the above basis). Therefore, we have a homomorphism πn : U → GLn(k) whose
image is a finite p-group (since k has characteristic p). Then Un = Kerπn consists of elements of U which fix Vn pointwise.
Since

⋃
n≥1 Vn = Vλk , the groups {Un}

∞

n=1 form a base for the weight topology on U. Since each Un is a normal subgroup of U of
p-power index, the completion of U with respect to the weight topology is a pro-p group. �

Remark. Remy and Ronan [20] prove that Û is a pro-p group using its action on the building of Ĝ. This fact can also be
deduced from Proposition 2.7 by applying Theorem 2.6.

We finish this section by describing explicitly the groups G(A), Ĝ(A) and Ĝλ(A) in the special case A = A(1)
d−1 for some

d ≥ 2 (in the notation of [9, Chapter 4]); an analogous result holds for any affine matrix A — see [8]. In this case, the
incomplete groupG(A) is isomorphic to a central extension of the group SLd(k[t, t−1

])by k∗. TheRemy–Ronan completion Ĝ(A)
is isomorphic to PSLd(k((t))). It is easy to see that the building topology on Ĝ(A) coincides with the topology on PSLd(k((t)))
induced from the local field k((t)).

6 Private communication.
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Recall (see above) that the center of G(A) always lies in the kernel of the natural map G(A) → Ĝ(A). On the other hand,
the center of G(A) does usually have non-trivial image in the Carbone–Garland completion Ĝλ(A). For any λ, there is a
commutative diagram

1 −−−−−→ k∗
−−−−−→ ŜLd (k((t))) −−−−−→ SLd (k((t))) −−−−−→ 1yρλ yρ

Ĝλ(A)
ελ

−−−−−→ Ĝ(A)

where ŜLd(k((t))) is the universal central extension of SLd(k((t))), the top row of the diagram is exact, and the
homomorphisms ρ, ρλ and ελ are surjective (ρ is composition of the natural map from SLd(k((t))) to PSLd(k((t))) and an
isomorphism between PSLd(k((t))) and Ĝ(A)). The map ρλ may or may not be an isomorphism depending on λ (see [8,
Chapter 12]).
Notational remark. If A is a generalized Cartan matrix, the notations G(A), Ĝ(A),U(A) etc. introduced in this section will have
the same meaning throughout the paper. The reference to A will be omitted when clear from the context. The last remark
does not apply to Section 3 where G stands for an arbitrary group.

3. Tits’ abstract simplicity theorem

The following is a statement of the Tits simplicity theorem for groups with a BN-pair (see [2, Ch. IV, No. 2.7]).

Theorem 3.1. Consider a quadruple (G, B,N,U) where G is a group, (B,N) is a BN-pair of G whose associated Coxeter system is
irreducible, and U ≤ B is a subgroup whose G-conjugates generate the entire group G.

Assume the following:

(a) U is normal in B and B = UH, where H = B ∩ N.
(b) [G,G] = G.
(c) If Λ is a proper normal subgroup of U, then [U/Λ, U/Λ] 6= U/Λ.

Let Z =
⋂

g∈G gBg−1. Then the group G/Z is abstractly simple.

We remark that Tits’ theorem has the following “topological” version whose proof is identical to the “abstract” version.

Theorem 3.2. Let G, B,N, Z be as above. Assume that G is a topological group, and B is a closed subgroup of G. Let U be a
closed subgroup of B, and assume that G is topologically generated by the conjugates of U in G. Assume condition (a) above
and replace (b) and (c) by conditions (b′) and (c′):

(b′) [G,G] is dense in G.
(c′) If Λ is a proper normal closed subgroup of U, then [U/Λ, U/Λ] 6= U/Λ.

Then G/Z is topologically simple.

4. Simplicity of complete Kac–Moody groups via Tits’ theorem

In this section G will denote an incomplete Kac–Moody group constructed from an indecomposable generalized Cartan
matrix A. Let B,N,U be as in Section 2, let Ĝ be the Remy–Ronan completion of G, and let B̂ (resp. Û) be the closures of B and
(resp. U) in Ĝ. We shall analyze the conclusion of Tits’ theorem applied to the quadruple (Ĝ, B̂,N, Û).

The group Z :=
⋂

g∈Ĝ gB̂g−1 is easily seen to be trivial (see Lemma 4.4(e)) and therefore, Ĝ is abstractly (resp. topologically)
simple provided the hypotheses of Theorem 3.1 (resp. Theorem 3.2) are satisfied.

We will show that the hypotheses of Theorem 3.2 are satisfied provided |k| > 3, thus giving a slightly different proof
of Remy’s theorem on topological simplicity of Ĝ [18, Theorem 2.A.1]. We will also prove that hypotheses (b) and (c) of
Theorem 3.1 are satisfied as long as Û is (topologically) finitely generated. These results will follow from Lemmas 4.4 and
4.5. Thus we will obtain the desired sufficient condition for abstract simplicity of Ĝ:

Theorem 4.1. Assume that |k| > 3. If Û is topologically finitely generated, then Ĝ is abstractly simple.

As an immediate consequence of Theorem 4.1, we deduce part (b) of Theorem 1.1:

Corollary 4.2. Assume that |k| > 3 and any 2 × 2 submatrix of A is of finite type. Then the complete Kac–Moody group Ĝ(A) is
abstractly simple.

Proof. By a theorem of Abramenko [1], under the above assumptions on k and A, the incomplete group U = U(A) is finitely
generated (as an abstract group). Thus, Û is automatically topologically finitely generated, and therefore Ĝ is abstractly simple
by Theorem 4.1. �
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Before verifying Tits’ simplicity axioms for the quadruple (Ĝ, B̂,N, Û), we obtain an auxiliary result about incomplete
groups.

Lemma 4.3. The following hold:

(a) The group G is generated by conjugates of U.
(b) If |k| > 3, then [G,G] = G.

Proof. (a) We know that G is generated by root subgroups {U±αi }i∈I (recall that {αi} are simple roots). Since Uαi ⊂ U and
wiUαiw

−1
i = Uwiαi = U−αi , conjugates of U generate G.

(b) Let i ∈ I and u ∈ k, and let g = χi(u). Choose t ∈ k∗ such that t2 6= 1 (this is possible since |k| > 3), and let v = u/(t2−1).
We have

χi(u) = χi

(
(t〈αi,α

∨
i 〉

− 1) v
)

= χi

(
t〈αi,α

∨
i 〉v
)
χi(−v) = hi(t)χi(v)hi(t)

−1χi(v)
−1

= [hi(t),χi(v)].

So, χi(u) ∈ [G,G], and similarly one shows that χ−i(u) ∈ [G,G]. Therefore, [G,G] contains a generating set for G. �

Now we are ready to establish Theorem 4.1 and the corresponding statement about topological simplicity of Ĝ. By
Theorems 3.1 and 3.2, it suffices to prove the following two results7:

Lemma 4.4. The following hold:

(a) Ĝ is generated by conjugates of Û.
(b) [Ĝ, Ĝ] is dense in Ĝ. Moreover, [Ĝ, Ĝ] = Ĝ if Û is finitely generated.
(c) Û is normal in B̂ and B̂ = Û(̂B ∩ N).
(d) The Coxeter system of the BN-pair (̂B,N) is irreducible.
(e) The group Z is trivial.

Lemma 4.5. Let Λ be a proper normal subgroup of Û. If

(a) Λ is closed, or
(b) Û is finitely generated,

then[
Û/Λ, Û/Λ

]
6= Û/Λ.

The proofs of Lemmas 4.4 and 4.5 are based on the following properties of pro-p groups.

Proposition 4.6. Let K be a pro-p group, and let K∗ be the closure of [K, K]Kp in K (where Kp is the subgroup generated by pth-
powers of elements of K).

(a) A subset X of K generates K (topologically) if and only if the image of X in K/K∗ generates K/K∗.
(b) Suppose that K is finitely generated. Then any two minimal generating sets of K have the same cardinality.

Proof. (a) is proved in [21, Proposition 25]; it also follows from [7, Proposition 1.9(iii)] and [7, Proposition 1.13]. To prove
(b) note that if K is finitely generated, then K/K∗ can be viewed as a finite-dimensional space over Fp; let d be the dimension
of this space. Let X be a generating set of K. Clearly, |X| ≥ d. On the other hand, there exists a subset Y of X, with |Y| = d such
that the image of Y in K/K∗ is a basis of K/K∗. By (a), Y generates K. Thus any minimal generating set of K has cardinality
d. �

Proposition 4.7. Let K be a pro-p group generated by a finite set {a1, . . . , ad}. Then any element of [K, K] can be written in the
form [a1, g1][a2, g2] . . . [ad, gd] for some g1, . . . , gd ∈ K. In particular, [K, K] is closed.

Proof. The second assertion of Proposition 4.7 is the statement of [7, Proposition 1.19]. The first assertion is established in
the course of the proof of [7, Proposition 1.19]. �

Now we are ready to establish Lemmas 4.4 and 4.5. It will be convenient to prove Lemma 4.5 first.

Proof of Lemma 4.5. Suppose that [Û/Λ, Û/Λ] = Û/Λ or, equivalently, that Û = Λ[Û, Û]. Then Λ generates Û modulo [Û, Û].
Since Û is a pro-p group, Λ generates Û (topologically) by Proposition 4.6(a). If Λ is closed, then Λ = Û, so Λ is not proper.
Thus we proved the desired result, assuming (a).

Now assume (b) that Û is finitely generated. Let {a1, a2, . . . , ad} be a finite generating set of Û contained in Λ (such a set
exists by Proposition 4.6(b)). Applying Proposition 4.7 with K = Û, we see that Λ ⊇ [Û, Û] (since Λ is normal in Û). But
Û = Λ[Û, Û], so we conclude that Û = Λ, a contradiction. �

7 The first assertion of Lemmas 4.4(b) and 4.5 are not needed for the proof of Theorem 4.1.
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Proof of Lemma 4.4. (a) Let G1 be the subgroup of Ĝ generated by conjugates of Û. By Lemma 4.3, G1 contains G, whence G1
is dense in Ĝ. But G1 is also open (hence closed) in Ĝ since G1 ⊇ Û. Therefore, G1 must be equal to Ĝ.

(b) The density of [Ĝ, Ĝ] is clear since [Ĝ, Ĝ] ⊇ [G,G] = G and G is dense in Ĝ. Now assuming that Û is finitely generated,
we shall prove that [Ĝ, Ĝ] is also open in Ĝ. Since Û is a finitely generated pro-p group, its commutator subgroup [Û, Û] is
closed by Proposition 4.7. So, Û/[Û, Û] is also a finitely generated (abelian) pro-p group. On the other hand, Û is generated by
elements of order p since each root subgroup is isomorphic to the additive group of k. So, Û/[Û, Û] must be finite, and [Û, Û]

must be open in Û and hence in Ĝ. Since Ĝ ⊃ Û, we have shown that [Ĝ, Ĝ] is open in Ĝ.
(c)We know (by construction) that the corresponding results hold for incomplete groups, that is, U is normal in B, B = UH

and H = N ∩ B. Taking the completions of both sides of the last two equalities, and using the fact that (the images of) H and
N in Ĝ are discrete, we get B̂ = ÛH and H = N ∩ B̂. The normality of Û in B̂ is clear.

(d) The Coxeter group associated to (̂B,N) is isomorphic toW, andW is irreducible since the matrix A is indecomposable.
(e) Recall that X+ denotes the building associated with the incomplete BN-pair (B,N), and let C be the chamber of X+

whose stabilizer in G is B. It follows directly from definitions that the stabilizer of C in Ĝ is B̂. So, Z =
⋂

g∈Ĝ gB̂g−1 consists of
elements which stabilize all chambers in X+ (recall that G acts transitively on the set of chambers). Therefore Z = {1}. �

5. “Relative” Kac–Moody groups

Let A = (aij)i∈I be a generalized Cartan matrix. As before, let Π = {α1, . . . ,αl} be the set of simple roots. Recall that given
a subset J of I, we denote by AJ the |J| × |J| matrix (aij)i,j∈J .

One can associate two a priori different groups to the matrix AJ: the usual Kac–Moody group G(AJ), and the “relative”
Kac–Moody groupGJ which is defined as the subgroupofG(A) generated by {U±αi }i∈J . The first result of this section asserts that
these two groups are canonically isomorphic (Proposition 5.1). Next, one can consider twodifferent topologies onG(AJ)— the
usual building topology and the topology induced from the building topology on G(A) via the above isomorphism G(AJ) ∼= GJ .
While the two topologies may not be the same, the main result of this section is that their restrictions to the subgroup U(AJ)
are the same, provided A is symmetric (Theorem 5.2). We believe that Theorem 5.2 holds without the assumption that A is
symmetric, but we are unable to prove it at the present time. In the next section we use Theorem 5.2 to reduce the problem
of finite generation of Û(A) to a certain question about the groups Û(AJ) where J runs over all subsets of cardinality 2, once
again assuming that A is symmetric.

In order to state our results precisely, we introduce the following notation. We set G = G(A), Φ = Φ(A), W = W(A),
U = U(A) and U−

= U−(A). Fix a subset J ⊆ I, and let ΠJ = {αi}i∈J , let WJ be the subgroup of W generated by {wi}i∈J and
ΦJ = WJ(ΠJ). Also let Φ±

J = ΦJ ∩ Φ±. Clearly, WJ (resp. ΦJ) can be canonically identified with W(AJ) (resp. Φ(AJ)).
We have already defined the group GJ . Note that by relations (R3), GJ ⊃ Uα for every α ∈ ΦJ . Also introduce the subgroups

UJ := {Uα | α ∈ Φ+

J } and U−

J := {Uα | α ∈ Φ−

J }

of GJ . We will see shortly that UJ = GJ ∩ U and U−

J = GJ ∩ U−.

Proposition 5.1. There is a natural isomorphism ϕ : G(AJ) → GJ . Moreover, ϕmaps U(AJ) onto UJ and B(AJ) onto BJ .

In view of this proposition, we can identify UJ (resp. GJ) with U(AJ) (resp. G(AJ)). Let ÛJ be the closure of U(AJ) in Ĝ(AJ), as
before, and let UJ be the closure of UJ in Ĝ.

Theorem 5.2. Assume that A is symmetric. The groups ÛJ and UJ are (topologically) isomorphic.

Proof of Proposition 5.1. As before, identify Φ(AJ) with the subset ΦJ of Φ. To distinguish between generators of G(AJ) and
G(A), we use the symbols {xα(u) | α ∈ Φ(AJ), u ∈ k} for the generators of G(AJ) (the generators of G(A) are denoted {χα(u)}
as usual). From the defining presentation of Kac–Moody groups, it is clear that there exists a map ϕ : G(AJ) → G such that
ϕ(xα(u)) = χα(u) for α ∈ Φ(AJ), u ∈ k. Clearly, ϕ(G(AJ)) = GJ , ϕ(U(AJ)) = UJ and ϕ(B(AJ)) = BJ , so we only need to show that
ϕ is injective. We proceed in several steps.

Step 1: ϕ is injective on U(AJ). Let ψ : U(A) → U(AJ) be the unique homomorphism such that

ψ(χα(u)) =

{
xα(u) if α ∈ ΦJ,
1 if α 6∈ ΦJ.

The fact that such a homomorphism exists follows immediately from Theorem 2.3. It is also clear that ψϕ(g) = g for any
g ∈ U(AJ), whence the restriction of ϕ to U(AJ) must be injective.

Step 2: ϕ is injective on H(AJ). This follows directly from the fact that relations (R6)–(R7) are defining relations for the tori
H(AJ) and H(A).

Step 3: ϕ−1(BJ) = B(AJ) where BJ = B ∩ GJ . It is clear that ϕ−1(BJ) ⊇ B(AJ). Suppose that ϕ−1(BJ) is strictly larger than B(AJ).
Since (B(AJ),N(AJ)) is a BN-pair of G(AJ), we conclude that ϕ−1(BJ) is of the form B(AJ)W(AK)B(AJ) for some non-empty subset
K ⊆ J. This would mean that BJ = ϕ(B(AJ)W(AK)B(AJ)) contains at least one of the generators ofW, which is impossible since
B ∩ N = H.

Step 4: Conclusion. Let K = Kerϕ. Note that K ⊂ B(AJ) since B(AJ) is the full preimage of BJ under ϕ. Take any g ∈ K and
write it as g = uh where u ∈ U(AJ) and h ∈ H(AJ). Then ϕ(u) = ϕ(h)−1. On the other hand, it is clear that ϕ(u) ∈ U and
ϕ(h) ∈ H. Since H ∩ U = 1 and ϕ is injective on both U(AJ) and H(AJ), we conclude that u = h = 1. Therefore, K is trivial. �
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Before proving Theorem 5.2, we state two lemmas, which will be established at the end of the section.

Lemma 5.3. Let ΨJ = {β ∈ Φ+
: 〈β,α∨

j 〉 ≤ 0 for any j ∈ J}. The following hold:
(a) For any γ ∈ Φ+

\ Φ+

J there exist w ∈ WJ and β ∈ ΨJ such that γ = wβ.
(b) Assume that A is symmetric. Then for any γ ∈ ΨJ and β ∈ Φ+

J , the root groups U−γ and Uβ commute (elementwise).

Lemma 5.4. Let C be a generalized Cartan matrix. Then the building topology on U(C) is given by the subbase {gU(C)g−1
∩

U(C)}g∈G(C).

Proof of Theorem 5.2. By definition, UJ and ÛJ are the completions of UJ with respect to the topologies (T1) and (T2),
respectively, where (T1) is given by the subbase {gBg−1

∩ UJ}g∈G and (T2) is given by the subbase {gBJg−1
∩ UJ}g∈GJ . We have

to show that (T1) and (T2) coincide.
The inequality (T1) ≥ (T2) is clear. Indeed, for any g ∈ GJ we have gBg−1

∩ UJ = gBJg−1
∩ UJ since gBJg−1

= g(B∩ GJ)g−1
=

gBg−1
∩ GJ .

Now we prove the reverse inequality. In view of the natural isomorphism U(AJ) ∼= UJ , Lemma 5.4 applied with C = AJ

reduces the proof of the inequality (T2) ≥ (T1) to the following statement:

Claim 5.5. Given g ∈ G, there exists a finite set T ⊂ GJ such that

gBg−1
∩ UJ ⊇

⋂
t∈T

t UJ t
−1

∩ UJ.

Fix g ∈ G. By the Birkhoff decomposition, g = g−wg+ for some g+ ∈ B, w ∈ W and g− ∈ U−. We will show that there exist
g1, . . . , gk ∈ GJ and v ∈ WJ such that

(a) if x ∈ UJ is such that g−1
i xgi ∈ UJ for 1 ≤ i ≤ k, then g−1

−
xg− = g−1

k xgk (in particular, g−1
−

xg− ∈ UJ),
(b) if y ∈ UJ is such that v−1yv ∈ UJ , then w−1yw ∈ U.

First, let us see why (a) and (b) will imply Claim 5.5. Indeed, let {gi} and v be as above, and set T = {gi}
k
i=1 ∪ {gkv}. Let

x ∈
⋂

t∈T t UJ t−1
∩ UJ . Then by (a), g−1

−
xg− = g−1

k xgk. Now let y = g−1
−

xg−. Then v−1yv = (gkv)−1x(gkv) ∈ UJ by the choice of T,
so applying (b) we get that w−1g−1

−
xg−w ∈ U. Finally, g−1xg = g−1

+
w−1g−1

−
xg−wg+ ∈ U since g+ ∈ B and B normalizes U. So,

x ∈ gUg−1.

Proof of (a). By definition of U−, we can write g− in the form t1 . . . ts such that each ti lies in U−γi for some γi ∈ Φ+. By
Lemma 5.3(a), for each i such that γi 6∈ ΦJ , there exists vi ∈ WJ and β′

i ∈ ΨJ such that γi = viβ′

i . Then ti ∈ U−γi = Uvi(−β
′
i)

=

viU−β′
i
v−1
i . Thus, we can write g− = x1 . . . xk (with k ≤ 3s), where for each 1 ≤ i ≤ k either xi ∈ U−βi with βi ∈ ΨJ or βi ∈ ΦJ ,

or xi ∈ WJ . Note that for each 1 ≤ i ≤ k either xi ∈ U−βi with βi ∈ ΨJ , or xi ∈ GJ .
Now define y0, . . . , yk ∈ G and g0, . . . , gk ∈ GJ inductively: y0 = 1; yi = yi−1xi for 1 ≤ i ≤ k; g0 = 1, and for 1 ≤ i ≤ k we

set gi = gi−1xi if xi ∈ GJ and gi = gi−1 if xi 6∈ GJ . Note that yk = g− and gi ∈ GJ for each i.
Suppose that x satisfies the hypotheses of (a). We shall prove by induction that y−1

i xyi = g−1
i xgi for all i. The base case

i = 0 is trivial. Now let i > 0, and suppose that y−1
i−1xyi−1 = g−1

i−1xgi−1. If xi ∈ GJ , then by construction y−1
i−1yi = g−1

i−1gi = xi, so
the induction step is clear.

If xi 6∈ GJ , then by construction xi ∈ U−βi for some βi ∈ ΨJ . By Lemma 5.3(b), U−βi centralizes UJ , since UJ is generated by
{Uγ}γ∈Φ

+

J
. By the induction hypotheses, y−1

i−1xyi−1 = g−1
i−1xgi−1 ∈ UJ . Therefore,

y−1
i xyi = x−1

i (y−1
i−1xyi−1)xi = y−1

i−1xyi−1 = g−1
i−1xgi−1 = g−1

i xgi.

This completes the induction step and hence the proof of (a).

Proof of (b). The following argument was suggested to us (in a slightly different form) by Bertrand Remy and Pierre-
Emmanuel Caprace. First of all, the statement of (b) is clearly implied by the following: for any w ∈ W there exists v ∈ WJ

such thatwvUJ(wv)−1
⊆ U. We know that UJ is generated by the root subgroups {Uα}α∈Φ

+

J
. Since zUαz−1

= Uzα for every z ∈ W,
it suffices to prove the following statement about root systems:

For any w ∈ W there exists v ∈ WJ such that wv(αi) > 0 for all i ∈ J.

Recall that the simple roots {αi} are linearly independent elements of the Q-vector space h∗. Let h∗

R = h∗
⊗Q R. Let

R = {β ∈ h∗

R | 〈β,α∨

i 〉 > 0 for all i} be the fundamental chamber and RJ = {β ∈ h∗

R | 〈β,α∨

i 〉 > 0 for all i ∈ J} be the
J-relative fundamental chamber (in the sense of [11, 5.7]). Now pick any x ∈ R (it is well known that R is non-empty). By [11,
5.7, Proposition 5(i)], the union of W-translates of R is contained in the union of WJ-translates of RJ . Therefore, given w ∈ W,
there exists v ∈ WJ such that v−1w−1x ∈ RJ . For any i ∈ J we have 〈v−1w−1x,α∨

i 〉 > 0, whence 〈x,wvα∨

i 〉 > 0. Since x ∈ R, the
last inequality implies that wvα∨

i must be a positive coroot, whence wvαi is a positive root. The proof is complete. �
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Proof of Lemma 5.3. (a) This result is probablywell known and follows easily from [11, 5.7, Proposition 5], but since a direct
proof is very short, we present it here. The proof is by induction on height(γ).

If γ ∈ Φ+
\ Φ+

J and height(γ) = 1, then γ = αi for some i 6∈ J, whence for any j ∈ J we have 〈γ,α∨

j 〉 = aji ≤ 0, so γ ∈ ΨJ .
Now take any γ ∈ Φ+

\ Φ+

J and assume that Lemma 5.3(a) holds for any root γ ′
∈ Φ+

\ Φ+

J with height(γ ′) < height(γ).
If 〈γ,α∨

j 〉 ≤ 0 for any j ∈ J, then γ ∈ ΨJ . If 〈γ,α∨

j 〉 > 0 for some j ∈ J, let γ ′
= wjγ. Then γ ′

= γ − 〈γ,α∨

j 〉αj is a root of smaller
height than γ, and γ ′

∈ Φ+
\Φ+

J since the set Φ+
\Φ+

J isWJ-invariant. Thus, there existw ∈ WJ and β ∈ ΨJ such that γ ′
= wβ,

whence γ = wjγ
′
= (wjw)β.

(b) Since A is symmetric, there exists a symmetricW-invariant bilinear form (·, ·) on h∗ such that (α,β) = 〈α,β∨
〉 for any

α,β ∈ Φ; in particular, (α,α) = 2 for any α ∈ Φ (see [9, Chapter 2]).
Now let γ ∈ ΨJ and β ∈ Φ+

J . Then the set Z>0(β) + Z>0(−γ) does not contain any real roots. Indeed, (γ,β) ≤ 0 by
definition of ΨJ , so for any i, j > 0 we have (iβ− jγ, iβ− jγ) = 2(i2 + j2 − ij(γ,β)) ≥ 2(i2 + j2) ≥ 4. Thus the pair {β,−γ} is
prenilpotent and moreover, the corresponding root groups commute by relations (R2). �

Proof of Lemma 5.4. It will suffice to show that gU(C)g−1
∩ U(C) = gB(C)g−1

∩ U(C) for any g ∈ G(C). Thus we fix g ∈ G(C)
and x ∈ U(C) such that g−1xg ∈ B(C). Then g−1xg = hu where u ∈ U(C) and h ∈ H(C). We need to show that h = 1.

Assume that h 6= 1. Then we can choose a matrix D such that C is a submatrix of D and h does not lie in the center of G(D)
(as before, we identify G(C) with a subgroup of G(D)). The existence of such a D follows easily from defining relations (R4) —
we just have to ensure that h acts non-trivially by conjugation on one of the root subgroups.

Now let (T ) be the building topology on G(D). Let U(C) (resp. Ĝ(D), Û(D)) be the completion of U(C) (resp. G(D), U(D))
with respect to (T ). By Theorem 2.5(b), Û(D) is a pro-p group, hence so is U(C). Therefore, xpn → 1 in (T ) as n → ∞, whence
(g−1xg)p

n
→ 1 in (T ) as well. On the other hand, (g−1xg)p

n
= (hu)p

n
= hpnun where un ∈ U(C). Since the order of h is finite,

prime to p and U(C) is compact, there exists a subsequence {nk} such that hpnk
= h for all k and {unk } converges to some

element v ∈ U(C). Thus hv = 1 in Ĝ(D). Since U(C) is pro-p, we conclude that h = 1 in Ĝ(D). So, h lies in the kernel of the
natural map G(D) → Ĝ(D)which, as we know, coincides with the center of G(D). This contradicts our initial assumption. �

6. Finite generation of Û : Reduction to the rank 2 case

In this section we prove that finite generation of Û is essentially determined by rank 2 subsystems of Φ, provided A is
symmetric.

Definition. Let A be a generalized Cartan matrix and Û = Û(A). We say that Û is well behaved if for any non-simple root
γ ∈ Φ(A)+ we have Uγ ⊆ [Û, Û].

By Proposition 4.6(a), if Û is well behaved then Û is topologically generated by simple root subgroups {Uα}α∈Π (A) (in
particular, Û is topologically finitely generated).

For the rest of this section we fix a matrix A = (aij)i,j∈I , and we write Û = Û(A) and Φ = Φ(A). For a subset J of I we define
ΦJ as in the previous section. Recall that {αi}i∈I are simple roots, and wi is the reflection associated with αi.

Theorem 6.1. Suppose that A is symmetric, and for any subset J ⊆ I of cardinality 2, the group Û(AJ) is well behaved. Then Û is
also well behaved and hence (topologically) finitely generated.

Theorem 6.1 is an easy consequence of the following lemma.

Lemma 6.2. Let γ ∈ Φ+ be a non-simple root. There exist simple roots αi,αj andw ∈ W such that wαi > 0,wαj > 0 and γ = wα
for some non-simple root α ∈ Φ+

{i,j}.

Proof of Lemma 6.2. If γ lies in a subsystem generated by two simple roots, that is, γ = nαi + mαj for some n,m ∈ N and
i, j ∈ I, the assertion is obvious (we can take w = 1). From now on assume that γ =

∑l
i=1 niαi where at least three ni’s are

nonzero. We will prove the lemma by induction on height(γ).
We note that there exists k ∈ I such that height(wkγ) < height(γ). Indeed, if height(wiγ) ≥ height(γ) for all i, then

〈γ,α∨

i 〉 ≤ 0 for all i and hence 〈αi, γ
∨
〉 ≤ 0 for all i. But γ is a linear combination of αi with nonnegative coefficients, so we

must have 〈γ, γ∨
〉 ≤ 0. The latter is impossible since 〈γ, γ∨

〉 = 2.
Since γ does not lie in a rank two subsystem, wkγ is not simple. By induction, there exist simple roots αi and αj, w ∈ W

and α ∈ Φ+

{i,j} such that wαi > 0, wαj > 0 and wkγ = wα.
Note that γ = wkwα. If both wkwαi and wkwαj are positive, we are done. Suppose, this is not the case. Then wemust have

wαi = αk or wαj = αk, and without loss of generality we assume that wαi = αk. We have

γ = wk(wα) = wα− 〈wα,α∨

k 〉αk = wα− 〈wα, (wαi)
∨
〉wαi

= wα− 〈wα,w(α∨

i )〉wαi = wα− 〈α,α∨

i 〉wαi = w(α− 〈α,α∨

i 〉αi) = w(wiα).

Since α ∈ Φ+

{i,j} and α is not simple, we have wiα ∈ Φ+

{i,j}. The proof will be complete if we show that wiα is not simple. If
wiα is simple, then height(wiα) < height(α), so we must have 〈α,α∨

i 〉 > 0. Therefore, 〈wα,α∨

k 〉 = 〈wα,wα∨

i 〉 > 0, whence

height(γ) = height(wkwα) < height(wα) = height(wkγ),

contrary to our assumptions. �
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Proof of Theorem 6.1. Fix a non-simple positive real root γ. We have to show that Uγ ∈ [Û, Û]. By Lemma 6.2, there exist
αi,αj ∈ Π , w ∈ W and a non-simple root α ∈ Φ+

{i,j} such that wαi > 0, wαj > 0 and γ = wα. Let J = {i, j} and V = ÛJ .
Since V ∼= Û(AJ) by Theorem 5.2, the hypotheses of Theorem 6.1 imply that V is topologically generated by Uαi ∪ Uαj . Since
wUβw−1

= Uwβ for any β ∈ Φ, we conclude that wVw−1
⊆ Û. By hypotheses, we also know that Uα ⊂ [V, V]. Therefore,

Uγ = Uwα = wUαw−1
⊂ [wVw−1,wVw−1

] ⊆ [Û, Û]. �

In the next section we establish a sufficient condition for finite generation of Û in the rank two case:

Theorem 6.3. Let C be a 2 × 2 generalized Cartan matrix. Assume that either C is finite and |k| > 3, or that C is affine, |k| > 3
and p > 2. Then the group Û(C) is well behaved.

Before proving Theorem 6.3 we explain how to deduce Theorem 1.1(a). Theorem 6.4 is a direct consequence of
Theorems 6.1 and 6.3. Theorem 1.1(a) is obtained by combining Theorems 6.4 and 4.1.

Theorem 6.4. Let A be an indecomposable generalized Cartan matrix. Suppose that A is symmetric and any 2× 2 submatrix of A
is of finite or affine type, |k| > 3 and p = char(k) > 2. Then the group Û(A) is finitely generated.

Remark. As one can see from the proofs of Theorems 6.1 and 6.4, the assumption ‘A is symmetric’ was only needed to apply
Theorem 5.2. We believe that Theorem 5.2 can be proved (by a completely different method) without the assumption ‘A is
symmetric’, but under the assumption ‘AJ is of affine type’, using explicit realization of affine Kac–Moody groups and solution
to the congruence subgroup problem. If the latter is achieved, onewould be able to eliminate the assumption ‘A is symmetric’
from the statements of Theorems 6.1, 6.4 and 1.1(a).

7. Finite generation: The rank 2 case

In this section we prove Theorem 6.3. In order to finish the proof of Theorem 1.1(a), it would have been enough to prove
Theorem 6.3 for symmetric matrices of finite or affine type. However, we decided to prove the full version of Theorem 6.3,
including the computationally demanding case of non-symmetric affine matrices, because it may have applications to other
problems, including possible generalization of Theorem 1.1(a) (as explained at the end of Section 6).

If C is of finite type, the group G(C) is finite, so Û(C) is isomorphic to U(C). Theorem 6.3 in this case follows easily from
defining relations of type (R2) (see [12], where the coefficients {Cmnαβ} are computed explicitly in terms of the root system
generated by α and β). Before considering the affine case, we make some general remarks about affine Kac–Moody groups.

A good general reference for incomplete affine Kac–Moody groups is the thesis of Ramagge [14] (see also [15,16]). In
particular, using results of [14], one can obtain an explicit realization of incomplete twisted affine Kac–Moody groups. An
explicit realization of complete twisted affine Kac–Moody groups is probably known, however we are unaware of a proof in
the literature. For completeness, we shall demonstrate such realization in the case of 2 × 2 matrices — see Proposition 7.2.

Let C be an affine matrix (of arbitrary size). Then the incomplete group G(C) modulo its finite center is isomorphic to
the group of fixed points of a finite order (possibly trivial) automorphismωC of the group of k[t, t−1

]-points of some simply-
connected Chevalley group. The automorphismωC is non-trivial if and only if C is a twisted affinematrix.8 The complete group
Ĝ(C) has an analogous description where the ring k[t, t−1

] is replaced by the field k((t)). Furthermore, Ĝ(C) is isomorphic
to the group of k((t))-points of some simple algebraic group GC defined over k((t)): if C is non-twisted, GC is the Chevalley
group mentioned above; if C is twisted, GC is non-split.

One may ask if every simple algebraic group over k((t)) is isogenous to one of the form Ĝ(C) for some C. The answer is
‘no’ since the groups Ĝ(C) are always residually split. Moreover, there is a bijective correspondence between isogeny classes
of residually split simple algebraic groups over k((t)) and groups of the form Ĝ(C), with C affine. If C is an affine matrix of
type X(r)

n (in the notation of [9, Chapter 4]), then Ĝ(C) is a residually split group whose isogeny class is given by Tits’ index of
the form rX(d)

n,m for some m, d in the notation of [23] (these conditions determine the isogeny class uniquely).
Now assume that C is a 2 × 2 affine matrix. Up to isomorphism of the corresponding Kac–Moody groups, there are only

two possibilities:

C =

(
2 −2

−2 2

)
(non-twisted case), and C =

(
2 −4

−1 2

)
(twisted case) .

In the first case C has type A(1)
1 , the Tits index is 1A(1)

1,1, and Ĝ(C) is isomorphic to PSL2(k((t))). In the second case C has type
A(2)
2 , the Tits index is 2A(1)

2,1, and Ĝ(C) is isomorphic to SU3(k((t)), h,σ), where σ is a k-automorphism of k((t)) of order 2 and
h is a hermitian form in three variables relative to σ (see [23]). If p 6= 2, we can (and will) assume that

σ(t) = −t and h((x1, x2, x3), (y1, y2, y3)) = x1σ(y3) − x2σ(y2) + x3σ(y1).

8 For a classification of twisted affine matrices see [9, Chapter 4].
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Then

SU3(k((t)), h,σ) = {g ∈ SL3(k((t))) | J−1g∗J = g−1
} where J =

0 0 1
0 −1 0
1 0 0


and g 7→ g∗ is the map from SL3(k((t))) to SL3(k((t))) obtained by applying σ to each entry of g followed by transposition.

The proof of Theorem 6.3 in both cases follows the same strategy, but the twisted case requires more computations. Our
starting point is the following obvious lemma:

Lemma 7.1. Let P be a profinite group, and let P1 ⊃ P2 ⊃ · · · be a descending chain of open normal subgroups of P which form
a base of neighborhoods of identity. For each i ∈ N choose elements gi,1, . . . , gi,ni ∈ Pi which generate Pi modulo Pi+1. Let K be a
closed subgroup of P such that gi,j ∈ KPi+1 for all i and j. Then K contains P1. �

We shall apply this lemmawith P = Û, K = [P, P] and a certain filtration {Pi} of P satisfying the above conditions and such
that P1 contains Uγ for every non-simple positive root γ. Clearly, this will prove that Û is well behaved, so we only need to
show the existence of a filtration with required properties.

Case 1: C =

(
2 −2

−2 2

)
.

In this case, Φ+
= {(n+1)α1 +nα2, nα1 + (n+1)α2}n∈Z≥0 . The group Û can be embedded into SL2(k[[t]]) via the following

map:

χ(n+1)α1+nα2(u) 7→ en(u) :=

(
1 utn

0 1

)
, χnα1+(n+1)α2(u) 7→ fn+1(u) :=

(
1 0
utn+1 1

)
,

for all n ∈ Z≥0 and u ∈ k. For each n ≥ 0 let En = {en(u) | u ∈ k} and Fn = {fn(u) | u ∈ k}. We also define the elements
{hn(u) | n ≥ 1, u ∈ k} by

hn(u) =

(
1 + utn 0

0 (1 + utn)−1

)
.

Under the above identification, Û consists of matrices in SL2(k[[t]]) whose reduction mod t is upper-unitriangular. Now
define the filtration {Pn} as follows: P1 = P2E1, and for n ≥ 2 set

Pn = SLn2(k[[t]]) = {g ∈ SL2(k[[t]]) | g ≡ 1 mod tn}.

Clearly, P1 contains all non-simple positive root subgroups.
For each n ≥ 2, Pn is generated modulo Pn+1 by the elements {en(u), fn(u), hn(u) | u ∈ k}, and P1 is generated modulo P2 by

{e1(u)}. Direct computation shows that en(u) ≡ [h1(1), en−1(u/2)] mod Pn+1 for n ≥ 1, fn(u) ≡ [h1(1), fn−1(−u/2)] mod Pn+1
for n ≥ 2 and hn(u) ≡ [e1(1), fn−1(u)] mod Pn+1 for n ≥ 2. So, all the hypotheses of Lemma 7.1 are satisfied, and we are done
with Case 1.
Case 2: C =

(
2 −4

−1 2

)
.

Let δ = 2α1 + α2. Then Φ+
= {±α1 + nδ | n ∈ Z} ∪ {±2α1 + (2n + 1)δ | n ∈ Z} (see [9, Exercise 6.6]). For each α ∈ Φ

define an element eα ∈ sl3(k[t, t−1
]) as follows:

α eα

α1 + 2nδ (e12 + e23)t2n

α1 + (2n + 1)δ 2(e12 − e23)t2n+1

2α1 + (2n + 1)δ e13t2n+1

−α1 + 2nδ 2(e21 + e32)t2n

−α1 + (2n + 1)δ (e21 − e32)t2n+1

−2α1 + (2n + 1)δ e31t2n+1

Proposition 7.2. Let Ĝ = Ĝ(C), Û = Û(C) and G = {g ∈ SL3(k((t))) | J−1g∗J = g−1
}. Then Ĝ is isomorphic to G (as a topological

group) via the map ι defined by

ι : χα(u) 7→ 1 + (ueα) + (ueα)
2/2 for α ∈ Φ and u ∈ k.

Furthermore, ι(Û) = U where U = {g ∈ G ∩ SL3(k[[t]]) | g is upper-unitriangular mod t}.

Remark. The expression 1 + (ueα) + (ueα)2/2 should really be “thought of” as exp(ueα) since e3α = 0 for every α ∈ Φ.

The proof of Proposition 7.2 will be given in Appendix. Henceforth we identify Ĝwith G and Û withU. Before proceeding,
we introduce some terminology. Let M3(k) denote the space of 3 × 3 matrices over k.
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Definition. Let g ∈ GL13(k[[t]]). Write g in the form 1+
∑

i≥1 git
i where gi ∈ M3(k), and let n be the smallest integer such that

gn 6= 0. We will say that g has degree n and write deg(g) = n. The matrix gn will be called the leading coefficient of g; we will
write LC(g) = gn.

Given a subgroup H of GL13(k[[t]]) and n ≥ 1, let

Ln(H) = {LC(g) | g ∈ H and deg(g) = n} ∪ {0}.

Then it is easy to see that Ln(H) is an Fp-subspace of M3(k). The following result is also straightforward.

Lemma 7.3. Let S be a subgroup of GL13(k[[t]]). For each i ≥ 1 let Si = S∩GLi3(k[[t]]). Fix n ∈ N, and let X ⊂ S be a set of elements
of degree n. Then X generates Sn modulo Sn+1 if and only if the set {LC(g) | g ∈ X} spans Ln(S). �

Now we return to the proof of Theorem 6.3. Let P = Û. Define the filtration {Pn}
∞

n=1 of P as follows: if n ≥ 2, set
Pn = P ∩ GLn3(k[[t]]), and let P1 be the set of matrices in P ∩ GL13(k[[t]]) whose (3, 1)-entry lies in t2k[[t]].

Consider the following elements of Ĝ:

{e(1)n (u), f (1)n (u), hn(u) | n ∈ Z, u ∈ k} and {e(2)n (u), f (2)n (u) | n is odd, u ∈ k},

where

e(1)n (u) = χα1+nδ(u), f (1)n (u) = χ−α1+nδ(u), and hn(u) = [e(1)0 (u), f (1)n (1)]

e(2)n (u) = χ2α1+nδ(u), f (2)n (u) = χ−2α1+nδ(u).

Let E(i)
n , F(i)

n and Hn be the subsets {e(i)n (u)}, {f (i)n (u)} and {hn(u)}, respectively.
Now consider the subsets {Zn}

∞

n=1 of P1 defined as follows:

Z1 = E(2)
1 ∪ E(1)

1 ∪ H1 ∪ F(1)
1 , Z2n = E(1)

2n ∪ F(1)
2n ∪ H2n, and

Z2n+1 = E(1)
2n+1 ∪ F(1)

2n+1 ∪ H2n+1 ∪ E(2)
2n+1 ∪ F(2)

2n+1 for n ≥ 1.

We claim that Zn generates Pn modulo Pn+1 for each n ≥ 1. This result follows directly from Lemma 7.3 appliedwith S = P1
and {Sn} = {Pn}. Indeed, for each n ≥ 1, define Ln ⊂ M3(k) as follows:

Ln = {g ∈ M3(k) | gtJ = (−1)nJg} where gt is the transposed of g.

It is clear from the definitions that Ln(P1) ⊆ Ln(Û) = Ln. On the other hand, direct computation shows that for n ≥ 2, all
(non-identity) elements of Zn have degree n and their leading coefficients span Ln, so Ln(P1) = Ln. Similarly, one shows that
the leading coefficients of elements of Z1 span L1(P1).

In order to finish the proof by using Lemma 7.1, we need suitable commutation relations between the elements
{e(i)n (u), f (i)n (u), hn(u)}. Once again, these are obtained by direct computation:

e(1)2n (u) ≡ [e(2)1 (1), f (1)2n−1(−u)] mod P2n+1 e(1)2n+1(u) ≡ [e(2)1 (1), f (1)2n (u)] mod P2n+2

f (1)2n (u) ≡ [f (2)1 (1), e(1)2n−1(u)] mod P2n+1 f (1)2n+1(u) ≡ [f (2)1 (1), e(1)2n (−u)] mod P2n+2

e(2)2n+1(u) ≡ [e(1)0 (1), e(1)2n+1(−u/4)] mod P2n+2 f (2)2n+1(u) ≡ [f (1)1 (1), f (1)2n (−u/4)] mod P2n+2.

Finally, elements {hn(u)}n≥1 lie in [P, P] by definition.
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Appendix. On explicit realization of twisted affine Kac–Moody groups

In this section we prove Proposition 7.2. Recall that

C =

(
2 −4

−1 2

)
and J =

0 0 1
0 −1 0
1 0 0

 . (1)

Proposition 7.2. Let Ĝ = Ĝ(C), Û = Û(C) and G = {g ∈ SL3(k((t))) | J−1g∗J = g−1
}. Then Ĝ is isomorphic to G (as a topological

group) via the map ι defined by

ι : χα(u) 7→ 1 + (ueα) + (ueα)
2/2 for α ∈ Φ and u ∈ k. (2)

Furthermore, ι(Û) = U where U = {g ∈ G ∩ SL3(k[[t]]) | g is upper-unitriangular mod t}.

Proof. We proceed in several steps.
Step 1: First, we claim that (2) defines a (unique) homomorphism ι0 from the incomplete group G = G(C) to SL3(k[t, t−1

]).
This follows directly from the presentation of G by generators and relators.
Step 2: Let K = Ker ι0 and let Z be the kernel of the natural map G → Ĝ. At this step we show that K ⊆ Z. Recall that (Tbuild)
denotes the building topology on G. Let (Taux) be the topology on ι0(G) given by the base {ι(V)} where V runs over subgroups
of G open in (Tbuild). Let G̃ be the completion of ι0(G)with respect to (Taux). Clearly, there exists a continuous homomorphism
ε : Ĝ → G̃. By [18, Theorem 2.A.1], Ĝ is topologically simple, whence ε is injective (since G̃ is clearly non-trivial). Thus we
conclude thatK ⊆ Z. It follows immediately that themap ι0 : G → ι0(G) canonically extends to an isomorphismof topological
groups ι : Ĝ → G̃.
Step 3: Consider the topology (Tcong) on ι0(G) induced from the congruence topology on SL3(k((t))), and let G be the
completion of ι0(G)with respect to (Tcong). At this stepwe show that G coincides withG. It is clear that G ⊆ G since ι0(G) ⊂ G
by construction and G is closed in the congruence topology.

Now we prove the reverse inclusion G ⊆ G. The group G is an isotropic simple algebraic group over the local field
k((t)) and hence has a BN-pair (B,N ) given by Bruhat–Tits theory. An explicit description of (B,N ) is given in [23, 1.15]:
B = {g ∈ G ∩ SL3(k[[t]]) | g is upper-triangular mod t} and N is the semi-direct product of the group

D :=


x 0 0
0 1 0
0 0 σ(x)−1


∣∣∣∣∣∣∣ x ∈ k((t))


and the group of order 2 generated by the matrix J defined previously in (1). Note that B = ι(H)U where H is the diagonal
subgroup of G.

Let U be the closure of ι0(U) in G. Applying Lemma 7.1 with P = U and {Pi} = {P ∩ SLi3(k[[t]])} and arguing as in Section 7,
we conclude that U = U. From the explicit description of N , it is clear that N = (N ∩ U)ι0(N). Thus G contains both U and
N . Since (B,N ) is a BN-pair and B ⊂ ι0(N)U, it follows that G is generated by U and ι0(N). Since G contains U = U and
ι0(N), we conclude that G = G.

Step 4: Nowweprove that the groups G and G̃ are topologically isomorphic. Equivalently, wewill show that the topologies
(Tcong) and (Taux) on ι0(G) coincide. The inequality (Taux) ≤ (Tcong) is clear. This inequality also implies that there is a natural
homomorphism ε1 : G → G̃. Since G = G is simple, ε1 is injective.

Now suppose that (Tcong) is strictly stronger than (Taux). Since both topologies (Tcong) and (Taux) are countably based, it
follows that there is a subgroup V ⊂ ι0(G), open in (Tcong), and a sequence {gn} in ι0(G) such that

(a) gn converges to 1 with respect to (Taux);
(b) gn 6∈ V for all n.

Condition (a) implies that gn ∈ ι0(B) for all sufficiently large n. Let B be the closure of ι0(B) in G. Clearly, B is compact and
countably based, so there exists a subsequence {gnk }which converges to some g ∈ B. Since {gnk } converges to 1with respect to
(Taux), it follows that g lies in the kernel of ε1 : G → G̃. Since ε1 is injective, we conclude that g = 1, contrary to condition (b).

Step 5: Combining steps 3 and 4, we get G̃ = G = G, so the map ι : Ĝ → G̃ defined at the end of step 2 has the desired
properties. The equality ι(Û) = U holds by construction. �
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