Semidefinite Programs for Completely Bounded Norms
by John Watrous
Theory of Computing, Volume 5(11), pp. 217-238, 2009
Bibliography with links to cited articles
[1] A. Acín: Statistical distinguishability between unitary operations. Phys. Rev. Lett., 87(17):177901, 2001. [PRL:10.1103/PhysRevLett.87.177901].
[2] D. Aharonov, A. Kitaev, and N. Nisan: Quantum circuits with mixed states. In Proc. 30th STOC, pp. 20–30. ACM Press, 1998. [STOC:10.1145/276698.276708].
[3] P. Alberti: A note on the transition probability over C*-algebras. Lett. Math. Phys., 7(1):25–32, 1983. [doi:10.1007/BF00398708].
[4] F. Alizadeh: Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim., 5(1):13–51, 1995. [SIOPT:10.1137/0805002].
[5] A. Ben-Aroya and A. Ta-Shma: On the complexity of approximating the diamond norm. arXiv.org e-Print 0902.3397, 2009. [arXiv:0902.3397].
[6] R. Bhatia: Matrix Analysis. Springer, 1997.
[7] S. Boyd and L. Vandenberghe: Convex Optimization. Cambridge University Press, 2004.
[8] Y. Bugeaud: Approximation by Algebraic Numbers, volume 160 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2004.
[9] A. Childs, J. Preskill, and J. Renes: Quantum information and precision measurement. J. Modern Opt., 47(2–3):155–176, 2000. [doi:10.1080/09500340008244034, arXiv:quant-ph/9904021].
[10] M.-D. Choi: Completely positive linear maps on complex matrices. Linear Algebra Appl., 10(3):285–290, 1975. [Elsevier:10.1016/0024-3795(75)90075-0].
[11] G. D’Ariano, P. Presti, and M. Paris: Using entanglement improves the precision of quantum measurements. Phys. Rev. Lett., 87(27):270404, 2001. [PRL:10.1103/PhysRevLett.87.270404].
[12] E. de Klerk: Aspects of Semidefinite Programming – Interior Point Algorithms and Selected Applications, volume 65 of Applied Optimization. Kluwer Academic Publishers, Dordrecht, 2002.
[13] J. de Pillis: Linear transformations which preserve Hermitian and positive semidefinite operators. Pacific J. Math., 23(1):129–137, 1967.
[14] I. Devetak, M. Junge, C. King, and M. B. Ruskai: Multiplicativity of completely bounded p-norms implies a new additivity result. Comm. Math. Phys., 266(1):37–63, 2006. [doi:10.1007/s00220-006-0034-0].
[15] S. Even, A. Selman, and Y. Yacobi: The complexity of promise problems with applications to public-key cryptography. Inform. and Control, 61(2):159–173, 1984. [Elsevier:10.1016/S0019-9958(84)80056-X].
[16] A. Gilchrist, N. Langford, and M. Nielsen: Distance measures to compare real and ideal quantum processes. Phys. Rev. A, 71(6):062310, 2005. [PRA:10.1103/PhysRevA.71.062310].
[17] M. Grötschel, L. Lovász, and A. Schrijver: Geometric Algorithms and Combinatorial Optimization. Springer–Verlag, second corrected edition, 1993.
[18] G. Gutoski and J. Watrous: Toward a general theory of quantum games. In Proc. 39th STOC, pp. 565–574. ACM Press, 2007. [STOC:10.1145/1250790.1250873].
[19] A. Jenčová: A relation between completely bounded norms and conjugate channels. Comm. Math. Phys., 266(1):65–70, 2006. [doi:10.1007/s00220-006-0035-z].
[20] N. Johnston, D. Kribs, and V. Paulsen: Computing stabilized norms for quantum operations. Quantum Inf. Comput., 9(1):16–35, 2009.
[21] A. Kitaev: Quantum computations: Algorithms and error correction. Russian Math. Surveys, 52(6):1191–1249, 1997. [doi:10.1070/RM1997v052n06ABEH002155].
[22] A. Kitaev, A. Shen, and M. Vyalyi: Classical and Quantum Computation, volume 47 of Graduate Studies in Mathematics. American Mathematical Society, 2002.
[23] A. Kitaev and J. Watrous: Parallelization, amplification, and exponential time simulation of quantum interactive proof system. In Proc. 32nd STOC, pp. 608–617. ACM Press, 2000. [STOC:10.1145/335305.335387].
[24] D. Kretschmann, D. Schlingemann, and R. Werner: A continuity theorem for Stinespring’s dilation. J. Funct. Anal., 255(8):1889–1904, 2008. [Elsevier:10.1016/j.jfa.2008.07.023].
[25] L. Lovász: Semidefinite programs and combinatorial optimization. In Recent Advances in Algorithms and Combinatorics, pp. 137–194. Springer, 2003.
[26] V. Paulsen: Completely Bounded Maps and Operator Algebras. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2002.
[27] D. Pérez-García, M. Wolf, C. Palazuelos, I. Villanueva, and M. Junge: Unbounded violation of tripartite Bell inequalities. Comm. Math. Phys., 279(2):455–486, 2008. [doi:10.1007/s00220-008-0418-4].
[28] M. Piani and J. Watrous: All entangled states are useful for channel discrimination. Phys. Rev. Lett., 102(25):250501, 2009. [PRL:10.1103/PhysRevLett.102.250501].
[29] B. Rosgen: Distinguishing short quantum computations. In Proc. 25th Intern. Symp. Theor. Aspects Comput. Sci., pp. 597–608. IBFI Schloss Dagstuhl, 2008.
[30] B. Rosgen and J. Watrous: On the hardness of distinguishing mixed-state quantum computations. In Proc. 20th Ann. Conf. Comput. Complexity, pp. 344–354. IEEE Comp. Soc. Press, 2005. [CCC:10.1109/CCC.2005.21].
[31] M. Sacchi: Entanglement can enhance the distinguishability of entanglement-breaking channels. Phys. Rev. A, 72(1):014305, 2005. [PRA:10.1103/PhysRevA.72.014305].
[32] M. Sacchi: Optimal discrimination of quantum operations. Phys. Rev. A, 71(6):062340, 2005. [PRA:10.1103/PhysRevA.71.062340].
[33] R. Smith: Completely bounded maps between C*-algebras. J. London Math. Soc., 2(1):157–166, 1983. [doi:10.1112/jlms/s2-27.1.157].
[34] A. Uhlmann: The “transition probability” in the state space of a *-algebra. Rep. Math. Phys., 9(2):273–279, 1976.
[35] L. Vandenberghe and S. Boyd: Semidefinite programming. SIAM Rev., 38(1):49–95, 1996. [SIREV:10.1137/1038003].
[36] J. Watrous: Notes on super-operator norms induced by Schatten norms. Quantum Inf. Comput., 5(1):58–68, 2005.
[37] J. Watrous: Distinguishing quantum operations with few Kraus operators. Quantum Inf. Comput., 8(9):819–833, 2008.
[38] V. Zarikian: Alternating-projection algorithms for operator-theoretic calculation. Linear Algebra Appl., 419(2–3):710–734, 2006. [Elsevier:10.1016/j.laa.2006.06.012].