The Complexity of Computing the Optimal Composition of Differential Privacy
by Jack Murtagh and Salil Vadhan
Theory of Computing, Volume 14(8), pp. 1-35, 2018
Bibliography with links to cited articles
[1] Hai Brenner and Kobbi Nissim: Impossibility of differentially private universally optimal mechanisms. SIAM J. Comput., 43(5):1513–1540, 2014. Preliminary version in FOCS’10. [doi:10.1137/110846671, arXiv:1008.0256]
[2] Mark Bun and Thomas Steinke: Concentrated differential privacy: Simplifications, extensions, and lower bounds. In Proc. 14th Theory of Cryptography Conf. (TCC’16), pp. 635–658. Springer, 2016. [doi:10.1007/978-3-662-53641-4_24, arXiv:1605.02065]
[3] Mercè Crosas: The dataverse network®;: An open-source application for sharing, discovering and preserving data. D-Lib Magazine, 17(1/2), 2011. [doi:10.1045/january2011-crosas]
[4] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor: Our data, ourselves: Privacy via distributed noise generation. In Proc. 25th Int. Conf. on the Theory and Application of Cryptographic Techniques (EUROCRYPT’06), pp. 486–503. Springer, 2006. [doi:10.1007/11761679_29]
[5] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith: Calibrating noise to sensitivity in private data analysis. J. Privacy and Confidentiality, 7(3):17–51, 2016. Preliminary version in TCC’06. Available at journal’s webpage.
[6] Cynthia Dwork and Aaron Roth: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci., 9(3-4):211–407, 2014. [doi:10.1561/0400000042]
[7] Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan: Boosting and differential privacy. In Proc. 51st FOCS, pp. 51–60. IEEE Comp. Soc. Press, 2010. [doi:10.1109/FOCS.2010.12]
[8] Martin E. Dyer: Approximate counting by dynamic programming. In Proc. 35th STOC, pp. 693–699. ACM Press, 2003. [doi:10.1145/780542.780643]
[9] Matthias Ehrgott: Approximation algorithms for combinatorial multicriteria optimization problems. Internat. Trans. Operational Res., 7(1):5–31, 2000. [doi:10.1111/j.1475-3995.2000.tb00182.x]
[10] Marco Gaboardi, James Honaker, Gary King, Jack Murtagh, Kobbi Nissim, Jonathan Ullman, and Salil P. Vadhan: PSI (): A private data sharing interface. Harvard University Privacy Tools Project, 2016. [arXiv:1609.04340]
[11] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan: Universally utility-maximizing privacy mechanisms. SIAM J. Comput., 41(6):1673–1693, 2012. Preliminary version in STOC’09. [doi:10.1137/09076828X, arXiv:0811.2841]
[12] Peter Kairouz, Sewoong Oh, and Pramod Viswanath: The composition theorem for differential privacy. IEEE Trans. Inform. Theory, 63(6):4037–4049, 2017. Preliminary version in ICML’15. [doi:10.1109/TIT.2017.2685505, arXiv:1311.0776]
[13] Gary King: An introduction to the dataverse network as an infrastructure for data sharing. Sociological Methods & Research, 36(2):173–199, 2007. [doi:10.1177/0049124107306660]
[14] Jack Murtagh and Salil P. Vadhan: The complexity of computing the optimal composition of differential privacy. In Proc. 14th Theory of Cryptography Conf. (TCC’16), pp. 157–175. Springer, 2016. [doi:10.1007/978-3-662-49096-9_7, arXiv:1507.03113v2]
[15] Stanley L. Warner: Randomized response: A survey technique for eliminating evasive answer bias. J. Amer. Stat. Assoc., 60(309):63–69, 1965. [doi:10.1080/01621459.1965.10480775]