
THEORY OF COMPUTING
www.theoryofcomputing.org

Width-parameterized SAT: Time-space
tradeoffs

Eric Allender∗ Shiteng Chen† Tiancheng Lou†

Periklis A. Papakonstantinou† Bangsheng Tang†

July 14, 2013

Abstract: Alekhnovich and Razborov (2002) presented an algorithm that solves SAT on
instances φ of size n and tree-width TW(φ), using time and space bounded by 2O(TW(φ))nO(1).
Although several follow-ups appeared over the last decade, the first open question of Alekhnovich
and Razborov remained essentially unresolved: Can one check satisfiability of formulas with
small tree-width in polynomial space and time as above? We essentially resolve this question,
by (1) giving a polynomial space algorithm with a slightly worse run-time, (2) providing a
complexity-theoretic characterization of bounded tree-width SAT, which strongly suggests that
no polynomial space algorithm can run significantly faster, and (3) presenting a spectrum of
algorithms trading off time for space, between our PSPACE algorithm and the fastest known
algorithm.

First, we give a simple algorithm that runs in polynomial space and achieves run-time
3TW(φ) lognnO(1), which approaches the run-time of Alekhnovich and Razborov (2002), but has
an additional logn factor in the exponent. Then, we conjecture that this annoying logn factor is
in general unavoidable.

Our negative results show our conjecture true if one believes a well-known complexity
assumption, which is the SC 6= NC conjecture and its scaled variants. Technically, we base our

∗Supported by National Science Foundation grants CCF-0832787 and CCF-1064785
†Supported by National Basic Research Program of China Grant 2011CBA00300, 2011CBA00301, and the National Natural

Science Foundation of China Grant 61033001, 61061130540, 61073174, 61250110577

ACM Classification: F.1.3, F.2.2

AMS Classification: 68Q15, 68Q25

Key words and phrases: complexity theory, algorithms, complexity classes, circuit complexity, parameter-
ized complexity, nondeterminism, CNF-DNF formulas, Boolean formulas, completeness, SAT, time-space
tradeoff, treewidth, pathwidth

Eric Allender and Shiteng Chen and Tiancheng Lou and Periklis A. Papakonstantinou and Bangsheng Tang
Licensed under a Creative Commons Attribution License

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/

result on the following lemma. For arbitrary k, SAT of tree-width logk n is complete for the
class of problems computed by circuits of logarithmic depth, semi-unbounded fan-in and size
2O(logk n) (SAC1 when k = 1). Problems in this class can be solved simultaneously in time-space
(2O(logk+1 n), O(logk+1 n)), and also in (2O(logk n), 2O(logk n)). Then, we show that our conjecture
(for SAT instances with poly-log tree-width) is equivalent to the question of whether the small
space simulation of semi-unbounded circuit classes can be sped up without incurring a large
space penalty. This is a recasting of the conjecture that SAC1 (and even its subclass NL) is not
contained in SC.

Although we cannot hope for an improvement asymptotically in the exponent of time and
space, we introduce a new algorithmic technique which trades constants in the exponents:
for each ε with 0 < ε < 1, we give an algorithm in time-space

(
31.441(1−ε)TW(φ) log |φ ||φ |O(1),

22εTW(φ)|φ |O(1)
)
. We systematically study the limitations of our technique for trading off time

and space, and we show that our bounds are the best achievable using this technique.

1 Introduction

SAT is the prototypical NP-complete problem. In the real-world SAT instances tend to have structure. Also,
in practice SAT-solvers abort due to lack of memory. In this paper we provide conclusive, asymptotically
tight answers regarding time-space tradeoffs for SAT instances that are structured, where this structure is
quantified by tree-width.1

This restriction of SAT was studied by Alekhnovitch and Razborov [2] (for references prior to this see
within), who gave algorithms that work in time 2O(TW(φ))|φ |O(1) and in space 2O(TW(φ))|φ |O(1), where TW(φ)
is the tree-width of a CNF formula φ , and |φ |= n+m where n and m are the number of variables and clauses,
respectively. The authors of [2] state their results in terms of the branch-width of the formula, which is within
a constant factor of the tree-width. They conclude:

“ The first important problem is to overcome the main difficulty of the practical implementation
which is the huge amount of space used by width-based algorithms. . . . Thus we ask if one
can do anything intelligent in polynomial space to check satisfiability of formulas with small
branch-width? ”

The question raised by Alekhnovich and Razborov is a major issue in practical SAT-solving. Modulo
complexity assumptions we fully answer this question.

1.1 Our contribution and techniques

We devise a simple space-efficient algorithm for SAT instances in CNF, which runs in time 3TW(φ) log |φ ||φ |O(1)

and space |φ |O(1). This is the first algorithm with running time exponential in the tree-width of the incidence
graph (unlike [4] which is just on the primal graph) of arbitrary CNF instances (unlike [19] which is just for
k-CNFs), that runs in polynomial space. Compared to the question of [2] this algorithm suffers a log |φ | factor
in the exponent of the running time. Our work revolves around this logarithmic factor. First, we conjecture
that it cannot be removed:

Conjecture 1.1. Let A be an algorithm for SAT that runs in time 2TW(φ)δ (|φ |)|φ |O(1). Consider CNF formulas
where TW(φ) = O(|φ |1−ε), for some fixed ε < 1. If δ (φ) = o(log |φ |) then A uses space 2Ω(TW(φ)).

1A formal definition of tree-width can be found in Section 2, an informal exposition is found earlier in Section 1.2.

2

Second, we show that the above conjecture is equivalent to a widely-believed computational complexity
assumption (scaled for a wider range of parameters). That is, we offer a complexity-theoretic connection
that supports this conjecture. This computational complexity conjecture comes under the cryptic statement
NC 6⊆ SC. This is well-known to complexity theorists, and also of immense practical interest. SC is the
class of problems that can be decided by algorithms that work simultaneously in poly-logarithmic space and
polynomial time (i. e., efficient time and efficient space computation). NC is the class of problems that can be
decided by circuits simultaneously of polynomial size and poly-logarithmic depth (i. e., parallel computation
which uses a small number of processors and small parallel time). There is an, almost exact, correspondence
between algorithm space and circuit depth (e. g., given an algorithm that uses poly-logarithmic space we
can construct a parallel algorithm that runs in poly-logarithmic parallel time) and between algorithm time
and circuit size. These correspondences are believed to break down when we simultaneously bound “time
and space” and simultaneously bound “size and depth”. That is, NC 6⊆ SC means that in general we cannot
trade efficient #parallel processors-parallel time computation for efficient sequential time-space computation.
Details and additional intuition are given in Section 3.

Semi-unbounded combinatorial circuits play an important role in this work. A semi-unbounded circuit
(SAC) has AND gates of bounded fan-in, OR gates of unbounded fan-in, and all the negations at the input
level. Despite their exotic nature these circuits have essential differences from bounded and unbounded fan-in
circuits; see Section 3.1 for a discussion.

In Section 3 we show:
Theorem 3.5 SAT of a given tree decomposition of width logk n is complete for the class SACk

quasi :=

SAC(O(logn),2O(logk n)), i. e., semi-unbounded fan-in circuits of O(logn)-depth, and 2O(logk n)-size.
This is shown through a generic reduction in the spirit of [20]. We observe that NSCk, defined as

NSCk = NTISP(nO(1),O(logk n)) is contained in SACk
quasi which is in turn contained in NSCk+1, where

NTISP denotes the set of problems decidable by non-deterministic Turing Machines that are simultaneously
TIme-SPace bounded, and we show:
Theorem 3.6 SAT of a given path decomposition of width logk n is complete for NSCk,

Note that the NSC levels are direct space-scaled analogs of NL and these SAC classes are direct size-
scaled analogs of SAC1. Therefore, separating the complexity of SAT parameterized by path-width and tree-
width is equivalent to separating these classes, and hence, by padding, separating NL and LOGCFL = SAC1.
More importantly, putting these developments together we conclude that our conjecture implies NC 6= SC,
and in fact as the tree-width ranges over different functions of the input length our conjecture is shown to be
equivalent to a resource-scaled analog of NC 6= SC. Somewhat less rigorously:

Shrinking down the space, even by just a little, in a reasonably fast algorithm for SAT of bounded
tree-width, is the same as saying that every highly parallelizable problem can be sequentially
computed simultaneously in small time and space.

Assuming for now that Conjecture 1.1 holds, it makes sense to devise algorithms that approach these
limits. This is the topic of Section 4, which constitutes the more technically involved part of this work, though
the practical significance of these algorithms is debatable.

We use our space-efficient algorithm, together with a time-efficient dynamic programming algorithm
(essentially the algorithm of [35]), as the “end-points” for a spectrum of algorithms that trade off time and
space complexity between these two extremes. But there is a catch. If we combine the time-efficient dynamic
programming algorithm and our recursive algorithm in the obvious way, then we gain the worst of both
worlds. Here “obvious” means that we discretize the space of truth assignments during the execution of the
recursive algorithm and combine using dynamic programming. Instead, we introduce an implicit family of

3

proof systems. We use two free parameters to specify an algorithm in this family. One parameter is an integer
which is at least 2. This controls the “complexity” of the rules applied, for performing an unbalanced type of
recursion of some sort. The larger this parameter is, the smaller the running time is and the more space is
used. The second parameter is a real number in (0,1) that controls the discretization of the truth assignment
space. This family of algorithms is presented in Section 4, and in its full generality in Section 5. In the same
sections we show that all of the infinitely-many pairs of values are of interest, depending on the different
time-space bounds one may want to achieve.

Remark 1.2. Throughout this paper we assume that the tree (or path) decompositions are given in the input.
To the best of our knowledge, the same is true in all other works in width-parameterized SAT.

1.2 Related work

Tree-width is a popular graph parameter introduced by Robertson and Seymour [32, 33]. The smaller the
tree-width of a graph, the more the graph looks like a tree in some topological sense; for a connected graph of
n vertices tree-width 1 means that the graph is a tree, whereas tree-width n−1 means that it is the complete
graph. Several hard computational problems on general graphs become computationally easier when the
input graph is of small tree-width; see e. g., [7] for a survey.

For SAT instances the tree-width of a CNF formula is the tree-width of its associated graph (e. g.,
incidence graph, primal graph, or intersection graph). Among those graphs, the most general one is the
incidence graph (a bipartite graph where one side has variable-nodes and the other clause-nodes). In some
sense, the tree-width value on the incidence graph lower bounds the tree-width value of the rest [37]. In
particular, the tree-width of the incidence graph of a CNF formula can be arbitrarily smaller than the tree-
width of the CNF-formula graphs that were studied by Bacchus et al. [4]. There is a vast literature (too large
to concisely cite here) in empirical and theoretical studies in various width-parameterizations of SAT – we
only cite some of the most relevant ones below.

Algorithms for width-parameterized SAT. Prior to our work, [4, 19] addressed the question of Alekhnovich
and Razborov. In [19] the authors gave a combinatorially non-explicit algorithm only for the k-SAT
problem, where k is constant, where the algorithm runs in time 2O(TW(φ) log |φ |) and space |φ |O(1), when
TW(φ) = Ω(log |φ |). The deficiencies of [19] (which we overcome in our current paper) are not only that
their algorithm works only for k-SAT, but also that the constant in the exponent of the running time cannot
be bounded in any easy way due to the non-explicitness of the argument presented there. [4] presents a
polynomial-space DPLL algorithm with running time exponential in the tree-width of the primal graph of a
formula, hence their SAT algorithm is strictly weaker than ours (although they also present algorithms for
#SAT and similar problems).

There have been a number of follow-ups improving the running time of the Alekhnovich and Razborov
algorithm [2], considering different width-parameters: Fischer et al. [16] give algorithms for SAT (and a
somewhat generalized version of #SAT) parameterized by tree-width and clique-width. Their tree-width
algorithm matches the running time and space of an algorithm of Samer and Szeider [35], which we make
use of later in this paper as a time-efficient algorithm, running in time-space

(
22TW(φ)|φ |O(1), 2TW(φ)|φ |O(1)

)
.

Also, we remark that algorithms (e. g., for graph problems) which replace the tree-width parameter TW in the
exponent by a TW2 and at the same time reducing the space to polynomial (see e. g., [26]) are strictly worse
than our algorithms (and in particular fail to reach our target lower bound for the Alekhnovitch-Razborov
question). In particular, unlike the classical parameterized complexity approach, the interesting part of our

4

treatment (and in particular our complexity results) are for values of tree-width that are related to the input
length, and in fact Ω(logn).

Improving constants, previous work, and what’s different. Improving the constant in the base of an
exponential time algorithm is a well-established goal in the field of exact computation for NP-hard problems;
see e. g., [17, 40] for an overview. In particular, for k-SAT there is a line of work in algorithms that run in
time αn for α < 2; e. g., [28, 31, 36, 40]. An issue somewhat superficially related to our conjecture deals
with time-space tradeoffs for algorithms for NP-hard permutation problems, as discussed for example in [8]
and the references within (in particular [24]). However, there is no easy way to adapt these techniques in our
setting, and if Conjecture 1.1 is true, they cannot really be applied at all. A key property of these previous
algorithms is that as smaller subproblems are considered, the parameter number of nodes becomes smaller.
There is no obvious way to achieve this when the parameter is the width of the formula.

Finally, to the best of our knowledge our work is the first to address the issue of smooth time-space
tradeoffs for width-parameterized SAT. Prior to our work there are others which solely discuss lower bounds
on the running time; e. g., for graph problems (and under the very strong ETH assumption [22]) [25]. Another
kind of tradeoff (between size of the separator and the sharpness) for graph problems was discussed in [18].
We should also mention that in two excellent works on constraint satisfaction problems Grohe [21] (assuming
that FPT 6= W[1]) and Marx [27] (assuming ETH) essentially show that the running time of the known
width-based algorithms is optimal.

Hardness results and complexity characterizations. Every problem in NP can be seen as a problem
where accepting instances can be verified in logarithmic space (i. e., we can settle for less than polynomial
time in the verification). SAT of bounded path-width has been shown [30] complete for the class of problems
that can be decided by a logarithmic space machine which has “streaming access” to the tape containing
the witness; i. e., scanning the witness tape at most a given number of times. In particular, O(r(|φ |)) passes
correspond to SAT instances with given path-decompositions of width r(|φ |) log |φ |. Specifically, deciding
formulas with given path decompositions of width O(log |φ |) is complete for NL, and [30] asks whether the
complexity of SAT instances when the parameter is tree-width O(log |φ |) is more difficult. In this paper we
answer this question affirmatively, unless2 NL = SAC1. Furthermore, we show an exact correspondence of
these “streaming verification” classes with the levels of the known NSC hierarchy. Our new characterization
through semi-unbounded circuits is of independent interest, and seems more natural than the characterizations
presented in [1].

Relation to Propositional Proof Complexity. Our work opens new, exciting directions for Propositional
Proof Complexity. One way to make progress towards validating Conjecture 1.1 is to restrict attention to
specific types of algorithms. The study of restricted proof systems is one such choice. In fact, Beame, Beck,
and Impagliazzo very recently [6] made progress towards exactly validating our question. In particular, they
proved a Resolution Refutation size-space tradeoff, which implies that there exists a family of formulas φ of

tree-width TW(φ) where for every k > 0 every resolution refutation of size nk requires space 2TW(φ) log logn
log loglogn .

This very significant development is the first super-polynomial lower bound of this sort, and through our work
it can be interpreted as validating the SAC1 6⊆ SC conjecture, at least for a class of restricted algorithms. This
is a new direction; lower bounds in proof complexity are clearly connected to the NP 6= coNP conjecture [13],
but have not previously seemed to have a bearing on the SC 6= NC question.

2It is conjectured, e. g. [15], that SAC1 6= NL. Note that SAC1 is also known as LOGCFL.

5

2 Preliminaries

We introduce notation, terminology, and conventions used throughout the paper.

2.1 Notation

All logarithms are of base 2, and all propositional formulas are in Conjunctive Normal Form (CNF). SAT
is the decision problem where given an arbitrary CNF formula we want to decide if it is satisfiable. We let
k-SAT denote the restriction of SAT to CNFs where each clause has at most k literals. For a formula φ , m
denotes the number of clauses, n the number of variables, and Ci and x j stand for the i-th clause and j-th
variable respectively. For convenience we write |φ |= m+n. When there is no confusion (e. g., when defining
complexity classes) n is used to denote the input length.

2.2 Tree-Width

Definition 2.1. Let G = (V,E) be an undirected graph. A tree decomposition of G is a tuple (T,X), where
T = (W,F) is a tree, and X = {X1, · · · ,X|W |} where Xi ⊆V s.t.

(1)
⋃|W |

i=1 Xi =V .

(2) ∀(i, j) ∈ E, ∃t ∈W , s.t. i, j ∈ Xt .

(3) ∀v, the set {t : v ∈ Xt} forms a subtree of T.

Each of Xi is called a bag, the width of (T,X) is defined as maxt∈W |Xt |−1, and the tree-width TW(G) of
graph G is defined as the minimum width over all possible tree decompositions.

When the tree decomposition T = (W,F) is restricted to a path, the decomposition is called a path
decomposition, and the specific tree-width is called the path-width PW(G). The following inequality holds
(e. g., [10])

TW(G)≤ PW(G)≤ O(log |V | ·TW(G)) (2.1)

Definition 2.2. The incidence graph Gφ of a SAT instance φ is a bipartite graph, where in one side of the
bipartization each node is associated with a distinct variable, and in the other each node is associated with a
clause. There is an edge between a clause-node and a variable-node if and only if the variable appears in a
literal of the clause. The tree-width of a formula φ is the tree-width of its incidence graph, TW(φ) = TW(Gφ).
When it is clear from the context we may abuse notation and write TW(φ) to denote the width of a given
decomposition of Gφ .

We assume that a tree decomposition of the incidence graph of φ is given as input along with φ . For
convenience, we assume without loss of generality that the input tree decompositions ((W,F),X) have the
following two properties.

(1) |W |= O(TW(φ) · |V |) = O(TW(φ)|φ |)

(2) The tree T = (W,F) has bounded degree 3.

We call a tree decomposition nice if it satisfies the two properties above. A tree decomposition can be
converted to a nice one in linear time (see e. g., [23, 10]). The maximal degree in the tree decomposition is
denoted by d. By the property above, d ≤ 3. If the input is given with a path decomposition, then d ≤ 2.

6

Remark 2.3. We present our results with the parameter d. One may replace d by 2 or 3 when the structure
of the input decomposition is known to be a path or a (nice) tree.

2.3 Assignments

We introduce terminology and notation to talk about truth assignments on bags. Let X be a bag in the tree
decomposition, V be the variables and C be the clauses in X . Also, nV = |V| and mC = |C|. An assignment
RX for X is a binary vector of length nV+mC. The first nV bits indicate the truth values of the corresponding
variables. Note that the term “assignment” does not correspond only to a “truth assignment” on the variables
in X . It is an assignment of bit values both to variables and to clauses.

What values the last mC bits have is a subtle issue explained in Section 4. For the dynamic programming
algorithm things are pretty clear. However, for the space-efficient and trade-off algorithms, things become
more subtle. Intuitively, a bit corresponding to a clause C is 1 if we “have decided” to eventually satisfy this
clause (this has to do with where we are in the execution of the algorithm). Such a decision is different for
different algorithms, but we use the same data-structure.

Actually, the most straightforward way of defining the clause bits is to let it denote whether the correspond-
ing clause “is” satisfied. To ensure that a clause is satisfied in one of the branches in the tree decomposition,
we need to enumerate all 2d−1 combinations of branches on which the clause is satisfied. However, if one is
interested in only the satisfiability problem (and not e.g. in #SAT) we observe that d combinations suffice.

3 A complexity-theoretic characterization

We show that (i) our Conjecture 1.1 is equivalent to a widely believed complexity assumption (and its scaled
analogs), and (ii) under a different well-known complexity assumption (NL (LOGCFL), for the same width
parameter w(|φ |) SAT of tree-width O(w(|φ |)) cannot be efficiently reduced to SAT of path-width O(w(|φ |)).
Both of these results follow by first proving that SAT parameterized by path- and tree-width is complete
for natural complexity classes. To obtain these results, we heavily rely on properties of semi-unbounded
combinatorial circuits. In Section 3.1 we give a primer with basic intuition about these circuits. Also, based
on properties of these circuits and on the relation between path-width and tree-width in Equation (3.1) in
Section 3.3, we provide a new characterization of NSC.

3.1 A primer on semi-unbounded fan-in circuits

The statements of the lower bounds do not explicitly refer to semi-unbounded families of circuits, but we use
them inside the arguments. A circuit is semi-unbounded when it has unbounded fan-in OR gates, bounded
fan-in AND gates, and all the negations are at the input level. The class of problems that can be decided
by such circuits of depth O(logi n) and polynomial size is denoted by SACi. Clearly, NCi ⊆ SACi ⊆ ACi,
where NC and AC denote the complexity classes characterized by the same parameters with bounded fan-in
and unbounded fan-in families of circuits, respectively. There is also the issue of uniformity; we provide
the necessary background regarding circuit uniformity in the next sub-section. For the moment, the reader
should make use of an informal uniformity assumption, meaning merely that there is an efficient algorithm
describing how to construct the circuits for inputs of size n.

What is special in SAC circuits? Suppose that you are given oracle access to the description of an
unbounded circuit C (with all negation gates on the input level) and an input x, and you want to verify

7

recursively that C(x) = 1. The standard algorithm would be to start at the output gate and execute the
following recursive algorithm: if the current gate g is an OR gate, nondeterministically pick a gate h that
feeds into g and verify that h evaluates to 1; if the current gate g is an AND gate with h1, . . . ,hm feeding into
it, recursively verify that each of the hi evaluates to 1. An accepting run of this algorithm corresponds to a
(possibly huge) tree, called a “proof tree” [38]; if the circuit C has bounded fan-in (or even semi-unbounded
fan-in), then the size of this tree is bounded by 2depth. In the bounded fan-in case, restricting the depth of
C automatically implies restricting the size of C; in the semi-unbounded fan-in case this is not true. The
important aspect of semi-unbounded fan-in circuits that we will utilize, is that the proof tree can be much
smaller than the circuit (unlike the bounded-fan-in case), and has size exponential in the depth (unlike the
unbounded-fan-in case).

An observation on uniformity. Consider a family of semi-unbounded circuits of size 2nO(1)
and depth

O(logn) that is polynomial time uniform, in the sense that, given the names of two gates g and h, one can
determine in time polynomial in n whether there is an edge from g to h, and what kind of gates g and h are.
(Note that nO(1) bits are required, merely to write down the name of one of the gates.) Then, for an input x,
|x|= n, the problem of evaluating the membership of the family Cn(x) is in NP. That is, given x we guess
a proof as described above and then verify that it is a valid proof. Clearly, every problem L ∈ NP can be
computed by such a circuit since in logn depth we can verify that a given witness y is an encoding of a valid
accepting computation path on input x, and hence we obtain a circuit for L∩{0,1}n by putting a big OR gate
as the output gate, computing the disjunction, over all potential witnesses y, of the O(logn) depth circuit
testing if y is a witness for the input x). In other words, NP is precisely the class of problems computed
by uniform semi-unbounded circuits of size 2nO(1)

. Observe that if we do not insist on the uniformity, then
an arbitrary function can be computed by a 2O(n)-size and O(logn)-depth semi-unbounded (non-uniform)
circuit.

Relations of SAC circuits to other models of computation. Semi-unbounded fan-in circuits are intimately
related to Alternating Turing Machines (ATMs) and to Nondeterministic Auxiliary PushDown Automata
(NAuxPDAs). We provide definitions later on; for a more detailed treatment see e. g., [34]. For the moment
let us say that an ATM and a NAuxPDA are basically the same thing. Also, recall that an ATM is a
nondeterministic Turing Machine with two kinds of nondeterministic states: existential and universal. An
existential state is accepting if and only if at least one successor configuration is accepting, whereas a
universal state is accepting if and only if each successor configuration is accepting. Although it requires a bit
of work to show equivalence [38] it should come at no surprise that proofs for SAC circuits are related to
ATM computations.

3.2 Complexity theory notation and some preliminaries

NSC is the nondeterministic analog of SC, the class of languages decidable simultaneously in polynomial
time and poly-logarithmic space. Define NSCk := NTISP

(
nO(1),O(logk n)

)
. It is widely conjectured that

SC 6= NC. Here is a stronger intuitive form of this conjecture.

Conjecture 3.1. The NL-complete graph reachability problem3 cannot simultaneously be solved deter-
ministically in sub-polynomial space and polynomial time. That is, depth-first search cannot be simu-
lated quickly in small space, and hence NL 6⊆ TISP(nO(1),no(1)). This implies the weaker conjecture
SAC1 6⊆ TISP(nO(1),no(1)).

3Given a directed graph G = (V,E) and two designated vertices s, t ∈V , is t reachable from s?

8

We denote by SATtw(w(|φ |)) the problem of deciding SAT of a given CNF formula together with a
tree decomposition of width w(|φ |). Similarly, for path-width we use the notation SATpw(w(|φ |)). [30]
shows that SATpw(w(|φ |)) is complete for the class NL[w(|φ |)

log |φ |], characterized by log-space bounded Turing

Machines augmented with a polynomially long read-only, nondeterministic tape on which they make O(w(|φ |)
log |φ |)

passes.
We use the notation SAC(depth,size). We follow standard conventions when defining levels of the NC hi-

erarchy, by defining SACk := SAC(O(logk n),nO(1)). However, in this paper a different parameterization will
be of equal importance: by restricting the depth of semi-unbounded fan-in circuits to be O(logn), and allowing
the size to be quasipolynomial, we obtain subclasses of NP denoted by SACk

quasi := SAC(O(logn),2O(logk n)).
The study of SAC circuits, and the various classes SACi has received considerable attention e. g., [12, 38].
The SACk

quasi classes (very shallow quasi-polynomial size circuits) are introduced in this paper; they char-
acterize the NSC hierarchy (Equation (3.1)). For these families of circuits we use Dlogtime-uniformity [5].
This means that the direct connection language for the circuit family can be recognized in linear time. The
direct connection language takes inputs of the form 〈n, i,d, j, t〉 such that d > 0 and the dth input of the gate i
in the circuit for inputs of length n is of type t(∈ {AND,OR,0,1}) and has index j, or else d = 0 and gate i
is of type t. Since the string 〈n, i,d, j, t〉 has length logarithmic in the size of the circuit for inputs of length n,
it follows that, for SACk

quasi circuits, questions about connectivity in the circuits for length n can be answered
in time O(logk n).

Simultaneously depth-size bounded semi-unbounded circuits are intimately related to space-time bounded
NAuxPDAs. A NAuxPDA is a nondeterministic space-bounded Turing Machine equipped with an unbounded
stack (see [14] for a precise definition). NAuxPDA(s(n), t(n)) is the class of languages decidable by a
NAuxPDA in space O(s(n)) and time O(t(n)). Although general Turing machine time is related to circuit
size while circuit depth is related to space, on NAuxPDAs the correspondence is reversed; simultaneous
bounds on circuit size and depth correspond to bounds on space and time, respectively. Generalizing the
arguments in [34] and [38] we obtain:

Lemma 3.2. SACk
quasi = NAuxPDA(O(logk n),nO(1)), for O(logk n) time uniform SAC circuits.

Proof. The proof of SACk
quasi ⊇ NAuxPDA(O(logk n),nO(1)) can be shown by following the proof for

the special case k = 1 (i. e., NAuxPDA(O(logn),nO(1)) = SAC(O(logn),nO(1))) [34, 38]. (See also [39].)
However, in the proof of Lemma 3.8 we will need to assume that the uniform SACk

quasi have certain properties,
and thus we follow a different outline here, to establish that those properties hold.

Ruzzo [34, Theorem 1 & Corollary 7] showed that any language in NAuxPDA(O(logk n),nO(1)) is
accepted by a NAuxPDA respecting these same resource bounds, where additionally the height of the
pushdown is O(logk+1 n) (and pushes and pops consist of moving strings of length O(logk n) to and from the
stack – hence it is useful to think of the stack as having height logn, over “symbols” of length O(logk n)).
It is easy to see that such a machine can also be assumed to be somewhat “oblivious”, in the sense that the
positions of the worktape and input heads at time t are the same for all inputs of length n. Rossmanith and
Niedermeier subsequently improved on this, to show that the NAuxPDA can be assumed to be completely
oblivious, in the sense that the sequences of pushes and pops are also the same for all inputs of length n [29,
Theorem 28]. (Rossmanith and Niedermeier state their theorems in terms of machines with a logarithmic
worktape bound, but their proof works also for larger space bounds, as long as the time is polynomial.) In
particular, the pushes and pops follow a very regular pattern, so that the computation is divided into phases
corresponding to the height of the stack. The computation starts and ends with stack height zero, and precisely
half-way through the computation, the stack height is also zero. Call these three configurations C0,D0, and E0.

9

The computation from C0 to D0 and from D0 to E0 all takes place with a stack height of at least 1 “symbol”
(where the stack “symbols” are of O(logk n) bits each); these are the two “phases” with height 1. In general,
there are 2i phases with height i, for each i≤ imax = O(logn). Each such phase (for i < imax) has some start
configuration Ci and end configuration Ei that take place at times that depend only on the input length n, and
there is a configuration Di that also has stack height i, such that the computations between Ci and Di and
between Di and Ei have exactly the same length and are both phases with stack height i+1. (The phases at
height imax start in a configuration C that has a number j ≤ n recorded in it, and ends in a configuration that
records the j-th input symbol; no stack manipulation occurs in such a phase.)

Thus in order to show that NAuxPDA(O(logk n),nO(1))⊆ SACk
quasi, it suffices to build circuits to simulate

oblivious machines that have this very restrictive computation pattern. The output gate will check if the height
zero phase starts with the initial configuration C0 and ends with the accepting configuration E0; it is an OR
gate, connected to gates labeled with triples (C0,D0,E0) for all D0, to see if there is a computation from C0 to
E0 passing through D0. In general, gates labeled (Ci,Di,Ei) (or (Ci,Di,Ei,γ)) where Ci, Di, and Ei encode
the worktape contents and input head positions (but not the stack contents) for some phase with stack height i
(and γ is a stack symbol of length logk n) are AND gates, testing whether there are computations from Ci to
Di and from Di to Ei, respectively. The children of these AND gates, corresponding to some computation
between stack height i configurations A and B, are OR gates over all (Ci+1,Di+1,Ei+1,γ) such that:

• There is a move from A to Ci+1 pushing γ .

• There is a move from Ei+1 to B popping γ .

(If i+1 = imax, then instead of (Ci+1,Di+1,Ei+1,γ), the gates have the format (Ci+1,Ei+1,γ), and these gates
are (possibly negated) input gates, recording whether the given input symbol is consistent with a transition
from Ci+1 to Ei+1.)

It should be clear that the circuit directly simulates the NAuxPDA. For more details about the uniformity
of the circuits, we refer the reader to [29, 38, 39].

Now we prove the other direction: NAuxPDA(O(logk n),nO(1))⊇ SAC(O(logn),2O(logk n)). Let L have
SAC(O(logn),2O(logk n)) circuits. A NAuxPDA accepts L as follows. On input x, compute the name of the
output gate of the circuit (call it g), and write g on the worktape. Start the routine EVAL(g), described below:

The run-time required to to evaluate a gate g at depth d is 2dnO(1), assuming logspace uniformity. This is
polynomial in n, since d = O(logn). The space required is dominated by the number of bits needed, to write
down the name of a gate, which is O(logk n).

This completes the proof, but let us mention here that later, in Lemma 3.7 and Lemma 3.8, we show that
SATtw(logk |φ |) is hard for SAC(O(logn),2logk n), and is contained in NAuxPDA(O(logk n),nO(1)).

The reader may be surprised that acceptance of a super-polynomial size circuit can be verified in
(nondeterministic) polynomial time. This is related to the structure and size of proofs of accepting inputs for
semi-unbounded circuits. In particular, the size of such a proof/certificate is exponential in the depth of the
circuit (see the proof of Lemma 3.8 for details).

3.3 Completeness for SATpw(logk |φ |) and SATtw(logk |φ |), and a new circuit characteriza-
tion of the NSC hierarchy

In Theorem 3.5 we show that SATpw(logk |φ |) is complete for NSCk and Theorem 3.6 states that SATtw(logk |φ |)
is complete for SACk

quasi. We remark that the tree-width/path-width relation PW(G)≤ TW(G) logn can be

10

Algorithm 1 EVAL(g)
1: if g is a (negated) input gate connected to input bit xi then
2: accept iff xi is 1 (0, respectively)
3: end if
4: if g is an OR gate then
5: nondeterministically guess a gate name h and check that h→ g is an edge in the circuit
6: return EVAL(h)
7: end if
8: if g is an AND gate then
9: compute the gates h1 and h2 that feed into g

10: push h2 onto the stack and call EVAL(h1)
11: if this evaluates to 0 then
12: halt and reject
13: else
14: return EVAL(h2)
15: end if
16: end if

shown via a reduction computable in logspace [9]. Putting these together (or this can also be seen via a direct
argument) we have the following characterization of the NSC levels:

NL︸︷︷︸
NSC1

⊆ SAC1︸ ︷︷ ︸
SAC1

quasi

⊆ NSC2 ⊆ SAC2
quasi ⊆ NSC3 ⊆ ·· · ⊆ NSC = SACquasi (3.1)

Our completeness results require us to present upper bounds on the complexity of SAT with small tree-
width and path-width. For these upper bounds, we need the notation of consistency. Since we have extended
the notion of assignment to also include assignments to clauses, we also need to have a correspondingly
extended notation of consistency of assignments. The rigorous definition of consistency is deferred until
the next section; for this section it suffices to rely on an intuitive understanding of the notion. Intuitively,
assignments to two bags are said to be consistent, if the bits corresponding to variables agree, and some
additional constraints imposed by the bits corresponding to clauses are satisfied such that a satisfying truth
assignment can be deduced. For this section, it suffices to know that, if assignments for two bags are written
on the worktape, then it is very easy to determine if the assignments are consistent. Also, by the connectivity
properties of tree decompositions, it suffices to check consistency of neighboring bags.

Now, we turn to showing these completeness results. The following lemma implies Theorem 3.5.

Lemma 3.3. NSCk = NL[logk−1 n], for k ∈ Z+.

Proof. Let’s see why NSCk ⊆ NL[logk−1 n] first. Let M be a machine that accepts a language L ∈ NSCk.
From M, we construct a machine M′ that uses only logarithmic space on its worktape, and that makes
O(logk−1 n) passes over a tape of polynomial length that holds the sequence of “nondeterministic” bits. On
accepting computations, the nondeterministic tape of M′ will contain an encoding of a computation of M:
i. e., a sequence of encodings of successive configurations (from initial state to accepting state) of a complete
run of M accepting the given input. (Clearly, such an encoding will have polynomial length since the running
time of M is polynomial and the length of each configuration is O(logk n).) A configuration will include state,
head position and worktape. Without loss of generality we assume that all the encodings of configurations

11

have the same size, and that the worktape is divided evenly into blocks of length O(logn). Note that because
of the locality of computation, two adjacent configurations only differ in O(1) bits; the ith blocks of the
worktape of two consecutive configurations will be identical when the head is not in the corresponding block,
and otherwise will differ only in O(1) bits.

In the ith pass, starting from the initial configuration, M′ will check that the ith blocks of each two
consecutive configurations are correct. To do this, M′ will read blocks i−1, i, and i+1 of each two consecutive
configurations into its worktape in turn, as well as the state and head position of both configurations. If the
head is not in the ith block, then M′ will merely check that ith blocks of the two configurations are identical;
if the head is in the ith block, M′ will check whether the move is a legal move of M. Some additional
bookkeeping is necessary when the head is moving into or out of the ith block; in those cases, the blocks
i−1 and i+1 will also need to be consulted. If the ith blocks of configurations j and j+1 are deemed to
be consistent, then the process is repeated for configurations j+1 and j+2. It should be clear that M′ uses
logarithmic space and makes only O(logk−1 n) passes over its nondeterministic tape.

For the other direction, it is sufficient to present a complete problem for NL[logk−1 n] that is contained in
NSCk. SATpw(logk |φ |) is such a problem, by the following characterization:

Lemma 3.4 ([30]). SATpw(logk |φ |) is complete for NL[logk−1 n], for k ∈ Z+, under log-space many-to-one
reductions.

A nondeterministic machine M′′ for SATpw(logk |φ |) runs as follows: on its worktape, M′′ guesses
assignments (each of length logk |φ |) for each bag, in the order of path decomposition (storing only the
assignments for three bags at any one time). In order to check the correctness of the assignment for the jth
bag, the assignments for bags j−1, j, and j+1 on the working tape, and the consistency of these assignments
can be checked in polynomial time. By the properties of path decompositions, checking consistency of
consecutive bags is sufficient for correctness. M′′ uses O(logk n) space and polynomial time.

Lemma 3.4 and Lemma 3.3 immediately yield the following theorem:

Theorem 3.5. SATpw(logk |φ |) is complete for NSCk, for k ∈ Z+, under log-space many-to-one reductions.

Theorem 3.6. SATtw(logk |φ |) is complete for SACk
quasi, for k ∈ Z+, under log-space many-to-one reduc-

tions.

Proof. Containment is by Lemma 3.7 and Lemma 3.2, and hardness is by Lemma 3.8.

Lemma 3.7. SATtw(logk |φ |) ∈ NAuxPDA(O(logk n),nO(1))

Proof. The algorithm witnessing this containment is very natural when expressed as a NAuxPDA; it is a
modification of the algorithm in [19] with an additional trick to handle arbitrary CNF clauses, and has a very
similar structure to the proof that SATpw(logk |φ |) is in NSCk.

The NAuxPDA will perform a depth-first traversal of the tree decomposition, guessing assignments
corresponding to the bags (each of length O(logk |φ |)) using the worktape and the stack to check consistency
of the assignments. More precisely, the NAuxPDA will start at the root and guess an assignment for the root
node, and then recursively search the tree rooted at that node, given the current assignment.

To search the tree rooted at a given node v, given an assignment, the NAuxPDA will first check if v has
any children. If not, the NAuxPDA will halt and reject if the assignment is not accepting, and otherwise
will pop the stack to continue searching the tree rooted at v’s parent. Otherwise, the NAuxPDA will guess
assignments for v’s children (of which there are≤ 2), and check that the assignments are consistent, then push
the second child and its assignment onto the stack, along with information about v and its assignment, and

12

then search the tree rooted at the first child. When that subtree has been searched, the NAuxPDA will pop
the information for the second child off of the stack and search it. If both subtrees are successfully searched,
then the NAuxPDA pops the stack to continue searching the tree rooted at v’s parent.

It can be seen from the description that this machine requires O(logk |φ |) space, and polynomial time.

Hardness is more interesting. We do a reduction from an arbitrary language in SACk
quasi. Similar “generic

reductions” (i. e., reducing the computation of families of SAC circuits) for tree-width-related problems have
appeared before, e. g., [20] .

Lemma 3.8. SATtw(logk |φ |) is hard for SACk
quasi, under logspace many-to-one reductions.

Proof. Fix L ∈ SACk
quasi and an input x. Let C be the associated SAC circuit, with uniformity realized by a

Turing Machine M (i. e., the machine that decides the direct connection language). We construct a formula φ

that is satisfiable if and only if C(x) = 1. Without loss of generality we assume the that the circuit C is of
the type constructed in the proof of the first part of Lemma 3.2. In particular, note that we may assume the
following normal form for C: (i) C is layered, (ii) C is strictly alternating: odd-layer gates are OR, even-layer
gates are AND, (iii) C has an odd number of layers, and (iv) the AND gates in C have fan-in 2.

(a) A semi-unbounded circuit together with
a proof-tree. The NOT gates are assumed
to be part of the input

(b) The skeleton of the
proof-trees

Figure 1: Proof-tree. In (b), a SATtw(logk |φ |) instance is constructed from the skeleton: each node
corresponds to O(logk n) Boolean variables; clauses are constructed for each oval with dashed border; and
only those variables corresponding to a node shared by different dashed circles must be put into a bag in the
tree decomposition. This ensures O(logk n) tree-width.

A proof-tree is a tree with the same layering as the circuit. Each node of the tree is labelled by an index
of a gate from the corresponding layer of the circuit. At odd layers, each node has one child, while at even
layers, each node has two children. Two connected nodes must be labelled such that the corresponding gates
are connected. At the bottom layer, each node must be labelled by an input gate or a NOT gate which outputs
value 1. See Figure 1a for an illustration of an example.

A proof-tree witnesses that C(x) = 1. The main observation is that by the above normal form every
proof-tree must have the same shape. A skeleton is a proof-tree without labels (see Figure 1b). Therefore,
C(x) = 1 if and only if there exists a labeling to the nodes of the skeleton which turns it into a valid proof-tree.
It is important to note that, since C has the form given in the proof of Lemma 3.2, for any node v in the
skeleton, all valid labels for v will give v a label corresponding to a gate that is checking the same phase with
a given stack height; that is, all such labels will correspond to a segment of the computation of a NAuxPDA

13

with the same start and end times. We encode this labeling as a CNF formula as follows. Associate a node v
in the skeleton with bit vectors xv,dv, tv, where |xv|= |dv|= logk n, |tv| is constant. An assignment to these
Boolean vectors can be viewed as a labeling in the following sense: xv indicates the index of the gate, tv
indicates its type, while dv together with another xu indicates which predecessor in the circuit it should choose
in the proof-tree. More specifically, for every node v at an even-numbered layer in the skeleton with children
ul , ur we have: M(〈n,xv,0,0,AND〉) = 1, M(〈n,xv,dv,xul ,OR〉) = 1, and M(〈n,xv,dv,xur ,OR〉) = 1. When
v is at an odd-layer, and u is its child, we have M(〈n,xv,0,0,OR〉) = 1, and either M(〈n,xv,dv,xu,AND〉) = 1
or M(〈n,xv,dv,xu,1〉) = 1.

A correct proof-tree exists if and only if, for each edge (v,u), in the skeleton, the assignments to the
variables in xv,dv and xu can be picked so that M accepts the corresponding tuples. This condition can be
formalized as ∃s,M′(s) = 1, where |s| = O(logk n), corresponding to the input bits provided to a Turing
machine M′ (a modification of M) having running time O(logk n) on s. We would like to encode this à la
Cook-Levin (see e. g., [3]) as a CNF of size O(logk n) – but there is a catch. Using the tools provided in [3],
this is only possible if M′ is oblivious – and a naı̈ve approach to making M′ oblivious would introduce an
unwanted loglogn factor; thus we need to look more closely at the condition that M′ is checking.

M′ is taking s as input, and checking that s is giving information about adjacent gates in C. Since all of
the valid labels for a node in the skeleton are concerned with the same segment of an oblivious NAuxPDA’s
computation, we can use the standard technique (e. g., [3]) to build a CNF of size O(logk n) verifying that the
connectivity information is correct. (For example, s could give the encodings for gates labeled (A,B) and
(C,D,E,γ), and we need to verify that the NAuxPDA can move from A to C pushing γ , and move from E
to B popping γ). At the end we take the conjunction of all the CNFs corresponding to the nodes and edges,
which is also a CNF F , where F is satisfiable if and only if C(x) = 1.

It remains to show that F has tree-width O(logk n). Notice that clauses in F are defined for only one
specific node, and variables appear in clauses corresponding to at most two nodes. Therefore there is a natural
tree decomposition associated with F , as illustrated in Figure 1b, that is, clauses and variables corresponding
to an edge in the skeleton form a bag, and two bags are connected when they share variables. By the argument
above, this tree decomposition has tree-width O(logk n).

Remark 3.9. In general, when the tree-width is anything larger than poly-logarithmic, the previous reductions
still hold. In particular, SATtw(w(|φ |)) is complete for SAC(O(log |φ |),2O(w(|φ |))).

Remark 3.10. The proof of Lemma 3.8 constructs a SAT instance φ for which not only the incidence graph
has small treewidth, but also the primal graph has small treewidth. Thus, although the treewidth of the primal
graph can be much larger than the treewidth of the incidence graph, SAT instances of small treewidth are
complete for the SACk

quasi classes, no matter whether treewidth is measured with respect to the incidence
graph, as in this paper, or with respect to the primal graph, as in [4].

3.4 Connecting Conjecture 1.1 to complexity theory assumptions
and the separation of SATpw(logk |φ |) from SATtw(logk |φ |)

We list corollaries of the completeness results obtained in the previous sub-section.

Corollary 3.11. SACk
quasi 6⊆ TISP(2O(logk n),no(1)) ⇐⇒ Conjecture 1.1 for tree-width O(logk |φ |).

In particular, when k = 1, we have that Conjecture 1.1 for tree-width O(log |φ |) is equivalent to SAC1 6⊆
TISP(nO(1),no(1)).

14

This corollary is just a resource-scaled form of our initial equivalence for logarithmic tree-width. In fact,
by padding4 we have:

Corollary 3.12. Conjecture 1.1 for tree-width polylog(|φ |) =⇒ SAC1 6⊆ SC.

Thus, modulo these complexity assumptions this settles the lower bound of the Alekhnovich-Razborov
question. Note that Corollary 3.12 opens new avenues for propositional proof complexity [6]; i. e., validating
our conjecture for restricted types of algorithms implies progress towards NC 6= SC.

As another corollary, assuming that NL (SAC1, we separate the complexity of SATpw and SATtw.

Corollary 3.13. SATtw(log |φ |) is not log-space reducible to SATpw(log |φ |), unless NL = SAC1.

In fact, the above holds up to NL-reductions. This corollary extends to every poly-logarithmic width
under the scaled assumption NSCk (SACk

quasi. This is the first separation result for width parameterizations
of SAT for the same width parameter. Prior to our work there were only results in the opposite direction [19],
where some width parameters (e. g., band-width and path-width) were shown to be log-space-equivalent,
although combinatorially they can be off by an exponential.

4 Tradeoff algorithms on a single parameter

We consider two basic algorithms. One is time-efficient, which works in time-space
(
22TW(φ)|φ |O(1),

2TW(φ)|φ |O(1)
)
, whereas the space-efficient one works in time-space

(
3TW(φ) log |φ ||φ |O(1), |φ |O(1)

)
. The first

one [35] is the most time-efficient (with respect to the constant in the exponent) algorithm known. The second
is our contribution, and it is the first space-efficient algorithm for arbitrary CNFs for tree decompositions
on the incidence graph. Our main contribution is combining these two algorithms in a non-trivial way to
obtain a tradeoff. Later on, in Section 4.1, we provide a primer to algorithms for SAT instances with given
tree decompositions.

Overview of the time- and space- efficient algorithms The time-efficient algorithm does dynamic pro-
gramming using the tree decomposition in a typical way [7]: root the tree to make it a binary tree, then for
each bag define a 2TW(φ) size Boolean array; entry j in the array will be 1 if the subformula rooted at the bag
is satisfiable, when the variables are given assignment j, and will be 0 otherwise. Clearly, computing the array
for the root will solve the satisfiability of the formula, and indeed by the property of a tree decomposition, the
array values can be computed in a leaves-to-root fashion.

To simplify the overview of the space-efficient algorithm we shall temporarily assume that each clause
appears in a bag together with all of its variables.5 Observe that if we fix a truth assignment on a bag, then
solving SAT on the given tree decomposition reduces to solving e. g., 3 independent subproblems – think of
splitting the degree-3 tree into three subtrees by cutting the original one at this bag. The algorithm works

4Philosophically, the assumption SACk
quasi 6⊆ TISP(2O(logk n),no(1)) is not really different than the widely-believed assumption

SAC1 6⊆ TISP(nO(1),no(1)). By analogy let us consider P 6= NP and E 6= NE. It is true that E 6= NE is stronger in the sense that
E 6= NE implies P 6= NP (via a simple padding argument), and it is also the case that at the current state-of-the-art we have no idea
how to obtain the converse implication. (In fact, this is true for the vast majority of these resource-scaled analogs of other complexity
conjectures). Also, it is worth noting that the converse fails relative to some oracles [11]. However, in principle we see no real reason
why one should believe in one and not in the other (especially when the scaling in the resource bounds is moderate); they are merely
different manifestations of the same underlying question. Our conjecture is equivalent to SAC1 6⊆ TISP(nO(1),no(1)) for logarithmic
tree-width, whereas for larger tree-width we have only shown equivalence to the scaled analogs of SAC1 6⊆ TISP(nO(1),no(1)).

5We remove this assumption later; see Section 4.1.

15

by recursively enumerating and checking truth assignments on the bags. Its performance is determined by
the size of the subproblems (ideally all the subtrees have the same size). In Section 4.2 (Lemma 4.2 below)
we show that there always exists a good choice for a bag, reminiscent to the well-known “ 1

3 - 2
3 lemma” for

binary trees. The lemmas in Section 4.2 are a bit of an overkill for the analysis of this simple algorithm, but
they are also applied in the analysis of the tradeoff.

The tradeoff algorithm: where is the complication? Let us consider for a moment an execution of the
space-bounded algorithm. We can visualize each step of the recursion as splitting the tree decomposition at a
node (bag) – this bag is replicated at each of the subproblems with the fixed truth assignment. Let the process
evolve for a while, and when the forest has enough trees let us single out one such tree. At the boundary (the
leaves) of this tree there can be as many as log |φ | nodes to which we previously fixed an assignment, i. e., by
splitting. The logarithmically large number of nodes does not affect the performance of the space-efficient
algorithm (at each point of the recursion each bag/node is associated with a single assignment). Now, we
switch gears to devise a tradeoff algorithm. A natural thing to do is first to discretize the truth assignment
space associated with each bag, say in 2(1−ε)TW(φ) many chunks each of size 2εTW(φ), and we perform the
recursion as in the space-efficient algorithm but now instead of one assignment we assign the whole chunk.
This brings the enumeration, at each recursive step, from 2TW(φ) down to 2(1−ε)TW(φ). On the other hand
combining the chunks of the truth assignments into one consistent chunk associated with this tree may
increase the space as much as 2ε log |φ |TW(φ). Overall this is a time-space

(
2(1−ε) log |φ |TW(φ),2ε log |φ |TW(φ)

)
algorithm, worse both than the time- and space-efficient ones! To devise our tradeoff algorithm we show
that it is possible to simultaneously (i) perform the splitting in a way that at each step of the execution the
forest consists of trees each with at most a constant number of split-nodes and (ii) this splitting results in
subproblems of somewhat balanced sizes. Furthermore, we show that it is possible to control the number of
splitting nodes per tree in the forest in a way that yields a tradeoff on this parameter (Section 5). This is a
different (and competing) tradeoff from the one by the discretization factor ε ; i. e., our most general tradeoff
algorithm is controlled by two parameters.

4.1 A primer to algorithms for width-parameterized SAT

The structure of a tree decomposition is associated with the concept of separability (see e. g., [10]). Intuitively,
the smaller the tree-width is, the easier the graph can be broken into separate components by removing nodes.
Separability allows us to devise more efficient algorithms for small tree-width SAT than for general SAT.
In some sense, the given tree decomposition allows us to “localize” an exhaustive search. The following
example sheds some light on how this can be done towards devising a space-bounded algorithm. Recall that,
for this initial overview, we are assuming that all the variables of a clause appear in the same bag with the
clauses. We will see later that removing this assumption in a time-efficient manner is non-trivial (in fact,
removing it without increasing the base of the exponential running time is an interesting puzzle).

Suppose xi’s, x′i’s and x′′i ’s are different sets of variables and the tree decomposition is as in Figure 2a. Let
us fix a truth assignment to the variables in the bag in the middle, e. g., x1 = x2 = x3 = x4 = 1. Conditioned
on this truth assignment we can simplify the instance by removing clauses that are already satisfied, and
removing literals in a clause that are set to false. This will result in multiple sub-instances as shown in
Figure 2b. The properties of a tree decomposition assure that the sub-instances depend on different sets of
variables, i. e., they are independent. Since if instead they shared a common variable, this variable would
have appeared in the middle bag, e. g., x2. But this variable is already fixed by the truth assignment.

The satisfiability of the input instance, conditioned on the truth assignment given to the middle bag, is
determined by the satisfiability of the two separate sub-instances. Therefore, it suffices to enumerate all truth

16

(a) Input tree decomposition.

+

(b) Fixing an assignment to the variables
in the middle bag results in two indepen-
dent instances.

Figure 2: An example showing bounded tree-width SAT can be solved efficiently

assignments satisfying all the clauses in the middle bag without causing empty clauses in the simplification
phase. Then, recurse into the two independent sub-instances to decide the satisfiability of the original instance.
Furthermore, by choosing the middle bag carefully we can invoke this “splitting” on subtrees of somewhat
balanced size.

In each recursive step, the most time-consuming part is to enumerate all the assignments satisfy-
ing all the clauses in the chosen bag, which costs O(2TW(φ)|φ |O(1)) time, and the total running time is
O(2TW(φ) log |φ ||φ |O(1)), which is much better than the current best algorithms for general SAT, which run in
time exponential in |φ |.

The subtle additional assumption. The assumption that all variables of a clause appear in the same bag
with the clause is not a mild one (especially for CNFs of large cardinality). Of course, in the actual algorithms
we make no such assumption. In general, we may have to delay the decision to satisfy a clause. In the above
algorithm, we only store the truth assignments to the variables. The following example shows that only
storing this information is not enough when aiming at removing the assumption.

(a) φ1 (b) φ3 (c) φ2

Figure 3: Three instances used in the example. Figures on the top are the input tree decompositions, the
bottom figures are the two components after fixing assignment to the variables in the middle bag.

Suppose C1 = x1∨ x2∨ x4∨ x6, C2 = x1∨ x3∨ x5, C3 = x2, C4 = x3, C5 = x4, C6 = x5 and C7 = x6. Three
instances φ1, φ2 and φ3 along with their tree decompositions are given in Figure 3, where φ1 =C1∧·· ·∧C7,
φ2 =C1∧·· ·∧C5∧C7(i. e., C6 is missing), and φ3 =C1∧·· ·∧C4∧C6∧C7(i. e., C5 is missing). We say that

17

a clause is satisfied by a literal under a truth assignment if the literal appears in the clause and is set to 1. If
an instance is satisfiable, then there is a truth assignment where every clause is satisfied by one of its literals.

Now, consider the splitting operation on the middle bag by fixing a truth assignment to it as above. For
all three instances, the only possible assignment for x6 is 0, since C7 must be satisfied by x6 = 0. Similarly, in
the left bag, we must assign x2 = 0 and x3 = 0 to satisfy C3 and C4. In the left bag, the only variable left is x1,
which can satisfy either C1 or C2 but not both. The three instances differ in the right part where two variables
x4 and x5 are left.

Satisfying C5 requires x4 = 0, which implies that C1 can not be satisfied by x4. Similarly, satisfying C6
requires x5 = 0, so that C2 can not be satisfied by x5. In order to find a satisfying truth assignment, when
processing the right part, we need information about which of C1, C2 is already satisfied in the left part.
(Since φ1 is not satisfiable, the final outcome will be the same in either case.) φ2 is satisfied only when C1
is already satisfied, while φ3 is satisfied only when C2 is already satisfied. This piece of information is not
carried through the middle bag by just the truth assignment to the variables. To overcome this issue we are
going to use “clause-bits”, which we mentioned briefly in Section 2.3.

4.2 Splitting, Consistency, Assignment Groups

In this section we give some additional notation and technical lemmas which we apply in the analysis of
the space-efficient (Section 4.3) and tradeoff algorithms (Sections 4.4 and 5). First we define an operation
which allows a natural divide-and-conquer strategy, and a lemma follows the definition for choosing where
the operation should occur. Then we define consistency with respect to our definition of assignments, which
is somehow subtle and different from consistency of truth assignments. And in the last part of this section,
we define a type of discretized assignment which is crucial in the tradeoff algorithms.

Definition 4.1 (Splitting operation). Let T = (V,E) be a tree, and v ∈ V . Splitting T at v is the following
operation. Let T1, . . . ,Tk be the trees after removing v from T . The splitting operation results in a forest
{v}∪T1, . . . ,{v}∪Tk, where {v}∪Ti is the subtree induced by the nodes in Ti together with v. v is called the
splitting node of this operation.

Given a tree T together with a sequence of splitting operations results in a forest where each subtree in
the forest in general has many nodes marked as splitting nodes. Splitting nodes before a specific splitting
operation are called previous splitting nodes. A splitting operation also splits the set of previous splitting
nodes S into Si’s, where Si is the set of splitting nodes contained in tree Ti, 1≤ i≤ k.

Note that a splitting operation on a tree will result in a forest with more nodes than before, since we
duplicate the splitting node and let it appear in each resulting tree. This fact will complicate the analysis of a
recursive procedure. To overcome this, consider for each node, we create d−1 replicas. When a splitting
operation occurs, each replica of the splitting node goes to one of the branches (and redundant ones get
removed if there are). Each node can be treated as splitting node only once, so the replicas of a node will be
distributed only once. These slightly modified splitting operations will never increase the number of nodes.
When analyzing running time on a tree originally with N nodes, one needs to use d ·N as a upper bound of the
number of nodes. We will see that this is negligible since the number of nodes only appears as a polynomial
factor or an argument logarithmically in the exponent of the running time. For ease of exposure, we will stick
to the notation N as the number of nodes, while this should be the number after replicating.

A splitting algorithm A computes a function that, given a tree T together with previous splitting nodes S,
returns a node where the next splitting operation is going to be performed. A splitting algorithm formalizes
the way of breaking an instance into sub-instances in the space-efficient algorithm. In particular, choosing the
balancing splitting node is done according to the following lemma.

18

Lemma 4.2. Consider a tree of size N, a leaf s and 0 < α < 1, and satisfying N > 1/α . Then, there is
a node p where after we split at p, the tree which contains s is of size ≤ dαNe and every other tree is of
size ≤ d(1−α)Ne. The node p is called an α-splitting node. Furthermore, such a p can be found in time
polynomial in N.

Proof. We prove this lemma by giving an algorithm for finding p. First root the given tree at s, and then we
iteratively construct a path 〈s≡ v1,v2, . . . ,vl〉 as follows. After constructing the path from v1 through vi−1, vi

is chosen to be child of vi−1 which roots the largest subtree. We claim that there exists an α-splitting node in
this path.

Denote by ai the size of the subtree containing s after splitting at vi, 1≤ i≤ l. It is not hard to see that
a1 = 1, al = N, and ai strictly increases as i increases. Therefore, there must be a j, such that a j ≤ αN
and a j+1 > αN. We claim that v j is the node we need. If a j+1−a j = 1, then splitting at v j results in two
components, where the size of the component containing s is dαNe, while the other one is of size d(1−α)Ne.
If a j+1−a j > 1, then there must be a branch at v j, meaning that v j has at least two children. Splitting at v j

results in at least three components. One which contains s and is of size smaller than αN. The largest one
among the rest is of size smaller than (1−α)N.

Corollary 4.3. On a bounded-degree tree of size N, there exists a node p, such that after splitting at p each
subtree is of size at most dN/2e.

Consistent assignments In what follows we assume that there is an initial tree decomposition (recall that
the bags are denoted by Xi) together with a sequence of splitting operations S that results in the subtrees along
with their splitting nodes.

We refer to an assignment on a subtree as the assignment that corresponds only to its splitting nodes.
Formally, let X∗ = ∪vi∈SXi, and let V be the variables and C the clauses which have corresponding nodes in
X∗. X∗ is the set of variables and clauses on which we define assignments. Suppose in one single splitting
operation at the node p, to which Xp is the corresponding bag, T splits into subtrees Ti’s. Further suppose RT

is an assignment to T, and RTi is an assignment to the subtree Ti. Note that the only difference between RT

and RTi’s is at Xp, and RT and RTi’s are said to be consistent if

(1) for a variable x:

a) if x appears in Xp, then all the bits for x in each RTi are assigned to the same value.

b) otherwise, all the bits for x are assigned to the same value as in RT .

(2) for a clause C:

a) if C appears in X∗ and is assigned to 0, then ∀i every bit for C in RTi is assigned to 0

b) otherwise, ∃ exactly one i such that in RTi the bit corresponding to C is assigned to 1.

Remark 4.4. The latter point in the definition, where in exactly one of the subtrees we require that the
corresponding bit equals to 1, is somewhat subtle. The following lemma crucially depends on this property.

Lemma 4.5. For every assignment RT to the tree T, the number of assignments RTi to subtrees Ti’s consistent
with RT is at most dTW(φ). (Recall d ∈ {2,3}.)

19

Figure 4: Consistent assignments. C1 = x1∨ x2∨ x3, C2 = x3∨ x4. Consider splitting at the gray bag, while
fixing the value of the bits, 1 for C1, 0 for x3. Any possible consistent assignments for T1, T2, T3 will have 0
for x3; in this consistent assignment C1 has value 1 in T1, and has value 0 in T2 and T3.

Proof. Let Xp be the bag corresponding to the splitting node p. For each variable x in the bag Xp, there are 2
possible assignments of the bit for x in the Ti’s. For each clause C in Xp, if C appears in RT and is assigned to
0, by the definition of consistency, all the bits for C in the Ti’s are assigned to 0. Otherwise, in exactly one Ti,
the bit for C is assigned to 1; in this case there are at most d valid assignments. Recall that d is the maximum
degree of the tree decomposition.

We define a satisfying assignment in a way consistent with the role of clause bits in the assignments.

Definition 4.6. For a tree T with splitting nodes S, an assignment RT is satisfying if there exists a truth
assignment A to every variable in T, such that

(1) every truth value for a variable in RT agrees with the corresponding value in A

(2) every clause C that appears in T where C does not appear in S, is satisfied by A

(3) every clause C that appears in S and the corresponding bit is assigned to 1 by RT is satisfied by A

A satisfying assignment of the input tree decomposition with empty splitting nodeset implies that the
input formula is satisfiable. The following lemma shows that the task of finding a satisfying assignment can
be done recursively.

Lemma 4.7. An assignment RT is satisfying if and only if there exist a satisfying assignment RTi to each
subtree Ti, such that all of the assignments RTi are consistent with RT .

Proof. For a tree T with splitting nodes S, suppose that splitting at node p results in the subtrees {Ti}.
Suppose that the assignment RT is satisfying. By Definition 4.6, there exists a truth assignment on variables
within T that makes all of the clauses true. This truth assignment induces assignments RTi consistent with RT ,
such that for these truth assignments the conditions in Definition 4.6 are met. (Some of the clause bits in the
RTi may need to be set to zero, to ensure consistency.)

For the other direction suppose that there exist assignments RTi of the subtrees Ti, such that the assignments
RTi’s are consistent with RT and all RTi’s are satisfying. For each subtree Ti, there exists a truth assignment

20

complying to Definition 4.6. Since all these truth assignments agree on their common variables (because the
common variables appear in splitting nodes in S), we can get a truth assignment from their union, which also
meets the axioms in Definition 4.6. Therefore, the assignment RT is satisfying.

An ε-assignment group ε-GRT is a set of all possible assignments to S, where at most (1− ε)|S|TW(φ)
entries are fixed. By definition, ε-assignment groups can be identified by the fixed entries. Consider a tree T,
ε-assignment group ε-GRT , and subtrees Ti resulting from a split at some node p. Consider one such subtree
Ti; let Si be the set of splitting nodes for Ti, and note that Si ⊆ S∪{p} (and very likely it is a proper subset).
By fixing the “first” (1− ε)TW(φ) entries corresponding to variables or clauses contained in the node p ∈ Si

(using some fixed ordering), one obtains an ε-assignment group ε-GRTi for Ti.
Given a tree T and subtrees Ti resulting from a split, the ε-assignment groups ε-GRT and ε-GRTi’s

are called consistent if there exist RT ∈ ε-GRT and RTi ∈ ε-GRTi for each i, such that RT and the RTi’s are
consistent.

Note that the fixed entries for the splitting node p may be different among subtrees (because of the rules
regarding clause bits), and note also that some of the unfixed entries in T may fixed in subtrees (because they
appear in p). The following important lemma holds, which basically generalizes Lemma 4.5.

1 0 1 0 1 1 1︸ ︷︷ ︸
(1−ε)|S|TW(φ)

∗ ∗ ∗︸ ︷︷ ︸
ε|S|TW(φ)

(a) An ε-assignment group where
(1− ε) fraction of values are fixed

1 0 1 0 1 1 1 0 0 0

1 0 1 0 1 1 1 0 0 1
...

1 0 1 0 1 1 1 1 1 1
(b) Assignments in the group

Figure 5: ε-assignment group

Lemma 4.8. The number of distinct ε-GRTi’s consistent with ε-GRT is at most d(1−ε)TW(φ).

Proof. Here we only consider the first (1−ε) fraction of entries, which are going to be fixed, since as pointed
out in previous discussion, an ε-assignment group is identified by the values of the fixed entries. For each
variable x, there are 2(≤ d) possible values. For each clause C, let d0(≤ d) be the number of subtrees created
by splitting at p. There are two different cases,

(1) C is not in any previous splitting nodes, or C is in some previous splitting node but its value is unfixed.
There are d0 possible ways of assigning values to the bit for C, such that there is exactly one of Ti’s,
whose bit for C is set to 1 to ensure C is satisfied.

(2) C is in some previous splitting node, and its value is fixed in ε-GRT. If the bit for C is assigned 1, then
there are d0 possible assignments to C similar as above, otherwise the only possible way is to set all bits
for C to 0.

Since there are at most (1− ε)TW(φ) entries that need to be fixed, in order to form the ε-GRTi’s, the
number of different combinations of ε-GRTi’s consistent with ε-GRT is at most d(1−ε)TW(φ)

21

4.3 The space-efficient algorithm

The space-efficient algorithm is described in Algorithm 2. T is a tree with previous splitting nodes S, and RT

is the assignment fixed on the tree. A subtle point that affects the running time of this algorithm is addressed
in Remark 4.4. The correctness of the algorithm directly follows by Lemma 4.7.

Algorithm 2 SAT(T, RT)

1: if all nodes in T are previous splitting nodes then
2: if every clause in RT assigned value 1 is satisfied by some variable in T then
3: return True
4: else
5: return False
6: end if
7: else
8: split at the 1/2-splitting node, and denote the subtrees as Ti’s
9: for all RTi’s consistent with RT do

10: if ∀Ti, SAT(Ti, RTi) = True then
11: return True
12: end if
13: end for
14: return False
15: end if

This algorithm requires only |φ |O(1) space, because there are only O(log |φ |) assignments to be stored
during the process. Suppose T (N) is the running time on a decomposition with N nodes. By Lemma 4.5

T (N)≤ O
(

dTW(φ)
)

T
(

1
2

N
)
+ |φ |O(1)

that is, T (|φ |) = O
(
dTW(φ) log |φ ||φ |O(1)

)
, where by the normal form assumption d = 3, i. e., T (|φ |) =

3TW(φ) log |φ ||φ |O(1).

4.4 Tradeoff Algorithms

We present a family of algorithms for bounded tree-width SAT described in Algorithm 3. Different implemen-
tations of SPLITTING ALG (line 10) result in different algorithms. SAT-TRADEOFF is a procedure that takes
a tree decomposition T, a previous splitting node set S, and an ε-assignment group ε-GRT, and returns an
array M(T,ε-GRT) of 2ε|S|TW(φ) entries, where the ith entry indicates whether the i-th assignment of ε-GRT

can be extended to a satisfying truth assignment.
A type` tree is a tree with ` previous splitting nodes. Let α be a parameter satisfying 0 < α < 1/2. The

splitting algorithm H2 described in Algorithm 4 has the property that it never creates a type` tree, for any
`≥ 3.

The performance of the tradeoff algorithms is not hard to analyze tightly (unlike the rather involved
analysis of the two-parameter generalized tradeoff in Section 5), and it is summarized in the following
theorem.

22

Algorithm 3 SAT-TRADEOFF(T, S, ε-GRT)

1: M(T,ε-GRT)← all-zero array
2: if all nodes in T are in S then
3: for all j : 1≤ j ≤ |ε-GRT| do
4: RT ← jth assignment in ε-GRT

5: if every clause whose bit in RT assigned 1 is satisfied by some variable in T then
6: M(T,ε-GRT) j← 1
7: end if
8: end for
9: else

10: split at SPLITTING ALG(T, S), and denote the subtrees Ti’s . Replaceable
11: for all ε-GRTi’s consistent with ε-GRT by fixing (1− ε)TW(φ) entries do
12: ∀i, M(Ti,ε-GRTi)← SAT-tradeoff(T,Ti,ε-GRTi)
13: for all j : 1≤ j ≤ |ε-GRT| do
14: RT ← jth assignment in ε-GRT

15: for all RTi’s chosen ε-GRTi’s correspondingly do
16: if ∀i, M(Ti,RTi) = 1 and ∀Ti, RTi’s are consistent with RT then
17: M(T,ε-GRT) j← 1
18: end if
19: end for
20: end for
21: end for
22: end if
23: return M(T,ε-GRT)

Theorem 4.9. SAT of tree-width TW(φ) can be solved in simultaneously O(d1.441(1−ε)TW(φ) log |φ ||φ |O(1))
time and O(22εTW(φ)|φ |O(1)) space, where ε is a free parameter, 0 < ε < 1.

Proof. Denote by T1(N), T2(N) the running time of Algorithm 4 using splitting rule H2 on type1 or type2
trees each of N nodes respectively. Splitting a type1 tree results in multiple type1 trees with size at most
(1−α)N and one type2 tree with size at most αN, so we have

T1(N) ≤ O(d(1−ε)TW(φ))(T1 ((1−α)N)+T2 (αN))+2O(TW(φ))

Splitting a type2 tree, when the 1/2-splitting is on the path between p1 and p2 results in two type2 trees with
size at most N/2 and multiple type1 trees. Otherwise, the splitting operation results in two type2 trees with
size at most N/2 and several type1 trees. Hence:

T2(N) ≤ O(d(1−ε)TW(φ))(T1(N)+T2(N/2))+2O(TW(φ))

Set α = 3−
√

5
2 to minimize the values of T1(N) and T2(N), we have

T1(N) ≤ O(d(1−ε)TW(φ))(T1 ((1−α)N)+T2 (αN))+2O(TW(φ))

≤ O(d(1−ε)TW(φ))T1 ((1−α)N)+O(d2(1−ε)TW(φ))T1 (αN)+2O(TW(φ))

Therefore:

T1(N) ≤ d
1

− log(1−α) (1−ε)TW(φ) logN |φ |O(1)

23

(a) (b) (c)

Figure 6: Choosing splitting node in three different cases. Rounding errors are ignored for simplicity.

Algorithm 4 H2(T,S)

1: if T with S is a type0 tree then
2: return the 1/2-splitting node
3: else if T with S is a type1 tree then
4: regard the previous splitting node as root
5: return the α-splitting node . Figure 6a
6: else if T with S is a type2 tree then
7: suppose S= {p1, p2}
8: regard p1 as root and compute the 1/2-splitting node q
9: if q is on the path between p1 and p2 then

10: return q . Figure 6b
11: else
12: return the least common ancestor of q and p2 . Figure 6c
13: end if
14: end if

Since typei, i≥ 3 trees are not allowed, the space requirement is 22εTW(φ)|φ |O(1)

4.5 Optimality of the splitting algorithm for the single-parameter tradeoff

The splitting algorithm presented above is a specific one, with the property that it does not create typei trees
for any i≥ 3. Interestingly, it can be shown that this specific splitting algorithm is optimal over all splitting
strategies which enjoy this property.

Definition 4.10. Denote by Ac (∀c≥ 2) the family of algorithms for SAT with bounded tree-width following
the framework in Algorithm 3 which use a splitting algorithm without creating typei trees ∀i > c.

We lower bound the running time of all algorithms in A2 by showing hard instances based on generaliza-
tions of Fibonacci trees.

Definition 4.11. For any positive integer h, a h-Fibonacci tree(denoted as Fh) is a rooted tree recursively
defined as following,

24

(1) if h = 1, Fh contains only 1 node;

(2) if h = 2, Fh contains 2 nodes and one edge between them;

(3) if h > 2, Fh is constructed by a root connecting roots of two subtrees Fh−2 and Fh−1.

An extended (h,r)-Fibonacci tree (denote as F∗h,r) is constructed by adding one edge between a root node r
and the root of subtree Fh.

(a) Fh (b) F∗h,r

Figure 7: Fibonacci tree and extended Fibonacci tree

In what follows, we focus on the structure of the trees and inspect the running time of an algorithm in
A2 on a formula with a tree decomposition with the specific structure, and omit the details of constructing a
formula having tree decomposition of a certain structure here. Consider an extended (h+2,r)-Fibonacci tree
F∗h+2,r with N nodes, h = dlog(1+

√
5)/2 Ne−2. We prove that this is hard for any algorithms in A2, namely,

Theorem 4.12. Every algorithm in A2 runs in Ω(31.441(1−ε)TW(φ) logN |φ |Θ(1)) time on F∗h+2,r.

Before giving the proof of the theorem, we define two types of trees which appear in intermediate phases
of the splitting algorithm and lower bound the running time on these trees: T1,h (a special type1 tree) is
constructed by a splitting node connected to the root of a subtree Fh (same shape as F∗h,r, the node at the
position of r is a splitting node); and T2,h (a special type2 tree) is constructed by two separate splitting nodes
connected to a node r which roots a subtree F∗h,r.

Lemma 4.13. Every algorithm in A2 runs in Ω(3(1−ε)TW(φ)h|φ |Θ(1)) time on T1,h, and runs on T2,h in time
Ω(3(1−ε)TW(φ)(h+1)|φ |Θ(1)).

Proof. The proof is by induction on h. Base cases are vacuous where h≤ 2. Suppose the statement is true
for any h0 < h, consider the induction steps:

(1) For T1,h, if we split at the root of Fh, a T1,h−1 will be derived, the running time on which is
Ω(3(1−ε)TW(φ)(h−1)|φ |Θ(1)); otherwise if we split at some node inside the subtrees Fh−1 or Fh−2, the
running time on the subtree containing two splitting nodes (a new one and a previous one) is lower
bounded by the running time of a T2,h−2, which is Ω(3(1−ε)TW(φ)((h−2)+1)|φ |Θ(1)). To see this, assume
for example that the splitting node p is inside the Fh−1. Imagine that all the nodes in Fh−1 except those
on the path between p and the node v which connects to the root of Fh−2 are pruned for free, and then
replace the path between p and v by an edge between them. A T2,h−2 is derived this way, and note
that the running time will not increase after the procedure. Observe that enumerating all assignments
for a newly created splitting node requires time Ω(3(1−ε)TW(φ)|φ |Θ(1)), so the running time for T1,h is
Ω(3(1−ε)TW(φ)h|φ |Θ(1)).

25

(2) For T2,h, the splitting must occur at the node connecting the two splitting nodes, which creates a T1,h,
the running time on which as shown above is Ω(3(1−ε)TW(φ)h|φ |Θ(1)). Taking the time required for
enumerating all assignments for the new splitting node into consideration, the total running time for T2,h
is therefore lower bounded by Ω(3(1−ε)TW(φ)(h+1)|φ |Θ(1)).

Proof of Theorem 4.12. The very first step of splitting at any node of F∗h+2,r will result in a type1 tree,
the running time on which is lower bounded by the running time on T1,h. By Lemma 4.13, that is

Ω(3
1

− log(1−α) (1−ε)TW(φ) logN |φ |Θ(1)), where N = Θ((1+
√

5
2)h), and α = 3−

√
5

2 (which matches the parame-
ter chosen in the tradeoff algorithm). By simplifying this expression we obtain the theorem.

5 Generalized two-parameter tradeoff algorithms

In this section we establish Theorem 5.1 below, by exhibiting a family of algorithms that achieve time-space
tradeoffs generalizing the algorithms in the previous section. Each algorithm in this family is identified by
the parameters (ε,c). Moreover, we show that both of these parameters are necessary to achieve different
time-space tradeoffs. Intuitively, parameter 0 < ε < 1 corresponds to the granularity of the discretization
of the assignment space, whereas the integer parameter c ≥ 2 has to do with the “complexity” of the rule
applied recursively during the truth assignment search.

Theorem 5.1. For every integer c≥ 2 and ε , where 0 < ε < 1, a SAT instance φ with a tree decomposition of
width TW(φ) and N nodes, can be decided in time-space (3(λc(logN−c)+c)(1−ε)TW(φ)|φ |O(1), 2cεTW(φ)|φ |O(1))
for a constant λc.

λc is a constant depending on c. To be more specific, λc is defined as − logxc, where xc is the root with
largest absolute value of the polynomial equation: Xc−Xc−1−Xc−2−·· ·−1 = 0. The first few values of λc

for small c’s are listed in Table 1.

c 2 3 4 5 6

λc 1.441 1.138 1.057 1.026 1.013

Table 1: Values of λc for small c’s

5.1 Generalized tradeoff algorithms

We have already seen a tradeoff algorithm which avoids typei trees for i ≥ 3. It is natural to ask if the
algorithm can be generalized to allow up to typec trees for any fixed c≥ 2, and more importantly if by doing
so there is any gain in the running time (clearly, there will be a loss in the space). Indeed, this is possible and
as c increases the running time decreases while the space requirement increases.

First, we generalize the splitting algorithm to allow typei trees for i up to c. For arbitrary 1 ≤ i ≤ c,
consider splitting a typei tree: suppose the splitting node is p. If p is on the path between some pair of
previous splitting nodes, splitting at this node results in several type j (j ≤ i) trees; otherwise, splitting results
in several type1 trees and one typei+1 tree. Formally, we devise an algorithm Hc, such that when splitting a
typei tree, we invoke Hc to determine the splitting node. This is an implementation of SPLITTING ALG in
Algorithm 3.

26

Algorithm 5 Hc(T,S)

1: if T with S is a type0 tree then
2: return the 1/2-splitting node
3: else
4: suppose T with S is a typei tree
5: if |T| ≤ 2c−i then
6: return the 1/2-splitting node
7: else
8: pick an arbitrary node from S as root and compute the αc,i-splitting node q1
9: if q1 is not on the path between any pair in S then

10: return q1 . Figure 8a
11: else
12: compute a 1/2-splitting node q2.
13: if q2 is on the path between any pair in S then
14: return q2 . Figure 8b
15: else
16: return the least common ancestor of q2 and all nodes in S . Figure 8c
17: end if
18: end if
19: end if
20: end if

Each αc,i for any 1≤ i < c is a parameter satisfying 0≤ αc,i ≤ 1/2. To prevent typec+1 trees, splitting
node of a typec tree must be on the path between some pair of previous splitting nodes, this is assured by
setting αc,c = 0. For a fixed c, the running time and space of the algorithm solving SAT of bounded tree-width
utilizing the splitting algorithm A are summarized in Theorem 5.1 (see page 26).

We introduce the following notation in order to discuss the splitting depth.

Definition 5.2. The c-splitting depth SDc(A,T,S) of a splitting algorithm A on tree T with previous splitting
nodes S is inductively defined as follows (where the case for |S|> c is arbitrary):

SDc(A,T,S) =


max(T0,S0)∈CT,S,p

SDc(A,T0,S0)+1 |S| ≤ c, |S|< |T|
0 |S| ≤ c, |S|= |T|
∞ |S|> c

where p is the output of A on T and S, CT,S,p is the set of subtrees by splitting at p in tree T with previous
splitting nodes S.

We define the c-minimum splitting depth minSDc(T,S) to be the minimum value of SDc(A,T,S), over
all splitting algorithms.

Under this notation, given a tree T, any algorithm A avoiding typec+1 trees requires time d(1−ε)SDc(A,T, /0)TW(φ)

|φ |O(1) and space 2cεTW(φ)|φ |O(1). In fact, bounding the running time is a non-trivial issue (the derived recur-
rences are in a “perplexed” form). The proof of Theorem 5.1 follows by two technical lemmas: Lemma 5.3
establishes the recurrences according to the recursive algorithm, and Lemma 5.4 deals with choice of
parameters. For simplicity of presentation we ignore issues regarding the divisibility of N by 2.

27

(a) (b) (c)

Figure 8: Choosing splitting node for a typei tree (i = 2 here) in three different cases. Rounding errors are
ignored for simplicity.

Lemma 5.3. For every c ≥ 2, any tree T with N nodes and splitting node set S of size i, let Dc,i(N) =
maxT,SSDc(Hc,T,S). Then,

Dc,i(N)≤max{Dc,1 ((1−αc,i)N) ,Dc,i+1 (αc,iN) ,Dc,i (N/2)}+1 ∀i : 1≤ i < c

Dc,c(N)≤max{Dc,1(N),Dc,c(N/2)}+1

Proof. Without loss of generality, suppose N ≥ 2c. Consider splitting a typei tree with splitting nodes S,
1≤ i < c. If the αc,i-splitting-node m is not on the path between any pair of previous splitting nodes, splitting
at m will result in multiple type1 trees of size at most d(1−αc,i)Ne and one typei+1 tree of size at most
dαc,iNe. Otherwise, since 1−αc,i ≥ 1/2, the maximal possible size of a type1 tree created by any splitting
node will not exceed d(1−αc,i)Ne. Splitting at the 1/2-splitting-node c will result in multiple type j(j ≤ i)
trees of size at most dN/2e, otherwise, splitting at the least common ancestor of c and all previous splitting
nodes as p, will result in multiple type1 tree of size at most d(1−αc,i)Ne and many type j(j ≤ i) trees with
size at most dN/2e. In summary,

Dc,i(N)≤max{Dc,1 ((1−αc,i)N) ,Dc,i+1 (αc,iN) ,Dc,i (N/2)}+1

Now, consider splitting a typec tree with splitting nodes S. Since αc,c = 0, we always ignore the (1−αc,i)-
splitting-node m. Splitting at the 1/2-splitting-node c will result in multiple type j(j ≤ i) trees of size at most
dN/2e. Splitting at the least common ancestor of c and all previous splitting nodes will result in multiple
type1 tree with size at most N and multiple type j(j ≤ i) trees with size at most dN/2e, namely:

Dc,c(N)≤max{Dc,1(N),Dc,c(N/2)}+1

Lemma 5.4. SDc(H2,T, /0) for a tree T of N nodes is at most λc(logN−c)+c+O(1), with properly chosen
parameters αc,i’s.

28

Proof. For ease of computation, we define a function D′ independent of D, as a recurrence that satisfies the
recursion that, by Lemma 5.3, holds for the running time.

D′c,i(N) = D′c,1((1−αc,i)N)+1 = D′c,i+1(αc,iN)+1 ∀i : 1≤ i < c

D′c,c(N) = D′c,1(N)+1

By manipulating the first equation, we can derive that

D′c,1((1−αc,i)N) = D′c,i+1(αc,iN) ∀i : 1≤ i < c

⇒ D′c,1((1−αc,i)/αc,iN) = D′c,i+1(N) ∀i : 1≤ i < c

⇒ D′c,1((1−αc,i−1/αc,i−1N) = D′c,i(N) ∀i : 1 < i≤ c

Again, by the first equation, for each 1 ≤ i < c, D′c,i(N) = D′c,i+1(αc,iN)+1 = D′c,1(αc,i(1−αc,i+1)N)+2,
thus,

D′c,1(N) = D′c,1(αc,i(1−αc,i+1)/(1−αc,i)N)+2 ∀i : 1≤ i < c

Consider minimizing the values of D′c,1. Since D′c,1(N) = D′c,1((1−αc,1)N)+1, we let 1−αc,1 = αc,i(1−
αc,i+1)/(1−αc,i). By rearranging, αc,i+1 = 1− (1−αc,1)(1−αc,i)/αc,i holds. Inductively, the following
can be proved

αc,i = 1− αc,1(1−αc,1)
i

2αc,1−1+(1−αc,1)i ∀i : 1≤ i≤ c

Now look at the boundary conditions, since D′c,c(N) = D′c,1(N)+1 = D′c,1((1−αc,c−1)N/αc,c−1). Again, to
minimize the values of D′c,1, let αc,c−1/(1−αc,c) = 1−αc,1, and therefore αc,c−1 = (1−αc,1)/(2−αc,1).

By what is shown above, (1−αc,1)/(2−αc,1) = 1− αc,1(1−αc,1)
c−1

2αc,1−1+(1−αc,1)c−1 , which implies

c

∑
i=1

(1−αc,1)
i = 1

We choose αc,1 = α∗c,1 to be a solution of the equation above, and then all the other αc,i’s can be fixed. By
setting λc =

1
log(1−α∗c,1)

, for each 1≤ i≤ c, D′c,i(N)≥ D′c,i(N/2)+1. We get


D′c,i(N) = max{D′c,1((1−αc,i)N),D′c,i+1(αc,iN),D′c,i(N/2)}+1 ∀i : 1≤ i < c

D′c,c(N) = max{D′c,1(N),D′c,c(N/2)}+1

Note that D′ is defined in a way that it satisfies the recursion in Lemma 5.3, and it can be proved by induction
that D′c,i(N) upper bounds Dc,i(N) for all c, i. By the choice of the parameters, the recurrence can be solved
using standard tools. Specifically,

Dc,1(N)≤ D′c,1(N)≤ λc(logN− c)+Dc,1(2c)+O(1)

Since Dc,1(2c)= c, SDc(Hc,T,S) is upper bounded by λc(logN−c)+c+O(1), where λc satisfies ∑
c
l=1 2−

l
λc =

1.

29

Proof of Theorem 5.1. For every c≥ 2, we solve the above recurrences: when N < 2c, the running time is
dlogN(1−ε)TW(φ)|φ |O(1); when N ≥ 2c, the running time is d(λc(logN−c)+c)(1−ε)TW(φ)|φ |O(1). Space required by
the algorithm is upper bounded by 2cεTW(φ)|φ |O(1) since only typei trees are allowed, for i≤ c.

The value λc depending on the choice of parameter c seems quite artificial in the analysis of our algorithms,
but later we will see that this constant is actually tight. Here is a upper bound on λc.

Lemma 5.5. λc < 1+ 2
2c/2

Proof. Let f (X) = Xc−∑
c−1
i=0 X i, and let γc be the root of f (X) = 0 with largest absolute value. We know

f (2) = 1 > 0, so if we can prove f (2− 1
2c/2)< 0 then there must be a root between 2 and 2− 1

2c/2 . Denote
y = 2− 1

2c/2 ,

f (y)< 0 ⇐⇒ yc <
c−1

∑
i=0

yi =
yc−1
y−1

⇐⇒ y < 2− 1
yc

The last inequality is true because y = 2− 1
2c/2 >

√
2 when c≥ 2 and 2− 1

yc > 2− 1√
2

c = y. By definition of

λc =
1

log2 γc
, it follows that λc < 1+ 2

2c/2 .

Given the above upper bound, we can furthermore prove an interesting feature of our family of algorithms.
Namely, the space resource can be fully exploited to minimize the running time, which potentially is of
practical importance.

Corollary 5.6 (of Theorem 5.1). For any ε ′ > 0 there exists an algorithm which runs in space 2ε ′TW(φ)|φ |O(1)

and time dδTW(φ) log2 |φ ||φ |O(1) for a constant δ < 1.

Proof. For any fixed ε and c, there is an algorithm with running time O(dλc(1−ε)TW(φ) log |φ ||φ |O(1)) and space
O(2cεTW(φ)|φ |O(1)) by Theorem 5.1. Set ε = ε ′

c , then the space is O(2ε ′TW(φ)|φ |O(1)) and the running time

is O(dλc(1− ε ′
c)TW(φ) log |φ ||φ |O(1)). By Lemma 5.5, λc(1− ε ′

c) < (1+ 2
2c/2)(1− ε ′

c) < 1 for sufficiently large
c.

5.2 Optimality of the generalized tradeoff algorithm

Similarly to the last part of Section 4, we also prove the optimality of the generalized tradeoff algorithm.
However, in this case the matching lower bound is more involved (since the upper bound involved a lot of
guessing). We construct the hard instance using extended generalized Fibonacci trees.

Definition 5.7. For any integer c ≥ 2, and positive integer h, a (c,h)-Fibonacci tree(denoted as Fc,h) is a
rooted tree defined by one of the rules,

(1) if h≤ c, Fc,h is a chain of 2c nodes;

(2) if h > c, Fc,h is constructed by starting from a chain of c nodes (one end as the root), then replacing the
ith node (starting from the root) by a subtree Fc,h−i.

An extended (c,h,r)-Fibonacci tree (denote as F∗c,h,r) is constructed by connecting one root node r to a subtree
Fc,h.

30

(a) Fc,h (b) F∗c,h,r (c) Gc,h,w

Figure 9: Fibonacci tree in a more general form and the hard instance based on it

See Figure 9a for an illustration of a (c,h)-Fibonacci tree. Fc,h+c is indeed the hard instance for splitting
algorithms in Ac for c≥ 2. As discussed previously, it suffices to lower bound minSD on this tree.

Similar to the proof of Theorem 4.12, we need a definition of trees which may appear in intermediate
phases and contain previous splitting nodes. ∀c≥ 2, ∀h > c and ∀w : 1≤ w≤ c, Gc,h,w is such a tree: first
construct a chain of length w, then connect c−w+1 previous splitting nodes to the first node of the chain,
and ∀i : 1 ≤ i ≤ w, connect a subtree Fc,h−c+w−i to the i-th node of the chain. Denote S` as the set of the
` previous splitting nodes connected to the first node of the chain. The following bound holds for these
intermediate trees,

Lemma 5.8. ∀h≥ 1,∀w : 1≤ w≤ c, minSD(Gc,h,w,Sc−w+1)≥ h− c+w

Proof. We prove the lemma by induction on h. The base case is trivial. Suppose ∀h : h < h0,
minSDc(Gc,h,w,Sc−w+1)≥ h− c+w holds for any valid w. For the induction step, we prove

minSDc(Gc,h0,w,Sc−w+1)≥ h0− c+w (5.1)

holds for any w by induction on w. When w = 1, to prevent typei trees for i > c, we must split at the first node
of the chain. By induction hypothesis (on h), minSDc(Gc,h0,1,Sc)≥ 1+minSDc(Gc,h0−c,c,S1)≥ h0− c+1.
Suppose (5.1) holds ∀w : w < w0, for the induction step, consider lower bounding minSDc(Gc,h0,w0 ,Sc−w0+1).

As in the proof of Lemma 4.13, in order to apply the induction hypothesis, some size-reducing procedure
which will not increase the running time will be applied to the tree after splitting. If the splitting node is
inside the subtree Fc,h0−c+w0−1, prune the nodes in the subtree Fc,h0−c+w0−1 outside the path between the first
node on the chain and the splitting node, then shrink the path to an edge, and finally shrink the first edge on
the chain to obtain a Gc,h0,w0−1, by induction hypothesis, minSDc(Gc,h0,w0−1,Sc−(w0−1)+1)≥ h0− c+w0−1;
otherwise consider an additional free splitting at the first node on the chain, this produces a Gc,h0−c+w0−1,c,
again by induction hypothesis (h0−c+w0−1 < h0), minSDc(Gc,h0−c+w0−1,c,S1) = h0−c+w0−1−c+c =
h0− c+w0−1. Therefore, minSDc(Gc,h0,w0 ,Sc−w0+1)≥ 1+h0− c+w0−1 = h0− c+w0. This completes
both inductions and also the proof.

Corollary 5.9. For each h≥ 1, minSD(F∗c,h,r,{r})≥ h.

Proof. By Lemma 5.8, minSDc(F∗c,h,r,{r}) =minSDc(Gc,h,c,S1)≥ h− c+ c≥ h.

31

Now we are ready to state the theorem for optimality,

Theorem 5.10. For every c≥ 2 and N > 2c, there exists a tree T with N nodes, such that minSDc(T, /0)≥
λc(logN− c)+ c−O(1).

Proof. Let |Fc,h| be the number of nodes in the tree Fc,h. For any h ≤ c, we have |Fc,h| ≤ 2c, when h > c,
we have |Fc,h| = ∑

c
i=1 |Fc,h−i|+ c. By the recursion, the generating function of |Fc,h| can be written as

f (X) = Xc−∑
c
i=0 X i. Therefore |Fc,h| = ∑

c
i=1 δc,iγ

h−c
c,i , where δc,i is upper bounded by a constant times 2c

and γc,i is the i-th root of the equation f (X) = 0.
Let γc = argmaxi{|γc,i|}. When h tends to infinity, |Fc,h| = Θ(2cγh−c

c). So, h ≥ logγc
(|Fc,h|/2c)+ c−

O(1) = λc(log |Fc,h|−c)+c−O(1). Therefore, for any c≥ 2 and large enough N, consider the tree T=Fc,h+c
with≥ N nodes. Splitting it at any node will result in a tree, whose minimum splitting depth is lower bounded
by minSD(F∗c,h,r,{r}): if the splitting node is on the chain, then let r be the splitting node; otherwise let r be
any node on the chain other than the one which is connected to the root of the subtree where the splitting
node lay. (One can think of as splitting at r for free.) This, when combining with Corollary 5.9, completes
the proof.

Similarly to Theorem 4.12, here we conclude the optimality of our tradeoff algorithm. That is, for fixed
c≥ 2, ∀ε : 0 < ε < 1, and every sufficiently large input length and every algorithm Ac (whose description
may depend on the length) there is an instance φ , for which the running time is Ω(3λc(log |φ |−c)+c−O(1)|φ |Θ(1)).

6 Future work

A very exciting research direction is to unconditionally verify our conjecture in restricted models of com-
putation – propositional proof complexity lower bounds can be understood as such results. The work of
Beame-Beck-Impagliazzo [6] took the first step towards this direction. Such results can be also understood as
partial progress towards SC 6= NC.

A rather intriguing direction regarding positive results, is to use randomness in order to improve the
multiplicative constants in the exponents of time or space, or to provide improved tradeoffs. More generally,
we would like to understand the role of randomness in width-parameterized SAT-solving, a topic which is
fundamentally unexplored.

Acknowledgments

We would like to thank Hubie Chen, Kevin Matulef and Alexander Razborov for useful remarks and
suggestions.

References

[1] M. AGRAWAL, E. ALLENDER, S. DATTA, H. VOLLMER, AND K. W. WAGNER: Characterizing small
depth and small space classes by operators of higher type. Chicago J. Theor. Comput. Sci, 2000(2),
2000. [cjtcs] 5

[2] M. ALEKHNOVICH AND A.A. RAZBOROV: Satisfiability, branch-width and Tseitin tau-
tologies. In Foundations of Computer Science (FOCS), pp. 593–603. IEEE, 2002.
[doi:10.1109/SFCS.2002.1181983] 2, 4

32

http://cjtcs.cs.uchicago.edu/articles/2000/2/contents.html
http://dx.doi.org/10.1109/SFCS.2002.1181983

[3] S. ARORA AND B. BARAK: Computational complexity: a modern approach. Volume 1. Cambridge
University Press, 2009. [doi:10.1017/CBO9780511804090] 14

[4] F. BACCHUS, S. DALMAO, AND T. PITASSI: Solving #SAT and Bayesian inference with backtracking
search. J. Artif. Intell. Res. (JAIR), 34:391–442, 2009. (also FOCS’03). [doi:10.1613/jair.2648] 2, 4, 14

[5] D. MIX BARRINGTON, N. IMMERMAN, AND H. STRAUBING: On uniformity within NC1. Journal of
Computer and System Sciences, 41(3):274–306, December 1990. [doi:10.1016/0022-0000(90)90022-D]
9

[6] P. BEAME, C. BECK, AND R. IMPAGLIAZZO: Time-space tradeoffs in resolution: Superpolyno-
mial lower bounds for superlinear space. In Symposium on Theory of Computing (STOC), 2011.
[doi:10.1145/2213977.2213999] 5, 15, 32

[7] H. L. BODLAENDER: A tourist guide through treewidth. Acta Cybern., 11(1-2):1–22, 1993. [citeseerx]
4, 15

[8] H. L. BODLAENDER, F. V. FOMIN, A. M. C. A. KOSTER, D. KRATSCH, AND D. M. THILIKOS:
A note on exact algorithms for vertex ordering problems on graphs. Theory of Computing Systems,
50(3):420–432, 2012. [doi:10.1007/s00224-011-9312-0] 5

[9] H. L. BODLAENDER, J. R. GILBERT, H. HAFSTEINSSON, AND T. KLOKS: Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms, 18(2):238–255, 1995.
[doi:10.1006/jagm.1995.1009] 10

[10] H.L. BODLAENDER: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer
Science, 209(1-2):1–45, 1998. [doi:10.1016/S0304-3975(97)00228-4] 6, 16

[11] R. V. BOOK, C. B. WILSON, AND X. MEI-RUI: Relativizing time, space, and time-space. SIAM J.
Comput., 11(3):571–581, 1982. [doi:10.1137/0211048] 15

[12] A. BORODIN, S. A. COOK, P. DYMOND, L. RUZZO, AND M. TOMPA: Two applications of inductive
counting for complementation problems. SIAM Journal on Computing (SICOMP), 18(3):559–578,
1989. [doi:10.1137/0218038] 9

[13] S. A. COOK AND R. A. RECKHOW: The relative efficiency of propositional proof systems. J. of
Symbolic Logic, 44(1):36–50, 1979. [doi:10.2307/2273702] 5

[14] S.A. COOK: Characterizations of pushdown machines in terms of time-bounded computers. Journal of
the ACM (JACM), 18(1):4–18, 1971. [doi:10.1145/321623.321625] 9

[15] STEPHEN COOK: A taxonomy of problems with fast parallel algorithms. Information and Control,
64:2–22, 1985. [doi:10.1016/S0019-9958(85)80041-3] 5

[16] E. FISCHER, J. A. MAKOWSKY, AND E. V. RAVVE: Counting truth assignments of formulas
of bounded tree-width or clique-width. Discrete Applied Mathematics, 156(4):511–529, 2008.
[doi:10.1016/j.dam.2006.06.020] 4

[17] F. FOMIN AND D. KRATSCH: Exact Exponential Algorithms. Springer, 2010. [doi:10.1007/978-3-642-
16533-7] 5

33

http://dx.doi.org/10.1017/CBO9780511804090
http://dx.doi.org/10.1613/jair.2648
http://dx.doi.org/10.1016/0022-0000(90)90022-D
http://dx.doi.org/10.1145/2213977.2213999
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.8755
http://dx.doi.org/10.1007/s00224-011-9312-0
http://dx.doi.org/10.1006/jagm.1995.1009
http://dx.doi.org/10.1016/S0304-3975(97)00228-4
http://dx.doi.org/10.1137/0211048
http://dx.doi.org/10.1137/0218038
http://dx.doi.org/10.2307/2273702
http://dx.doi.org/10.1145/321623.321625
http://dx.doi.org/10.1016/S0019-9958(85)80041-3
http://dx.doi.org/10.1016/j.dam.2006.06.020
http://dx.doi.org/10.1007/978-3-642-16533-7
http://dx.doi.org/10.1007/978-3-642-16533-7

[18] F. FOMIN, D. LOKSHTANOV, F. GRANDONI, AND S. SAURABH: Sharp separation and applications to
exact and parameterized algorithms. pp. 72–83. Springer, 2010. [doi:10.1007/978-3-642-12200-2 8] 5

[19] K. GEORGIOU AND P. A. PAPAKONSTANTINOU: Complexity and algorithms for well-structured
k-SAT instances. In Theory and Applications of Satisfiability Testing - SAT, pp. 105–118, 2008.
[doi:10.1007/978-3-540-79719-7 10] 2, 4, 12, 15

[20] G. GOTTLOB, N. LEONE, AND F. SCARCELLO: The complexity of acyclic conjunctive queries. Journal
of the ACM (JACM), 48(3):431–498, 2001. [doi:10.1145/382780.382783] 3, 13

[21] M. GROHE: The complexity of homomorphism and constraint satisfaction problems seen from the other
side. Journal of the ACM (JACM), 54(1):1–24, 2007. (also FOCS’03). [doi:10.1145/1206035.1206036]
5

[22] R. IMPAGLIAZZO, R. PATURI, AND F. ZANE: Which problems have strongly exponential complex-
ity? Journal of Computer and System Sciences (JCSS), 63(4):512–530, 2001. (also FOCS’98).
[doi:10.1006/jcss.2001.1774] 5

[23] T. KLOKS: Treewidth: computations and approximations. Springer, 1994. 6

[24] M. KOIVISTO AND P. PARVIAINEN: A space-time tradeoff for permutation problems. In Symposium
on Discrete Algorithms (SODA), SODA ’10, pp. 484–492. SIAM, 2010. [acm] 5

[25] D. LOKSHTANOV, D. MARX, AND S. SAURABH: Known algorithms on graphs on bounded treewidth
are probably optimal. In Symposium on Discrete Algorithms (SODA), pp. 777–789, 2011. [acm] 5

[26] D. LOKSHTANOV, M. MNICH, AND S. SAURABH: Planar k-path in subexponential time and poly-
nomial space. In Graph-Theoretic Concepts in Computer Science - 37th International Workshop,
WG 2011, Teplá Monastery, Czech Republic, June 21-24, 2011. Revised Papers, pp. 262–270, 2011.
[doi:10.1007/978-3-642-25870-1 24] 4

[27] D. MARX: Can you beat treewidth? Theory Of Computing, 6:85–112, 2010. (also FOCS’07).
[doi:10.4086/toc.2010.v006a005] 5

[28] R. A. MOSER AND D. SCHEDER: A full derandomization of Schöning’s k-SAT algorithm. In
Symposium on Theory of Computing (STOC), pp. 245–252, 2011. [doi:10.1145/1993636.1993670] 5

[29] R. NIEDERMEIER AND P. ROSSMANITH: Unambiguous auxiliary pushdown automata and
semi-unbounded fan-in circuits. Information and Computation, 118(2):227–245, 1995.
[doi:10.1006/inco.1995.1064] 9, 10

[30] P.A. PAPAKONSTANTINOU: A note on width-parameterized sat: An exact machine-model characteriza-
tion. Information Processing Letters (IPL), 110(1):8–12, 2009. [doi:10.1016/j.ipl.2009.09.012] 5, 9,
12

[31] R. PATURI, P. PUDLÁK, M. SAKS, AND F. ZANE: An improved exponential-time algo-
rithm for k-SAT. In Foundations of Computer Science (FOCS), pp. 628–637. IEEE, 1998.
[doi:10.1109/SFCS.1998.743513] 5

[32] N. ROBERTSON AND P.D. SEYMOUR: Graph minors. I. excluding a forest. Journal of Combinatorial
Theory, Series B, 35(1):39–61, 1983. [doi:10.1016/0095-8956(83)90079-5] 4

34

http://dx.doi.org/10.1007/978-3-642-12200-2_8
http://dx.doi.org/10.1007/978-3-540-79719-7_10
http://dx.doi.org/10.1145/382780.382783
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1006/jcss.2001.1774
http://portal.acm.org/citation.cfm?id=1873601.1873642
http://dl.acm.org/citation.cfm?id=2133097
http://dx.doi.org/10.1007/978-3-642-25870-1_24
http://dx.doi.org/10.4086/toc.2010.v006a005
http://dx.doi.org/10.1145/1993636.1993670
http://dx.doi.org/10.1006/inco.1995.1064
http://dx.doi.org/10.1016/j.ipl.2009.09.012
http://dx.doi.org/10.1109/SFCS.1998.743513
http://dx.doi.org/10.1016/0095-8956(83)90079-5

[33] N. ROBERTSON AND P.D. SEYMOUR: Graph minors. II. algorithmic aspects of tree-width. Journal of
algorithms, 7(3):309–322, 1986. [doi:10.1016/0196-6774(86)90023-4] 4

[34] W.L. RUZZO: Tree-size bounded alternation. Journal of Computer and System Sciences (JCSS),
21(2):218–235, 1980. [doi:10.1016/0022-0000(80)90036-7] 8, 9

[35] M. SAMER AND S. SZEIDER: Algorithms for propositional model counting. J. Discrete Algorithms,
8(1):50–64, 2010. [doi:10.1016/j.jda.2009.06.002] 3, 4, 15

[36] T. SCHÖNING: A probabilistic algorithm for k-SAT and constraint satisfaction problems. In Foundations
of Computer Science (FOCS), pp. 410–414. IEEE, 1999. [doi:10.1109/SFFCS.1999.814612] 5

[37] S. SZEIDER: On fixed-parameter tractable parameterizations of SAT. In Theory and Applications of
Satisfiability Testing - SAT, pp. 188–202. Springer, 2004. [doi:10.1007/978-3-540-24605-3 15] 4

[38] H. VENKATESWARAN: Properties that characterize LOGCFL. In Symposium on Theory of Computing
(STOC), pp. 141–150. ACM, 1987. [doi:10.1145/28395.28411] 8, 9, 10

[39] H. VOLLMER: Introduction to Circuit Complexity. Springer, 1999. [doi:10.1007/978-3-662-03927-4]
9, 10

[40] G. WOEGINGER: Exact algorithms for NP-hard problems: A survey. Combinatorial Optimization—
Eureka, You Shrink!, pp. 185–207, 2003. [doi:10.1007/3-540-36478-1 17] 5

AUTHORS

Eric Allender
distinguished professor
Rutgers University, New Brunswick, NJ
allender cs rutgers edu
http://www.cs.rutgers.edu/~allender

Shiteng Chen
Ph. D.student
Institute for Interdisciplinary Information Sciences
Tsinghua University
shitengchen gmail com
http://itcs.tsinghua.edu.cn/shitengchen

Tiancheng Lou
Software Engineer
Google Mountain View
tiancheng lou gmail com
http://itcs.tsinghua.edu.cn/tianchenglou

35

http://dx.doi.org/10.1016/0196-6774(86)90023-4
http://dx.doi.org/10.1016/0022-0000(80)90036-7
http://dx.doi.org/10.1016/j.jda.2009.06.002
http://dx.doi.org/10.1109/SFFCS.1999.814612
http://dx.doi.org/10.1007/978-3-540-24605-3_15
http://dx.doi.org/10.1145/28395.28411
http://dx.doi.org/10.1007/978-3-662-03927-4
http://dx.doi.org/10.1007/3-540-36478-1_17
http://www.cs.rutgers.edu/~allender
http://itcs.tsinghua.edu.cn/shitengchen
http://itcs.tsinghua.edu.cn/tianchenglou

Periklis A. Papakonstantinou
assistant professor
Institute for Interdisciplinary Information Sciences
Tsinghua University
papakons tsinghua edu cn
http://itcs.tsinghua.edu.cn/~papakons

Bangsheng Tang
Ph. D.student
Institute for Interdisciplinary Information Sciences
Tsinghua University
bangsheng tang gmail com
http://iiis.tsinghua.edu.cn/bangsheng

ABOUT THE AUTHORS

ERIC ALLENDER is a professor at Rutgers University. He has been at Rutgers since receiving
his PhD in 1985 at Georgia Tech, under the supervision of Kim N. King. While at Georgia
Tech, he was the Backbone of the Seed and Feed Marching Abominable and he still plays
trombone from time to time. He did his undergraduate work at the University of Iowa. He
is a Fellow of the ACM, and currently serves as Editor-in-Chief of ACM Transactions on
Computation Theory. Circuit complexity, Kolmogorov complexity, and complexity classes
are his main research interests. He and his wife find happiness on the dance floor and toiling
in their garden.

SHITENG CHEN is currently a Ph. D.student at the Institute for Interdisciplinary Information
Sciences, Tsinghua University. He did his undergraduate studies in the pilot computer
science Tsinghua University program, the “Yao class”.

TIANCHENG LOU is currently with Google, and before that in 2012 he received a Ph. D.degree
from the Institute for Interdisciplinary Information Sciences, Tsinghua University under the
supervision of Professor Andrew C. Yao. He holds numerous programming contest awards.

PERIKLIS A. PAPAKONSTANTINOU is an assistant professor at the Institute for Interdisciplinary
Information Sciences, Tsinghua University. His research interests are in the foundations of
computer science (at large), and he has a more than occasional interest in Cryptography and
Machine Learning. In his early youth he enjoyed riding motorbikes, and collecting graduate
degrees.

BANGSHENG TANG is a Ph. D.student (graduating on July 2013) at the Institute for Interdis-
ciplinary Information Sciences, Tsinghua University, under the supervision of Periklis A.
Papakonstantinou. He did his undergraduate study in the first-ever Tsinghua University
Special Pilot CS Class, founded by Andrew C. Yao. His research interests include algorithm
design, computational complexity and computational group theory.

36

http://itcs.tsinghua.edu.cn/~papakons
http://iiis.tsinghua.edu.cn/bangsheng
http://www.cs.rutgers.edu
http://gatech.edu
http://www2.gsu.edu/~matknk
http://seedandfeed.org
http://www.uiowa.edu
http://fellows.acm.org
http://toct.acm.org
http://toct.acm.org
http://iiis.tsinghua.edu.cn
http://iiis.tsinghua.edu.cn
http://www.tsinghua.edu.cn
http://iiis.tsinghua.edu.cn
http://www.tsinghua.edu.cn
http://iiis.tsinghua.edu.cn/yao/
http://iiis.tsinghua.edu.cn
http://iiis.tsinghua.edu.cn
http://www.tsinghua.edu.cn
http://iiis.tsinghua.edu.cn
http://iiis.tsinghua.edu.cn
http://www.tsinghua.edu.cn
http://iiis.tsinghua.edu.cn/~papakons/
http://iiis.tsinghua.edu.cn/~papakons/
http://iiis.tsinghua.edu.cn/yao/

	Introduction
	Our contribution and techniques
	Related work

	Preliminaries
	Notation
	Tree-Width
	Assignments

	A complexity-theoretic characterization
	A primer on semi-unbounded fan-in circuits
	Complexity theory notation and some preliminaries
	Completeness for SATpw(logk ||) and SATtw(logk ||), and a new circuit characterization of the NSC hierarchy
	Connecting [conj:mainconj]Conjecture 1.1 to complexity theory assumptionsand the separation of SATpw(logk ||) from SATtw(logk ||)

	Tradeoff algorithms on a single parameter
	A primer to algorithms for width-parameterized SAT
	Splitting, Consistency, Assignment Groups
	The space-efficient algorithm
	Tradeoff Algorithms
	Optimality of the splitting algorithm for the single-parameter tradeoff

	Generalized two-parameter tradeoff algorithms
	Generalized tradeoff algorithms
	Optimality of the generalized tradeoff algorithm

	Future work
	References

