Concentration for Limited Independence via Inequalities for the Elementary Symmetric Polynomials
by Parikshit Gopalan and Amir Yehudayoff
Theory of Computing, Volume 16(17), pp. 1-29, 2020
Bibliography with links to cited articles
[1] Miklós Ajtai and Avi Wigderson: Deterministic simulation of probabilistic constant depth circuits. In Silvio Micali and Franco Preparata, editors, Randomness and Computation, volume 5 of Adv. in Computing Research, pp. 199–222. JAI Press, 1989. Available on author’s homepage. Preliminary version in FOCS’85.
[2] Noga Alon, László Babai, and Alon Itai: A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algorithms, 7(4):567–583, 1986. [doi:10.1016/0196-6774(86)90019-2]
[3] Roy Armoni, Michael E. Saks, Avi Wigderson, and Shiyu Zhou: Discrepancy sets and pseudorandom generators for combinatorial rectangles. In Proc. 37th FOCS, pp. 412–421. IEEE Comp. Soc., 1996. [doi:10.1109/SFCS.1996.548500]
[4] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher: Min-wise independent permutations. J. Comput. System Sci., 60(3):630–659, 2000. Preliminary version in STOC’98. [doi:10.1006/jcss.1999.1690]
[5] Andrei Z. Broder, Moses Charikar, and Michael Mitzenmacher: A derandomization using min-wise independent permutations. J. Discr. Algorithms, 1(1):11–20, 2003. Preliminary version in RANDOM’98. [doi:10.1016/S1570-8667(03)00003-0]
[6] Dean Doron, Pooya Hatami, and William M. Hoza: Log-seed pseudorandom generators via iterated restrictions. In Proc. 35th Comput. Complexity Conf. (CCC’20), pp. 1–36. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020. [doi:10.4230/LIPIcs.CCC.2020.6]
[7] Guy Even, Oded Goldreich, Michael Luby, Noam Nisan, and Boban Veličković: Efficient approximation of product distributions. Random Struct. Algor., 13(1):1–16, 1998. Preliminary version in STOC’92. [doi:10.1002/(SICI)1098-2418(199808)13:1¡1::AID-RSA1¿3.0.CO;2-W]
[8] Parikshit Gopalan, Daniel M. Kane, and Raghu Meka: Pseudorandomness via the discrete Fourier transform. SIAM J. Comput., 47(6):2451–2487, 2018. Preliminary version in FOCS’15. [doi:10.1137/16M1062132, arXiv:1506.04350]
[9] Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil P. Vadhan: Better pseudorandom generators from milder pseudorandom restrictions. In Proc. 53rd FOCS, pp. 120–129. IEEE Comp. Soc., 2012. [doi:10.1109/FOCS.2012.77, arXiv:1210.0049]
[10] Parikshit Gopalan and Amir Yehudayoff: Inequalities and tail bounds for elementary symmetric polynomials. Electron. Colloq. Comput. Complexity, TR14-019, 2014. [ECCC]
[11] Piotr Indyk: A small approximately min-wise independent family of hash functions. J. Algorithms, 38(1):84–90, 2001. Preliminary version in SODA’99. [doi:10.1006/jagm.2000.1131]
[12] Nathan Linial, Michael Luby, Michael E. Saks, and David Zuckerman: Efficient construction of a small hitting set for combinatorial rectangles in high dimension. Combinatorica, 17(2):215–234, 1997. Preliminary version in STOC’93. [doi:10.1007/BF01200907]
[13] Chi-Jen Lu: Improved pseudorandom generators for combinatorial rectangles. Combinatorica, 22(3):417–434, 2002. Preliminary version in ICALP’98. [doi:10.1007/s004930200021]
[14] Raghu Meka, Omer Reingold, and Avishay Tal: Pseudorandom generators for width-3 branching programs. In Proc. 51st STOC, pp. 626–637. ACM Press, 2019. [doi:10.1145/3313276.3316319, arXiv:1806.04256]
[15] Ketan Mulmuley: Randomized geometric algorithms and pseudorandom generators. Algorithmica, 16(4/5):450–463, 1996. Preliminary version in FOCS’92. [doi:10.1007/BF01940875]
[16] Joseph Naor and Moni Naor: Small-bias probability spaces: Efficient constructions and applications. SIAM J. Comput., 22(4):838–856, 1993. Preliminary version in STOC’90. [doi:10.1137/0222053]
[17] Noam Nisan: Pseudorandom generators for space-bounded computation. Combinatorica, 12(4):449–461, 1992. Preliminary version in STOC’90. [doi:10.1007/BF01305237]
[18] George Pólya and George Szeg: Problems and Theorems in Anaysis II. Springer, 1976.
[19] Michael E. Saks, Aravind Srinivasan, Shiyu Zhou, and David Zuckerman: Low discrepancy sets yield approximate min-wise independent permutation families. Information Processing Letters, 73(1–2):29–32, 2000. Preliminary version in RANDOM’99. [doi:10.1016/S0020-0190(99)00163-5]
[20] J. Michael Steele: The Cauchy-Schwarz Master Class. Cambridge Univ. Press, 2004. [doi:10.1017/CBO9780511817106]