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Larry Joseph Stockmeyer
e "y . 1048 Bom inindiana
= 1974 — MIT Ph.D.

= |[BM Research at
Y orktown and -
Almaden for' most of
his career

-
S (11 JACM)i
Distinct Co-Authors

= 1996 — ACM Fellow :
= Died July 31, 2004
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Computing with the Universe

e e

— . Unlverse can only: have 10123 oroton gates |

= Consider the true sentences of weak
monadic second-order theory of the natural
numbers with successor (EWS1S).

—dJAVB Ix (X € A > x+1 € B)
0t solve EWSlS on inputs of.sm&@@_

=

= Stockmeyer Ph.D. Thesis 1974
— Stockmeyer-Meyer JACM 2002
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Computing with the Universe

~ = Universe can'h‘ave%45*10125 proton gates.

= Cannot solve EWS1S on inputs of size 616
IN universe with proton-sized gates.
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Computing with the Universe

~ = Universe can'h‘ave%45*10125 proton gates.

= Cannot solve EWS1S on inputs of size 619
IN universe with proton-sized gates.
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Sclence Fiction?

= mmmmpum. = The complexity of algorithms
= B oRS THE LG tax even the resources of sixty
billion gigabits---or of a
universe full of bits; Meyer and .
Stockmeyer had proved, long
ago, that, regardless of
computer power, problems
' ld'no
solved' in the life. ofi the
universe.
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Evolution of Complexity

Cor_np;utably

Enumerable
Unrestricted Grammars

Context-Sensitive Grammars
- Linear-Bounded Automata

W — CA

Push-Down Automata

Regular Languages
Finite Automata
Regular Grammars



Real Computers
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evolution of Complexity
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Limitations of DTIME(t(n))

NTM achmE‘IﬁﬁE‘pEﬁdent

- Separatlons are by diagonalization and not
by natural problems.

= No clear notion of efficient computation.
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Enter Larry Stockmeyer

— Jah_ﬁary 1972 — Bachelors/Masters at M|

—:-___-‘h . . .
— Bounds on Polynomial Evaluation Algorithms

= Can we find natural hard problems?

— Diagonalization methods do not lead'te natural
problems.

‘-here arenatural NP-complete problems but

T —
-WW
ithr Aadvisor Albert Meyer -

—.




Regular EXpressions with Squarmg

— s -

- (0+1)*00(0+1)*00(0+1)*

— All'strings with two sets of consecutive zeres.
= Allow Squaring operator: r=rr
" (0+1)*(0*(0+1)*)°
= No more expressive power but can be much
er when used recursi

f
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Meyer-Stockmeyer 1972
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Regular Expressions with Squaring
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— I\/Ieyer and Stc Stbtk’meyer “The Equwalence
_:—_-'_-"
Problem for Regular Expressions with

Sguaring Requires Exponential Space” —

SWAT 1972 | =3
= MINIMAL

2t'of Boolean formulas with,no smaller =
ﬁ uivﬁw u’ -
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MINIMAL

= MINIMAL
e ———————
— Set of Boolean formulas with no smaller

equivalent formula.

= MINIMAL in NP? _ —
— Can'’t check all smaller formulas.

———
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= MINIMAL

:ﬁ-_

— Set of Boolean formulas with no smaller
equivalent formula.

= MINIMAL in NP?
— Can'’t check all smaller formulas.

suVIINIMAL in NP2

B Y Al/ 2
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= MINIMAL

pm— :
— Set of Boolean formulas with no smaller

equivalent formula.

= MINIMAL in NP?
— Can'’t check all smaller formulas.

S VIINIIMIAL T NP2

o MINIMAL IS In NP W|th an “oracle” for
eqguivalence.



MINIMAL in NP witn Equivalence Oracle
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INIMAL is in NP'with an “oracle” for
- equivalence or non-eguivalence.




e ——— e T
= VINIMAL 1s in" NP with an “oracle” for
::-—_--

equivalence or non-eguivalence.
= Since non-equivalence is in NP we can

e

solve MINIMAL in NP with NP, oracle.




MINIMAL

— e —
—

— I\/HNIMAL |S‘rrT=I\I13'With an “oracle”for :

E—_

eguivalence or non-equivalence.

= Since non-equivalence is in NP we can
solve MINIMAL in NP with NP eracle.

= Suggests a “hierarchy” above NP.
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Meyer-Stockmeyer 1972

DI ~ co-NP2P =1,P

co-NP2" =T1,P

DNP—

— . |
2

~SMINIMAL CO-

.*.-—H-

co-NP=T1,P




Meyer-Stockmeyer 1972

P=A,P




Properties of the Hierarcny

= Meyer-Stockmeyer, “The Equivalence
_:__——-.-_ ; ’
Problem for Regular Expressions with

Sguaring Requires Exponential Space”,

SWAT 1972 -

= Stockmeyer, “The Polynomial-Time
Hierarchy”, TCS, 1977.




PSPACE

2P

AP

AP

Co-NP=ITIP |

AP

1P=NP

Y

=A

P




PSPACE

2P

AP

AP

Co-NP=ITIP |

AP

1P=NP

Y

=A

P




PSPACE

2P

AP

Z3D:ABP

Co-NP=ITIP |

AP

1P=NP

Y

=A

P




PSPACE

2P

AP

Z3D:ABP

Co-NP=ITIP |

AP

1P=NP

Y

=A

P




PSPACE

P=A,P




PSPACE




PSPACE

2P

AP

AP

Co-NP=ITIP |

AP

1P=NP

Y

=A

P




PSPACE

2P

AP

AP

Co-NP=ITIP |

AP

1P=NP

Y

=A

P




AP

AP

Co-NP=ITIP |

AP

1P=NP

Y

=A

P




AP

AP

Co-NP=ITIP |

AP

1P=NP

Y

=A

P




PSPACE=PH=%

AP

Co-NP=II,P

P=A,P




Quantifier Characterization

~ Alanguage Lisin 2,Pif for all x in 2*
XIS In L < Ju Vv Iw P(x,u,v,w)

i

A language L is in I'L;" if forall xin x*
Is.in L < Yu 3v Yw P(X,u,v,w




Complete Sets

— é*ﬁ?aflne B—by'ﬂ’fe—set of true quantme =

formula of the form

X 3IX, - 3AX VY, VY, dZ,3Z,
O(Xse e Xy Y1se 1Yo ZgsemesZn)

E




PSPACE

AP
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B, Co-NP=I1,°
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Natural Complete Sets

e

= _N-iEQ — Ineguivalence of Inte '
— Expressions with union and addition.
(50+(400U20U15))U((2U5)+(7U9))

= Meyer-Stockmeyer 1973 Stockmeyer 1977
— N-INEQ Is Z,P-complete

= Umans, 1999

UCEIn

-

IS > P-

-

— Succinct VC Dimension Is Z;P-complete



The w-jump of the Hierarchy

—

I —
__" Meyer- Stockr'rﬁéver 1973, Stockmeyer 1977
B =UB,
= Quantified Boolean Formula with an
unbounded number of alterations.

= Now called QBF or TOBF.

e ———




Complexity of o-jump

__T#—-%—

- B, (TQBF)

PSPACE

B, Co-NP=ILP




Alternation

- Chandra—Stockmeyer STOC 1976
= Kozen FOCS 1976




Alternation
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Alternation
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Alternation Theorems

—— —— = -

~ = Chandra-Kozen-Stockmeyer

e

= ATIME(t(n)) = DSPACE(t(n))
= NSPACE(s(n)) = ATIME(s*(n))
= ASPACE(s(n)) = UDTIME(cs™)

ﬁg PSPACE < EXPi EXPSPACE <.
|l -
C AP < APSPACE € AEXP < ... .
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Other Alternatmg Models

— Chandra-Kozen-s
o Log Space Hierarchy
— Collapses to NL (Immerman-Szelepcsenyi '88)

= Alternating Finite State Automaton

— Same power as DFA but doubly exponential
blowup In states.

ﬂ'lternating Push-Down Autematon. ... 3

— Strictly stronger than PDAS
— Inclusion due to Ladner-Lipton-Stockmeyer /8
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Complete Sets Via Games

~ = Stockmeyer-Chandra 1979
e 6

= Can use problems based on games to get
completeness results for PSPACE and EXP.

= Create a combinatorial game that is EXP-
complete and thus not decidable in P.

@fcom’ lete sets for PS and&“
ﬂﬁaﬁ% W ﬁgis:- .
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Generalized Checkers
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= PSPACE-hard
— Robson 1984



Approximate Couting

= #P _ \/aliant 197¢

—=-‘- » .
— Functions that count solutions of NP problems.

— Permanent is #P-complete

= Stockmeyer 1985 building on, Sipser 1983
— Can approximate any #P function f in polytime

ﬁit-h an-oracle for *,P. -t
—*

— Every language in PH reducible to #P




Complexity of #P

PSPACE

p#P

PH

AP

SApprox-#P AP

—————
AP

Co-NP=II,P

P=A,P




Legacy of Larry Stockrmeyer

- Circuit Complexity —
= |nfinite Hierarchy Conjecture
= Probabilistic Computation

= |[nteractive Proof Systems

B i




Circuit Complexity

= Baker Gill- Selevay '75: Relat|V|zat|on Paper =

—
— Open Is PH infinite relative to an oracle?

= Sipser '83: Strong lower bounds on depth d
circuits simulating depth d+1 circuits.

= Yao '85: “Separating the Polynomial-Time

ﬁi.erarchy By Oracles” .i
ﬂ@i@m astad, -

Razborov, Smolensky and many others.




Infinite Hierarchy Conjecture

_‘*-'_

" = |s the Polynomial=Time Hierarchy Infinite?
i

= Best Evidence: Yao’s result shows
alternating log-time hierarchy infinite.

= Many complexity results
— If PROP then the polynomial-time hierarchy

Iapses __“
OTPROP.

= Gives evidence for NOT PROP.




[t Hierarchy is Infinite ...

g “does not have small circuits.

— Karp-Lipton 1980

= Graph isomorphism Is not NP-complete.
— Goldreich-Micali-Wigderson 1991
— Goldwasser-Sipser 1989

Seelecamte)

— Kadin 1988



Boolean Hierarchy

= BH,= NP

= BH,,,={B-C|[Bin NP and C in BH,}
= [ (G,k) | Max cligue of G has size k} in BH,

i

= Kadin: If BH,=BH, ,, then PH=XP.

e ————




Propanilistic

computation

—— e e ——
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~ PSPACE
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PH

1P=NP




Propapilistic Computation

P=A,P




Interactive Proof Systems

__#—_____-_

— Papadlmltrlcm'i@%‘s Alternation between

#—.

nondeterministic and probabilistic players

= |[nteractive Proof Systems
— Public Coin: Babail-Moran 1988
— Private Coin; Goldwasser-Micali-Rackoff 1989

gr :ivalem: Goldwasser-Sipser 1989_.—‘4

[




Interactive Proof Systems

— PSPACE
ﬂ————
P#P
PH
2P = IT,P

P=A,P




Interactive Proof Systems

L PSPACE=IP
ﬂ————
P#P
PH
2P = IT,P

P=A,P




Interactive Proof Systems

— . Hardness oprpTommatlon

_:__——-.-._

— Feige-Goldwasser-Lovasz-Safra-Szegedy 1996

= Probabilistically Checkable Proofs

— NP in PCPs with O(log n) coins and constant
number of gueries.

Arera-lkund-Motwani-Sudan-Szegedy 1998
' State Verifiers™

— Dwork and Stockmeyer



Other Work

——

~ = Larry Stockmeyer contributed much more to.

complexity and important work in other
areas including automata theory and parallel

and distributed computing. -
= Most Cited Article (CiteSeer):

ﬂwerk, lbynch;, and Stockmeyer, “Consensus in:
e pr 1] m JACM, Iggb




Conclusion

~ = \What natural problems can't we compute?
= |_ed to exciting work on polynomial-time
hierarchy, alternation, approximation and

much more.

= These idea affect much of computational .
6] Iexrty today and the legacy, vmj].__._




Rememoering

T

= Other meml:)’e@'ﬁr’buﬁ:ommunlty thatwe

ﬁave-recen tly lost..




George Dantzig

- S —h-'_ -




Shimon Evern













mens Lautemann







Larry Stockmeyer
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