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Larry Joseph StockmeyerLarry Joseph Stockmeyer

1948 1948 –– Born in IndianaBorn in Indiana
1974 1974 –– MIT Ph.D.MIT Ph.D.
IBM Research at IBM Research at 
Yorktown and Yorktown and 
Almaden for most of Almaden for most of 
his careerhis career
82 Papers (11 JACM)82 Papers (11 JACM)
–– 49 Distinct Co49 Distinct Co--AuthorsAuthors

1996 1996 –– ACM FellowACM Fellow
Died July 31, 2004Died July 31, 2004
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The UniverseThe Universe

11,000,000,000 Light Years



Computer of ProtonsComputer of Protons

Radius 10-15 Meters



Computing with the UniverseComputing with the Universe

Universe can only have 10Universe can only have 10123 123 proton gates.proton gates.
Consider the true sentences of weak Consider the true sentences of weak 
monadic secondmonadic second--order theory of the natural order theory of the natural 
numbers with successor (EWS1S).numbers with successor (EWS1S).
–– ∃∃A A ∀∀B B ∃∃x (x x (x ∈∈ A A →→ x+1 x+1 ∈∈ B) B) 
Cannot solve EWS1S on inputs of size 616 Cannot solve EWS1S on inputs of size 616 
in universe with protonin universe with proton--sized gates.sized gates.
–– Stockmeyer Ph.D. Thesis 1974Stockmeyer Ph.D. Thesis 1974
–– StockmeyerStockmeyer--Meyer JACM 2002Meyer JACM 2002
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Universe can have 10Universe can have 10123 123 proton gates.proton gates.
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Computing with the UniverseComputing with the Universe

Universe can have Universe can have 3.5*3.5*1010121255 proton gates.proton gates.
Cannot solve EWS1S on inputs of size 61Cannot solve EWS1S on inputs of size 6199
in universe with protonin universe with proton--sized gates.sized gates.



Science Fiction?Science Fiction?

The complexity of algorithms The complexity of algorithms 
tax even the resources of sixty tax even the resources of sixty 
billion gigabitsbillion gigabits------or of a or of a 
universe full of bits; Meyer and universe full of bits; Meyer and 
Stockmeyer had proved, long Stockmeyer had proved, long 
ago, that, regardless of ago, that, regardless of 
computer power, problems computer power, problems 
existed which could not be existed which could not be 
solved in the life of the solved in the life of the 
universe.universe.
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Evolution of ComplexityEvolution of Complexity
Chomsky Hierarchy 1956

Computably
Enumerable

Unrestricted Grammars

Regular Languages
Finite Automata

Regular Grammars

Context-Free Grammars
Push-Down Automata

Context-Sensitive Grammars
Linear-Bounded Automata
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Faster ComputersFaster Computers
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Evolution of ComplexityEvolution of Complexity
Hartmanis-Stearns 1965

TIME(n)

Computable



Limitations of Limitations of DTIME(t(nDTIME(t(n))))

Not Machine Independent.Not Machine Independent.
Separations are by diagonalization and not Separations are by diagonalization and not 
by natural problems.by natural problems.
No clear notion of efficient computation.No clear notion of efficient computation.
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Evolution of ComplexityEvolution of Complexity
Cobham 1964 Edmonds 1965

Computable

P=∪DTIME(nk)Matching
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Evolution of ComplexityEvolution of Complexity

Computable

P

Cook 1971 Levin 1973 Karp 1972 

NPSAT Clique Partition Max Cut



State of Complexity 1972State of Complexity 1972

Computable

P
NP



Enter Larry StockmeyerEnter Larry Stockmeyer

January 1972 January 1972 –– Bachelors/Masters at MITBachelors/Masters at MIT
–– Bounds on Polynomial Evaluation AlgorithmsBounds on Polynomial Evaluation Algorithms
Can we find natural hard problems?Can we find natural hard problems?
–– Diagonalization methods do not lead to natural Diagonalization methods do not lead to natural 

problems.problems.
–– There are natural NPThere are natural NP--complete problems but complete problems but 

cannot prove them not in P.cannot prove them not in P.
–– With Advisor Albert MeyerWith Advisor Albert Meyer



Regular Expressions with SquaringRegular Expressions with Squaring

(0+1)*00(0+1)*00(0+1)*(0+1)*00(0+1)*00(0+1)*
–– All strings with two sets of consecutive zeros.All strings with two sets of consecutive zeros.
Allow Squaring operator: rAllow Squaring operator: r22==rrrr
(0+1)*(0(0+1)*(022(0+1)*)(0+1)*)22

No more expressive power but can be much No more expressive power but can be much 
shorter when used recursively.shorter when used recursively.
–– ((((((0((((((022))22))22))22))22))22)= )= 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000



MeyerMeyer--Stockmeyer 1972Stockmeyer 1972

Computable

P
NP

REGSQ = { R | L(R) ≠ Σ*}

EXPSPACEREGSQ

PSPACE



Regular Expressions with SquaringRegular Expressions with Squaring

Meyer and Stockmeyer, Meyer and Stockmeyer, ““The Equivalence The Equivalence 
Problem for Regular Expressions with Problem for Regular Expressions with 
Squaring Requires Exponential SpaceSquaring Requires Exponential Space”” ––
SWAT 1972SWAT 1972
MINIMALMINIMAL
–– Set of Boolean formulas with no smaller Set of Boolean formulas with no smaller 

equivalent formula.equivalent formula.
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MINIMALMINIMAL

MINIMALMINIMAL
–– Set of Boolean formulas with no smaller Set of Boolean formulas with no smaller 

equivalent formula.equivalent formula.
MINIMAL in NP?MINIMAL in NP?
–– CanCan’’t check all smaller formulas.t check all smaller formulas.
MINIMAL in NP?MINIMAL in NP?
–– CanCan’’t check equivalence.t check equivalence.
MINIMAL is in NP with an MINIMAL is in NP with an ““oracleoracle”” for for 
equivalence.equivalence.



MINIMAL in NP with Equivalence OracleMINIMAL in NP with Equivalence Oracle
(x ∨ y) ∧ (x ∨ y) ∧ z

Equivalence

(x ∧ z , (x ∨ y) ∧ (x ∨ y) ∧ z)

Guess: x ∧ z

EQUIVALENT
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equivalence or nonequivalence or non--equivalence.equivalence.



MINIMALMINIMAL

MINIMAL is in NP with an MINIMAL is in NP with an ““oracleoracle”” for for 
equivalence or nonequivalence or non--equivalence.equivalence.
Since nonSince non--equivalence is in NP we can equivalence is in NP we can 
solve MINIMAL in NP with NP oracle.solve MINIMAL in NP with NP oracle.



MINIMALMINIMAL

MINIMAL is in NP with an MINIMAL is in NP with an ““oracleoracle”” for for 
equivalence or nonequivalence or non--equivalence.equivalence.
Since nonSince non--equivalence is in NP we can equivalence is in NP we can 
solve MINIMAL in NP with NP oracle.solve MINIMAL in NP with NP oracle.
Suggests a Suggests a ““hierarchyhierarchy”” above NP.above NP.



MeyerMeyer--Stockmeyer 1972Stockmeyer 1972

P

NP

The Polynomial Time Hierarchy

NPNP

MINIMAL
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P
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The Polynomial Time Hierarchy
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p
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p
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p
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p
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Properties of the HierarchyProperties of the Hierarchy

MeyerMeyer--Stockmeyer, Stockmeyer, ““The Equivalence The Equivalence 
Problem for Regular Expressions with Problem for Regular Expressions with 
Squaring Requires Exponential SpaceSquaring Requires Exponential Space””, , 
SWAT 1972SWAT 1972
Stockmeyer, Stockmeyer, ““The PolynomialThe Polynomial--Time Time 
HierarchyHierarchy””, , TCS, 1977.TCS, 1977.
WrathallWrathall, , ““Complete Sets and the Complete Sets and the 
PolynomialPolynomial--Time HierarchyTime Hierarchy””, TCS, 1977., TCS, 1977.
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If P = NP
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Properties of the HierarchyProperties of the Hierarchy
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Quantifier CharacterizationQuantifier Characterization

A language L is in A language L is in ΣΣ33
P P if for all x in if for all x in ΣΣ**

x is in L x is in L ⇔⇔ ∃∃u u ∀∀v v ∃∃w w P(x,u,v,wP(x,u,v,w))

A language L is in A language L is in ΠΠ33
P P if for all x in if for all x in ΣΣ**

x is in L x is in L ⇔⇔ ∀∀u u ∃∃v v ∀∀w w P(x,u,v,wP(x,u,v,w))



Complete SetsComplete Sets

We define BWe define B33 by the set of true quantified by the set of true quantified 
formula of the formformula of the form

∃∃xx11∃∃xx22
……∃∃xxnn∀∀yy11

……∀∀yynn∃∃zz11
……∃∃zznn

ϕϕ(x(x11,,……,x,xnn,y,y11,,……,y,ynn,z,z11,,……,z,znn) ) 



Complete Sets in the HierarchyComplete Sets in the Hierarchy
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Natural Complete SetsNatural Complete Sets

NN--INEQ INEQ –– Inequivalence of Integer Inequivalence of Integer 
Expressions with union and addition.Expressions with union and addition.

(50+(40(50+(40∪∪2020∪∪15))15))∪∪((2((2∪∪5)+(75)+(7∪∪9))9))
MeyerMeyer--Stockmeyer 1973 Stockmeyer 1977Stockmeyer 1973 Stockmeyer 1977
–– NN--INEQ is INEQ is ΣΣ22

pp--completecomplete
Umans 1999Umans 1999
–– Succinct Set Cover is Succinct Set Cover is ΣΣ22

pp--completecomplete
Schafer 1999Schafer 1999
–– Succinct VC Dimension is Succinct VC Dimension is ΣΣ33

pp--completecomplete



The The ωω--jump of the Hierarchyjump of the Hierarchy

MeyerMeyer--Stockmeyer 1973, Stockmeyer 1977Stockmeyer 1973, Stockmeyer 1977
BBωω==∪∪BBkk

Quantified Boolean Formula with an Quantified Boolean Formula with an 
unbounded number of alterations.unbounded number of alterations.
Now called QBF or TQBF.Now called QBF or TQBF.



Complexity of Complexity of ωω--jumpjump
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AlternationAlternation

ChandraChandra--KozenKozen--Stockmeyer JACM 1981Stockmeyer JACM 1981
ChandraChandra--Stockmeyer STOC 1976Stockmeyer STOC 1976
KozenKozen FOCS 1976FOCS 1976
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Alternation TheoremsAlternation Theorems

ChandraChandra--KozenKozen--StockmeyerStockmeyer
ATIME(t(nATIME(t(n)) )) ⊆⊆ DSPACE(t(nDSPACE(t(n))))
NSPACE(s(nNSPACE(s(n)) )) ⊆⊆ ATIME(sATIME(s22(n))(n))
ASPACE(s(nASPACE(s(n)) = )) = ∪∪DTIME(cDTIME(cs(ns(n))))

L  ⊆ P  ⊆ PSPACE  ⊆ EXP ⊆ EXPSPACE ⊆ …
== = =

AL AP APSPACE⊆ ⊆ AEXP⊆ ⊆ …



Alternate Characterization of Alternate Characterization of ΣΣ22
pp

∀ ∀ ∀ ∀

∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀

∃
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Rej Rej Rej Rej Rej Rej Rej Rej Rej Acc Rej RejAcc AccAcc Acc



Other Alternating ModelsOther Alternating Models

LogLog--Space HierarchySpace Hierarchy
–– Collapses to NL (ImmermanCollapses to NL (Immerman--SzelepcsSzelepcséényinyi ’’88)88)
Alternating Finite State AutomatonAlternating Finite State Automaton
–– Same power as DFA but doubly exponential Same power as DFA but doubly exponential 

blowup in states.blowup in states.
Alternating PushAlternating Push--Down AutomatonDown Automaton
–– Accepts exactly E=DTIME(2Accepts exactly E=DTIME(2O(n)O(n)))
–– Strictly stronger than Strictly stronger than PDAsPDAs
–– Inclusion due to Inclusion due to LadnerLadner--LiptonLipton--Stockmeyer Stockmeyer ’’7878

Chandra-Kozen-Stockmeyer 1981
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Alternation as a GameAlternation as a Game
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Rej Rej Rej Rej Rej Rej Rej Rej Rej Acc Rej RejAcc AccAcc Acc



Complete Sets Via GamesComplete Sets Via Games

StockmeyerStockmeyer--Chandra 1979Chandra 1979
Can use problems based on games to get Can use problems based on games to get 
completeness results for PSPACE and EXP.completeness results for PSPACE and EXP.
Create a combinatorial game that is EXPCreate a combinatorial game that is EXP--
complete and thus not decidable in P.complete and thus not decidable in P.
First complete sets for PSPACE and EXP First complete sets for PSPACE and EXP 
not based on machines or logic.not based on machines or logic.



CheckersCheckers



Generalized CheckersGeneralized Checkers



Generalized CheckersGeneralized Checkers

PSPACEPSPACE--hardhard
–– FraenkelFraenkel et al. 1978et al. 1978

EXPEXP--completecomplete
–– Robson 1984Robson 1984



Approximate Approximate CoutingCouting

#P #P –– Valiant 1979Valiant 1979
–– Functions that count solutions of NP problems.Functions that count solutions of NP problems.
–– Permanent is #PPermanent is #P--completecomplete
Stockmeyer 1985 building on Sipser 1983Stockmeyer 1985 building on Sipser 1983
–– Can approximate any #P function f in Can approximate any #P function f in polytimepolytime

with an oracle for with an oracle for ΣΣ22
pp..

Toda 1991Toda 1991
–– Every language in PH reducible to #PEvery language in PH reducible to #P



Complexity of #PComplexity of #P
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Legacy of Larry StockmeyerLegacy of Larry Stockmeyer

Circuit ComplexityCircuit Complexity
Infinite Hierarchy ConjectureInfinite Hierarchy Conjecture
Probabilistic ComputationProbabilistic Computation
Interactive Proof SystemsInteractive Proof Systems



Circuit ComplexityCircuit Complexity

BakerBaker--GillGill--SolovaySolovay ’’75: 75: RelativizationRelativization PaperPaper
–– Open: Is PH infinite relative to an oracle?Open: Is PH infinite relative to an oracle?
Sipser Sipser ’’83: Strong lower bounds on depth d 83: Strong lower bounds on depth d 
circuits simulating depth d+1 circuits.circuits simulating depth d+1 circuits.
Yao Yao ’’85: 85: ““Separating the PolynomialSeparating the Polynomial--Time Time 
Hierarchy by OraclesHierarchy by Oracles””
Led to future circuit results by HLed to future circuit results by Hååstad, stad, 
Razborov, Razborov, SmolenskySmolensky and many others.and many others.



Infinite Hierarchy ConjectureInfinite Hierarchy Conjecture

Is the PolynomialIs the Polynomial--Time Hierarchy Infinite?Time Hierarchy Infinite?
Best Evidence: Best Evidence: YaoYao’’ss result shows result shows 
alternating logalternating log--time hierarchy infinite.time hierarchy infinite.
Many complexity resultsMany complexity results
–– If PROP then the polynomialIf PROP then the polynomial--time hierarchy time hierarchy 

collapses.collapses.
–– If PH is infinite then NOT PROP.If PH is infinite then NOT PROP.
Gives evidence for NOT PROP.Gives evidence for NOT PROP.



If Hierarchy is Infinite If Hierarchy is Infinite ……

SAT does not have small circuits.SAT does not have small circuits.
–– KarpKarp--Lipton 1980Lipton 1980
Graph isomorphism is not NPGraph isomorphism is not NP--complete.complete.
–– GoldreichGoldreich--MicaliMicali--WigdersonWigderson 19911991
–– GoldwasserGoldwasser--Sipser 1989Sipser 1989
–– BoppanaBoppana--HHååstadstad--Zachos 1987Zachos 1987
Boolean hierarchy is infinite.Boolean hierarchy is infinite.
–– KadinKadin 19881988



Boolean HierarchyBoolean Hierarchy

BHBH1 1 = NP= NP
BHBHk+1 k+1 = { B= { B--C | B in NP and C in C | B in NP and C in BHBHkk}}
{ ({ (G,kG,k) | Max clique of G has size k} in BH) | Max clique of G has size k} in BH22

KadinKadin: If : If BHBHkk=BH=BHk+1k+1 then PH=then PH=ΣΣ33
pp..
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Sipser-Gács-Lautemann 1983



Interactive Proof SystemsInteractive Proof Systems

Papadimitriou 1985 Papadimitriou 1985 –– Alternation between Alternation between 
nondeterministic and probabilistic playersnondeterministic and probabilistic players
Interactive Proof SystemsInteractive Proof Systems
–– Public Coin: BabaiPublic Coin: Babai--Moran 1988Moran 1988
–– Private Coin: Private Coin: GoldwasserGoldwasser--MicaliMicali--RackoffRackoff 19891989
–– Equivalent: GoldwasserEquivalent: Goldwasser--Sipser 1989Sipser 1989
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Interactive Proof SystemsInteractive Proof Systems

Hardness of ApproximationHardness of Approximation
–– FeigeFeige--GoldwasserGoldwasser--LovLováászsz--SafraSafra--SzegedySzegedy 19961996
Probabilistically Checkable ProofsProbabilistically Checkable Proofs
–– NP in PCPs with NP in PCPs with O(logO(log n) coins and constant n) coins and constant 

number of queries.number of queries.
–– AroraArora--LundLund--MotwaniMotwani--SudanSudan--SzegedySzegedy 19981998
Interactive Proofs with Finite State VerifiersInteractive Proofs with Finite State Verifiers
–– DworkDwork and Stockmeyerand Stockmeyer



Other WorkOther Work

Larry Stockmeyer contributed much more to Larry Stockmeyer contributed much more to 
complexity and important work in other complexity and important work in other 
areas including automata theory and parallel areas including automata theory and parallel 
and distributed computing.and distributed computing.
Most Cited Article (Most Cited Article (CiteSeerCiteSeer):):
–– DworkDwork, Lynch, and Stockmeyer, , Lynch, and Stockmeyer, ““Consensus in Consensus in 

the presence of partial synchronythe presence of partial synchrony”” JACM, 1988.JACM, 1988.



ConclusionConclusion

What natural problems canWhat natural problems can’’t we compute?t we compute?
Led to exciting work on polynomialLed to exciting work on polynomial--time time 
hierarchy, alternation, approximation and hierarchy, alternation, approximation and 
much more.much more.
These idea affect much of computational These idea affect much of computational 
complexity today and the legacy will complexity today and the legacy will 
continue for generations in the future.continue for generations in the future.



RememberingRemembering

Other members of our community that we Other members of our community that we 
have recently losthave recently lost……



George George DantzigDantzig



Shimon EvenShimon Even



Seymour Ginsburg Seymour Ginsburg 



Frank Frank HararyHarary



Leonid Leonid KhachiyanKhachiyan



Clemens Clemens LautemannLautemann



Carl SmithCarl Smith



Larry StockmeyerLarry Stockmeyer
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