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Abstract: In 1991, Papadimitriou and Yannakakis gave a reduction implying\tie
hardness of approximating the probles$ 8T with bounded occurrences. Their reduction
is based on expander graphs. We present an analogue of this result for the second level of
the polynomial-time hierarchy based on superconcentrator graphs. This resolves an open
question of Ko and Lin (1995) and should be useful in deriving inapproximability results
in the polynomial-time hierarchy.

More precisely, we show that given an instancé/6f3-SAT in which every variable
occurs at mosB times (for some absolute constd)t it is M»,-hard to distinguish between
the following two casesYES instances, in which for any assignment to the universal vari-
ables there exists an assignment to the existential variables that safistiesclauses, and
NO instances in which there exists an assignment to the universal variables such that any
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assignment to the existential variables satisfies at most a ftaction of the clauses. We
also generalize this result to any level of the polynomial-time hierarchy.

1 Introduction

In the problemv3-3-SAT, given a 3CNF formula we have to decide whether for any assignment to a
set of universal variableX there exists an assignment to a set of existential varidhlssich that the
formula is satisfied. Here, by a@NF formula we mean a conjunction of clauses where each clause
is a disjunction of at most 3 literals. This problem is a stand@recomplete problem. We denote the
corresponding gap problem bA-3-SAT[1 — 1,1 — &] where 0< & < & < 1. This is the problem
of deciding whether for any assignment to the universal variables there exists an assignment to the
existential variables such that at least a & fraction of the clauses are satisfied, or there exists an
assignment to the universal variables such that any assignment to the existential variables satisfies at
most a 1— g; fraction of the clauses. The one-sided error gap probiém-SAT[1— €,1] is M»-hard
for somee > 0, as was shown irf]. This problem has the perfect completeness property, i. &Eh
instances it is possible to satisfjl the clauses.

In this paper we consider a restriction W#-3-SAT, known asv3-3-SAT-B. Here, each variable
appears at mo$® times whereB is some constant. In7[, Ko and Lin showed that'3-3-SAT-B[1 —
€1,1— &) is My-hard for some constanBand 0< & < & < 1. Our main result is that the problem is
still M,-hard for somes; > 0 with e, = 0, i. e., with perfect completeness. This solves an open question

givenin [7].

Theorem 1.1. The problen¥3-3-SAT-B[1— ¢, 1] is [,-hard for some constanB&ande > 0. Moreover,
this is true even when the number of literals in each clause is exactly

We note that the problem remaiRls-hard even if the number of occurrences of universal variables
is bounded by 2 and the number of occurrences of existential variables is bounded by 3. As we will
explain later, these are the least possible constants for which the problem i$,stiéird unless the
polynomial-time hierarchy collapses. We believe tiiheorem 1.1is useful for derivingl,-hardness
results, as well aBl, inapproximability results. In facfTheorem 1..was crucial in a recent proof that
the covering radius problem on lattices with high normBljshard [p]. Moreover, usingrheorem 1.1
one can simplify the proof that the covering radius on codé€k#hard to approximated].

At a very high level, the proof is based on the following ideas. First, one can reduce the number
of occurrences of existential variables by an expander construction in much the same way as was done
by Papadimitriou and Yannakaki&(. The main difficulty in the proof is in reducing the number of
occurrences of universal variables: If we duplicate universal variables (as is usually done in order to
reduce the number of occurrences), we have to deal with inconsistent assignments to the new universal
variables (this problem shows up in the completeness proof). The approach taken by Ko ard Lin [
is to duplicate universal variables and to add existential variables on top of the universal variables.
Their construction, in a way, enables the existential variables to override inconsistent assignments to the
universal variables. Unfortunately, it seems that this technique cannot produce instances with perfect
completeness. In our approach we also duplicate the universal variables, but instead of using them
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directly in the original clauses, we use a superconcentrator-based gadget, whose purpose is intuitively
to detect the majority among the duplicates of a universal variable. Crucially, this gadget requires only
a constant number of occurrences of each universal variable.

The rest of the paper is organized as folloBsction2 provides some background about satisfiability
problems in the second level of the polynomial-time hierarchy and about some explicit expanders and
superconcentrators. Bection3 we proveTheorem 1.1 Section4 discusses the least possible value of
B for which the problem remain3,-hard. InSection5 we generalize our main theorem to any level of
the polynomial-time hierarchy.

2 Preliminaries

2.1 T, satisfiability problem

A D-CNF formula over a set of variables is a conjunction of clauses where each clause is a disjunction
of at mostD literals. Each literal is either a variable or its negation. A clause is satisfied by a Boolean
assignment to the variables if it contains at least one literal that evalualeseto

For any reals & o < B < 1 and positive integeld > 0, we define:

Definition 2.1 (v3-D-SAT|e, B]). Aninstance of/3-D-SAT [, B] is aD-CNF Boolean formulaP(X,Y)
over two sets of variables. We refer to variableXias universal variables and to thos&ias existential
variables. InYES instances, for every assignmentddhere exists an assignment¥assuch that at least
a f fraction of the clauses are satisfied.NQ instances, there exists an assignmerX tuch that for
every assignment t6 at most anx fraction of the clauses are satisfied.

The problemv3-D-SAT[a, ] is the basic approximation problem in the second level of the
polynomial-time hierarchy (seel], 12| for a recent survey on the topic of completeness and hard-
ness of approximation in the polynomial-time hierarchy). We also define some additional variants of
the above problem. For a/> 1 the problemyy3-D-SAT-B|a, ] is defined similarly except that each
variable occurs at mo& times in\¥. In the instances of the problevd-D-SAT-By[e, 8], the boundB
on the number of occurrences applies only to the universal variables (as opposed to all variables).

In [7] it was shown that/'3-3-SAT-B[1— &1,1— &;] is M,-hard for somd3 and some & & < &1 < 1.

As already mentioned, iBection3 we show that it id1,-hard even for somB, &1 > 0 ande, = 0.

2.2 Expanders and superconcentrators

In this subsection, we gather some standard results on explicit constructions of expanders and supercon-
centrators (where bgxplicitwe mean constructible in polynomial time). The first shows the existence
of certain regular expanders.

Lemma 2.2 (B, 9]). There exists a universal constant §ch that for any integer n, there is an explicit
14-regular graph G= (V,E) with n < |V| < Cin vertices, such that any nonempty set 8 satisfies

[E(S5)| > min(|S,[S).

For the second, we need to define the notion of a superconcentrator.
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Definition 2.3 (n-superconcentrator). A directed acyclic grapls = (U UV UW, E) whereU denotes
a set ofn inputs (i. e., vertices with indegree 0) aWddenotes a set af outputs (i. e., vertices with
outdegree 0) is an-superconcentratdf for any subseSof U and any subsét of V satisfying|§ = |T|,
there ardS vertex-disjoint directed paths i@ from Sto T.

The explicit construction of sparse superconcentrators has been extensively studied. Gabber and
Galil [3] were the first to give an explicit expander-based constructionsefperconcentrator wit®(n)
edges. Alon and Capalbd][presented the most economical known explieguperconcentrators, in
which the number of edges is #4- O(1). Their construction is based on a modification of the well-
known construction of Ramanujan graphs by Lubotzky, Phillips and Sa8janf by Margulis 9].
The following theorem of ] summarizes some of the properties of their graphs.

Theorem 2.4 ([L]). There exists an absolute constantlO for which the following holds. For any n
of the form k 2' (I > 0) there exists an explicit n-superconcentrator=H(U UV UW, E) with |E| =
44n+0O(1) and all of whose vertices have indegree and outdegree at ost

In our reduction, we use a slight modification of the superconcentrafihéorem 2.4 This graph
is described in the following claim (sé&gure 1for an illustration of the construction).
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Figure 1: The grapis(®). All edges are directed downwards. The marked subgraph is a 6-superconcen-
trator (but not necessarily the one frofj)f

Claim 2.5. There exist absolute constants ¢ and d for which the following holds. For any natirdl n
there exists an explicit directed acyclic graph"G= (U UV UW,E) with a set U of2n inputs (i.e.,
vertices with indegre8) with outdegred and a setV of n outputs (i. e., vertices with outde@iesuch
that for any subset S of U of si#® = n there are n vertex-disjoint directed paths from S to V. Moreover,
|E| < cn and all indegrees and outdegrees if'Gare bounded by d.
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Proof. Fix somen > 1. By Theorem 2.4here exists an explicitip-superconcentratdd’ = (U’ UV’ U
W' E’) for somen+k < np < 2(n+ k) wherek is the constant fronTheorem 2.4 such thatE'| =
44ny+0O(1) and all its indegrees and outdegrees are bounded by 11. Denotéby{u/,...,u;} and
byV = {v1,...,vn} arbitrary subsets df’ andV’ of size exactlyn.

In order to construct the grag®(™ we add to the grapH’ the 2h verticesU = {uy,...,Uxn} and
edges. The input set of the gra@" is U, and the output set @™ isV. For each € {1,...,n} we
add the directed edgés;, u') and(uiin,Vi). In other words, we add to the graph two matchings of size
n: the first between the vertex sdts;, ...,us} andU”, and the second betweénp, 1, ..., Uz} andV.

It is easy to see that our graph satisfies the required properties for large enough absolute apnstants
andd. LetSC U be of sizen, and definegs; = SN{u: 1 <i<n}andS; =SN{u :n+1<i<2n}.

We show that there existvertex-disjoint paths fronsto V. According to our construction, the vertices
of S have paths of length 1 to their neighborsvin So it suffices to show that the vertices&fhave
vertex-disjoint paths to the — |S;| = |S| remaining vertices of/. According to the property ofl’,
there exist vertex-disjoint paths @™ between the neighbors &f in U” and then — |S;| vertices oiV.
Combining these paths together with the matching edges bet@eerdU” completes the proof. [

3 Hardness of approximation forVv3-3-SAT-B

In this section we prov&heorem 1.1 The proof is by reduction from the probled-3-SAT[1— ¢, 1],

which was shown to bEl,-hard for some > 0 in [6]. The reduction is performed in three steps. The

first step is the main one, and it is here that we present our new superconcentrator-based construction.
The remaining two steps are standard (see for exanigleahd [2]) and we include them mainly for
completeness. We remark that these two steps are also us@d in [

Step 1: Here we reduce the number of occurrences of each universal variable to at most some constant
B. As a side effect, the size of the clauses grows from being at most 3 to being db mdstreD
is some constant. More precisely, we establish that there exist absolute coBstargede > 0
such that the problevi3-D-SAT-By[1— ¢, 1] is M,-hard.

Step 2: Here we reduce the number of occurrences of the existential variables to some c8nstant
Notice that we must make sure that this does not affect the number of occurrences of the universal
variables. More precisely, we show that there exist absolute con®&abtsande > 0 such that
the problenV3-D-SAT-B[1— ¢, 1] is M»-hard.

Step 3: Finally, we modify the formula such that the size of the clauses is exactly 3. Clearly, we must
make sure that the number of occurrences of each variable remains constant. This would complete
the proof ofTheorem 1.1

3.1 Stepl

Before presenting the first step we offer some intuition. In order to make the number of occurrences of
the universal variables constant we replace their occurrences by new and distinct existential variables.
In detail, assume is a universal variable that occufdimes in an instanc& of V3-3-SAT[1—¢,1].
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For such a variable we construct the gra@ = (U UV UW,E) given inClaim 2.5and identify its

£ output verticed/ with the £ new existential variables. In addition, we associate a universal variable
with each of the 2 vertices ofU, and an existential variable with each verteXt¥nand also with each
edge inE. We add clauses that verify that in the subgrapiB6t given by the edges with valuErue,
there are vertex-disjoint paths fron toV (and hence each vertex¥hhas one incoming path). We
also add clauses that verify that if an edge has valwe then both its endpoints must have the same
value. This guarantees that each variablé igets the value of one of the variableddn Completeness
follows because for any assignmentWo we can assign all the variablesVhto the same value by
connecting them to those variableddrthat get the more popular assignment (recall fbat= 2|V| and

the properties given i€laim 2.5. For the proof of soundness, we show that if all thevariables are
assigned the same value, then alltheariables should also be assigned this value.

3.1.1 The reduction

The proof is by reduction from the problera-3-SAT[1— ¢, 1] which isM,-hard for some constaat> 0
as shown in@]. Let W(X,Y) be a 3CNF Boolean formula withm clauses over the set of variabksJY,
whereX = {x4,...,Xx|} is the set of universal variables, avid= {yi,...,Yyy|} is the set of existential
variables. The reduction constructs a form#t@X’,Y’) overX’ UY’. The number of occurrences Wl
of each universal variable frod’ will be bounded by an absolute const&)and the number of literals
in each clause will be at mogt. In fact, these constants de= 2 andD = d + 1, whered is given in
Claim 2.5

For each universal variable € X denote by/; the number of its occurrences in the formtlaand
apply Claim 2.5to obtain the grapi; = G = (U; UV, UW, E;). Recall that the maximum degree
(indegree and outdegree) of these graphs is bounded by some ca@hatahthat the number of edges
in Gj is bounded by - ¢; for some constart. Denote the vertex sets & by

Vi:{v(li),...,vg)}, Ui:{u(li),...,uggi}, and V\/{:{w(li),...,wf\i,\)“} ,

and its edge set bly; = {e(li), ey e‘(gl}. The set of existential variables # is

X
Y = (U(vi UW.UEi)) vy .
i=1

X

The set of universal variables # is X' = [J;_; U;.

The clauses o#’ are divided into the following five types (s€ggure 2.

1. Major clauses: These clauses are obtained from clauses of the forfHulay replacing thejth
occurrence of the universal variablewith the variable

in) eV
for 1 <i <|X|, 1< j <¢. The number of clauses of this typens
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Figure 2: An illustration of the reduction for the cake 6.

. Outdegree clausesThese clauses verify that among the directed edges leaving a vefigxan
most one has valu€rue. For each vertew, we add the clause

(-} v—e})
for each pair of edgeeﬁil),egi; leavingw. Each such clause is duplicaté@itimes. The number of

clauses of this type is at mo&t c- dz(g) for eachi.

. Flow clauses:These clauses verify for any vertmp?) €W that if at least one of its outward edges

has valueTrue then there exists also an edge entewi:iaiéwith valueTrue. This is done by adding
a clause of the form _ _ _
| | |
(ﬁeg,) Vv egl) \VERRRV; egd)/)
for eachegi,) Ieavingwgi) whereegil), . ,e?d), are all the 0< d’ < d edges enteringy?). The number
of clauses of this type is at most/; for eachi.

. V-degrees clausesThese clauses verify that each vem%@( has at least one incident edge with
True value. This is done by adding one clause of the form

el

wheree}il), ... ,egid)/ are thed’ < d edges incident tuﬁi). The number of clauses of this typefijdor
eachi.

. Edge consistency clausedzor each edgeﬁi) € E; do the following. Letvv?l),wgiz) e UiuVi UW
be its endpoints. Add the two clauses
(ﬂeﬁi) \/W?l) \Y ﬂw(-i)) and (ﬁe?) v -wi VW(i)) ,

J2 J iz

THEORY OF COMPUTING, Volume 3 (2007), pp. 45-60 51


http://dx.doi.org/10.4086/toc

I. HAVIV, O. REGEV, AND A. TA-SHMA

(i)

which check that if the value cﬂ?) is True, thenwgil) andwj2 have the same truth value. The

number of clauses of this type is at most;Zor eachi.

Note that each clause contains at niost d + 1 literals. Usingy; ¢ < 3m, the number of clauses in
W, which we denote by, is at mostO(mc: (d4+ 1)) <C-mfor some absolute constadt Moreover,
the number of occurrences of each universal variable is exactly 2, because universal variables appear
only in clauses of typ€5) and vertices in th&J; have outdegree 1. This completes the construction of
W,

3.1.2 Completeness

Our goal in the completeness proof is to show th&#(X,Y) is aYES instance of’3-3-SAT[1—¢,1],
then for any assignment &/, there is an assignment Y that satisfies all thet clauses i’ (X", Y’).
Lett’ be an arbitrary assignment to the universal varialffesRecall thatX’ is the unionUi‘i‘lui. We
define an assignmento X based on the majority of the assignments givet biylore formally,

vy = | Troe, if [{j:t/(u) = True}| > 4
! False, otherwise

By the assumption on the original formui(X,Y), the assignmeritcan be extended i UY, in a way
that satisfies all the clauses¥(X,Y). Let us extend the assignmehto the existential variables

X]
Y = (U v UVV,UEi)) uy .

i=1
First, let the assignment give the same values agor the variables iry. For each denote by§ C U;
a set of vertices fror; of size|S| = ¢; in which every variable has valugx). There exists such a set
according to the definition df By Claim 2.5there ar¢/; vertex-disjoint directed paths i@ from S to
Vi. We definet’(eﬁ')) to beTrue if eﬁ') appears in one of these paths &atke otherwise. In additiont,
gives the value(x;) to all variables inv; UW,.

We now check that the assignméhsatisfies all clauses i#’. The assignment to the variables in

Vi ist(x). Since the variable¥ are also assigned accordingtiall clauses of typél) are satisfied.
The paths given bylaim 2.5are vertex-disjoint. In particular, every vertex has at most one outward
edge assigned forue, so all clauses of typ€) are satisfied too. Moreover, if at least one of the edges
leaving a vertexv € W has valueTrue then there exists also a directed edge with value entering
w. Therefore, the clauses of ty8) are satisfied. The number of paths@is ¢, so there is one
path reaching every vertex Wi. This means that the clauses of ty{@e are satisfied too. Finally, our
assignment gives the valtigg ) to all variables in§ UV, UW. In particular, each edge assignedriae
has both its endpoints with the same value. Thus, the clauses of3ypee satisfied, as required.

3.1.3 Soundness

In the soundness proof we assukHEX,Y) is aNO instance of73-3-SAT[1— ¢,1]. We will show the
existence of an assignmentXo for which any assignment ¢’ satisfies at mostl — &')m’ clauses of
W (X',Y’) for ¢ = €/C, and hence the theorem will follow.
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Lett be an assignment & such that every extension bfo X UY satisfies at mostl — €)m clauses
in W(X,Y). Define an assignmetitto X’ in which every variableuﬁ” has the valué(x;). Extendt’ to
an assignment tX’ UY’ in an arbitrary way. Our goal in the following is to show that the number of
clauses satisfied lyis at most(1— &")m'. We start with the following two claims.

Claim 3.1. Lett be an assignment to’X/Y’ as above. Theri tan be modified to an assignmehthat
satisfies every clause of typ®) and satisfies at least as many clauses astisfies.

Proof. We obtaint” by performing the following modification td for eachi: For each variable i\, if

it has more than one outward edge assignetttie by t’, t” assigngalse to all its outward edges. Since
we only modify variables irk;, clauses of typél) are not affected. Moreover, since we only set edges
to False, we do not decrease the number of satisfied clauses of(§)peWe might, however, reduce
the number of satisfied clauses of ty§8% and(4) by at mostd? for each variable (at mostfor each
out-neighbor of the vertex). On the other hand, the corresponding clause dPlyisesatisfied byt”,

and by the duplication, this amounts to at ledsadditional satisfied clauses. In total, the number of
clauses satisfied 1y is at least the number of clauses satisfied'bgnd the claim follows. O

Claim 3.2. Let t' be an assignment to’X) Y’ that satisfies all clauses of tyg@). Denote by k the

number of vertices?@ € UV satisfying t(vgi)) #1(x), where t is the assignment to X as above. Then
at least k clauses of typé8), (4) or (5) are unsatisfied by t

Proof. Fix somei. It suffices to show that to each verte(fi? satisfyingt’(vﬁi)) # t(x;) we can assign in
a one-to-one fashion a clause of ty{®, (4) or (5) which is not satisfied by. To show this leG’ be
the subgraph o6; given by the edges assignedTeaue by t’. Let A; be the set of vertices that have a
directed path ifG’ to v}'). Since clauses of typ@) are all satisfied by, the set#\; are pairwise disjoint.
Fix some 1< j </ such that’(vgi)) #1(x;). SinceG; is acyclic,A; contains a vertex whose indegree
(1)
) j
byt’, becausé (u) =t(x) Whereas’(vg')) #1t(x). Otherwise at least one of the clauses of tyf®sand
(4) is unsatisfied by'. Therefore, we see that the number of clauses of (gp&5) unsatisfied by’ is

at least the number of vertice‘#) satisfyingt’(vgi)) #1(X). O

in G’ is 0. If uis inU; then at least one of the clauses of typ& on the path fromuto v, ’ is unsatisfied

Recall thatt’ is an assignment t&’ UY’ that assigns every variabﬂ.%') tot(x). We have to show
thatt’ satisfies at mogtl — &’)n clauses irV’. By Claim 3.1we can assume thdtsatisfies all clauses
of type(2) in W',

Now, we define an assignmetitto X’ UY’ as follows. For each let S be an arbitrary subset of

of sizeti. We know that there exigt directed vertex—dis_joint paths fro& toV; in G;. The assignment
t” assigns alll theﬁ') in these paths tdrue and all otheleg') to False. Moreovert” gives all variables in
Ui UV UW the valuet(x). Finally, we defing” onY to be identical td’. Notice that int” all clauses of
type (2)-(5) are satisfied. Denote dythe number of the variableé') satisfyingt’(vg')) #1t(x). Then
the number of typél) clauses satisfied kyf is smaller than that df by at mosk. Moreovert’ satisfies
all clauses of typ€2), so byClaim 3.2at leastk clauses of typg3)-(5) are unsatisfied by/. In total,

the number of clauses satisfiedtyis at least the number of clauses satisfied’by
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Finally, by our assumption o# and ont we get that at leagtm clauses of typ€1) are not satisfied
byt”. So the number of satisfied clauses is at nmdst em < (1—¢’)m, as required.

3.2 Step?2

With Step 1 proven, we now apply an idea &6] to show that there are absolute constahende > 0,
for which the problemv3-D-SAT-B[1 — ¢,1] is My-hard. This proof uses the expander graphs from
Lemma 2.2

The reduction:  Consider thd1,-hard problenv3-D-SAT-By[1— €', 1] for somee’ > 0. LetW(X,Y)
be an instance of this problem. For every existential varigbteY (1 <i < |Y|) denote byn; the
number of the occurrences gfin W. Assumingn; is large enough, consider the gragh= (V;,E)
given byLemma 2.2for nj, with nj < |Vi| < Cyn; (if n; is not large enough, we do not need to modify
this variable). Label the vertices & with |V;| new distinct existential variable = {y(li), e ,y|(\i/?‘}. We
construct a new Boolean formui (X,Y’) over the universal variables ¥1and the existential variables
inY = U!i‘lYi. First, for each ¥ i < |Y| replace the occurrences gfby n; distinct variables of;.
Second, for each edg(y}i),ygi/)) in Gj, add toW the two clauses

(- vy?’) and  (y\'v ﬁygi/)) :
which are both satisfied if and only if the variaby%ié,ygi/) have the same value. The number of clauses
in W is linear iny;ni < Dm. Notice, that the number of occurrenceseathvariable iny is bounded
by a constant.

Correctness: Let W(X,Y), anm clause formula, be &ES instance, i. e., for every assignmentXo
there exists an assignmentYosuch that every clause M is satisfied. Clearly, for any assignment
to X there exists an assignmentY6 which satisfies all the clauses ¥, because we can set tig
variables the value of; in ¥. Now , assumaV is aNO instance, so there is an assignmietd X such
that for any assignment 6 at leaste’'m clauses are unsatisfied #. Lett’ be an arbitrary extension
of t to XUY’. If for some 1< i < |Y|, t’ does not assign to all th¢ variables the same value for some
1 <i<|Y|, itis possible to improve the number of satisfied clauses by setting a¥; tvezriables to
the majority vote ot’ onY;. Indeed, denote b§ the set of variables ii¥; that were assigned ky to
True. This modification reduces the number of satisfied clauses by at mog§&hiig|), but satisfies at
least|E(S,S)| unsatisfied consistency clauseemma 2.states thaE (S, S)| > min(|S|,|S]), so this
modification improves the number of satisfied clauses. Hence, we can assume that foxdachVl,

t’ assigns to all th; variables the same value for eackc1 < |Y|. Thus, by the assumption ¢# we
conclude that’ does not satisfy at leastm clauses, meaning at least &iD fraction of the clauses is
not satisfied. Defining = ¢’ /D completes the proof.

3.3 Step3

This subsection completes the proofldfeorem 1.Dby showing a reduction that modifies the size of the
clauses to exactly 3.
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The reduction: Let W(X,Y) be an instance 6f3-D-SAT-B[1— ¢, 1] with m clauses. We transform

W into a formulaW(X’,Y’), whose clauses are of size exactly 3, as follows. For each clause of size 1,
like (a), we add a new universal variat#end replace it bya\ z\ z). Similarly, for each clause of size

2, like (aVv b), we add a new universal variat#eand replace it byaV bV z). Now consider a clause
C=(u1VuV---Vu) of sizer > 3, where they; are literals. For each such clause introduee3 new

and distinct existential variables, ...,z _3 and replac€ in the formulaW¥ by the clauses o/,

C'=(WVwVa)A(=zzVUsVz) A -A(=Z-4VU_2VZ_3)A(=Z_3VU_1VU) .

The number of the clauses W is at mostDm. Obviously, the number of occurrences of each variable
remains the same, and the newly added variables appear either once or twice.

Correctness: ltis easy to see that W is aYES instance then so ¥’ and that if# is aNO instance,
then there exists an assignmenk{csuch for any assignmet, at least’m of the clauses o#’'(X’,Y’)
are unsatisfied. So far=¢’/D we get the desired result.

4 Onthe number of occurrences

The output of the reduction @ection3 is a formula in which every universal variable occurs at most
twice and every existential variable occurs at mBstimes for some constar@. By performing a
transformation similar to the one in Step 2 with the graphseshma 2.2replaced by directed cycles,
the number of occurrences of each existential variable can be made at most 3 (see for example Theorem
10.2, Part 1in2]). This implies that if we allow each universal variable to occur at most twice and each
existential variable to occur at most 3 times, the problem renfajalsard. Here, we show that 2 and 3
are the best possible constants (unless the polynomial-time hierarchy collapses).

First note that whenever a universal variable occurs only once in a formula, we can remove it without
affecting the formula. Hence, if each universal variable occurs at most once, the probleNPisind
thus is notl,-hard, unless the polynomial-time hierarchy collapses.

Moreover, if we allow every existential variable to occur at most twice, the problem leediR and
is thus unlikely to bd1,-hard. Given an assignment to the universal variallethe formula¥(X,Y)
becomes &AT formula in which each variable appears at most twice. Checking satisfiability of such
formulas can be done in polynomial tim&d. Indeed, variables that appear only once and those that
appear twice with the same sign can be removed from the formula together with the clauses that contain
them. This means that we are left witls AT formula in which each variable appears once as a positive
literal and once as a negative one. So consider the bipartite gtapliAU B, E) in which A is the set
of clauses oW andB is the set of its existential variables. We connect by an edge a cladséoima
variable inB if the clause contains the variable. Notice that there exists a matchidghiat saturates
A if and only if the formula is satisfiable. The existence of such a matching can be checked easily in
polynomial time. Therefor&3-SAT restricted to instances in which every existential variable occurs at
most twice is incoNP.
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5 Extension to higher levels of the hierarchy

As one might expeciTheorem 1.Xan be generalized to any level of the polynomial-time hierarchy. In
this section, we describe in some detail how this can be done. Our aim is to prove the following theorem
(the problems below are the natural extension®f3-SAT to higher levels of the hierarchy; se@)]

Theorem 5.1. For any r > 1 there exists ar > 0 such that(v3)"-3-SAT-B[1 — &, 1] is M -complete
andH(VH)r-S-SAT-B[l— €,1] is Zyr11-complete (wher® is some absolute constant). Moreover, this is
true even when the number of literals in each clause is exactly

For convenience, we present the proof only for the even levels of the hierdighy The case of
odd levels is almost identical.

Our starting point is a result oB], which says that for any > 1 there exists am > 0 such that
(v3)'-3-SAT[1— ¢,1] is My -complete. As inSection3, the proof proceeds in three steps. In the first
we reduce the number of occurrences of universal variables. In the second we reduce the number of
occurrences of existential variables. Finally, in the third step we modify the formula such that the size
of each clause is exactly 3.

5.1 Stepl

In this step we show that for argy> 0 there exists ar’ > 0 such thatv3)"-3-SAT[1— ¢, 1] reduces to
(v3)'-D-SAT-By[1— ¢, 1] for some absolute constaridsB (where the latter problem is a restriction of
the former to instances in which each universal variable appears aBios¢s). In more detail, given
a 3-CNF formulaW on variable seX; UYL U---U X UY;, we show how to construct@-CNF formula
W on variable seX; UY/; U---UX/ UY, in which each universal variable appears at n®$imes, and
whose size is linear in the size W such that

maxmin---maxminSAT (W, tx, . ty,, ..., tx ,ty,)

tx, vy bty
= nga/ixmi,n. .. melixmi/nSAT(qJ’,tX{,tylf, ... ,txr/,tyr/) R (51)
x) N Xt W

whereSAT denotes the number ohsatisfiectlauses in a formula for a given assignment. It is easy to
see that this is sufficient to establish the correctness of the reduction. Moreover, it can be verified that in
Step 1,Section3 we proved Equations( 1) for the case = 1.

Before describing the reduction, we note that in Stefelgtion3, the only property of the original
formula that we used is that flipping the value of an occurrence of a variable can change the number
of satisfied clauses by at most one. This leads us to the following lemma, whose proof was essentially
given already in Step Kection3.

Lemma 5.2. For any/ > 1 there exists a k- ¢ and aD-SAT formula®(xa, ..., X, Y1, .-, Yk) (for some
absolute constarid) on 2/ + k variables of size (¥) in which each of the firs2/ variables appears at
most twice such that the following holds. For any integer-valued function/fBwolean variables with
the property that flipping any one variable changes the value of f by at most one, we have that
mxaxf(x,...,x) = max min (f(y1,...,yr) +SAT(D,X1,...,%X20,Y1,---,Yk)) »

X100, X20 Y1505 Yk
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where xX,...,X,Y1,...,Yk are Boolean variables.

Using this lemma we can now describe our reduction. We are giveGNF3formula¥ on variable
setXuUYiU---UX UY;. We perform the following modifications for each universal variableeti be
such thatx € X; and/ be the number of times occurs in¥. Letk and® be as given by emma 5.2
First, we replace € X; with 2¢ new variables«, ..., Xy € X and addk new variablesy, ...,y to Y.
Next, we replace thé occurrences ok with ys,...,y,. Finally, we appendP(xy,...,Xo,VY1,---,Yk) tO
the formula. Let’ be the resulting formula ang UY; U---UX/ UY/ be the resulting variable set. This
completes the description of the reduction.

Clearly, each universal variable ¥ appears at most twice, and moreover, the siZ€’a$§ linear in
that of W. Therefore it remains to prove Equatidnl). We do this by showing that for each universal
variable, the modifications we perform leave the expression in Equdityuhchanged. So l&b be an
arbitrary formula on some variable setUY;U---UX UY;, and letx € X; be a universal variable with
¢ occurrences. It can be seen that our goal is to show that

maxmin- -- maxmaxmin- - - maxming(tx,, tv;, . .., tx\ g, X - - X by I, By
bt by XN b v

= maxmin---max max min min---maxmin
tx, ty b\ {x) X5 X20 YooYk Ty tx by

(Q(txy, ty, - ,tm{x},w,.--,W,tvi,---,tx,,tvr) + SAT(D,Xq, ..., X2, Y15+, YK))

whereg denotes the number of unsatisfied clause¥innder the given assignment to all variables
exceptx and to all occurrences of andk and® are as in.emma 5.2 Clearly it suffices to prove this
equality for any fixed setting to the variables quantified bekpiee.,

maxmin- - - maxming(tx,,ty,, . .-, t\ g, X - X by, Tk, By)
Xty t ty

= max min min---maxmin
Xy X20 Y1505 ¥k by tx by

(g(txl,tyl, . 7t)(5\{x}7y17 Yoty ot ,tyr) + SAT(CD,Xl, X0 Y1, ,yk)) ,
but this follows fromLemma 5.2
We conclude thatv3)'-D-SAT-By[1 — ¢, 1] is My -hard for somes > 0.
52 Step?2

In this step we show that for amy> 0 there exists ag’ > 0 such tha{v3)"-D-SAT-By[1— ¢, 1] reduces
to (v3)"-D-SAT-B[1 - ¢’, 1] for some absolute constarisB. The following lemma is the analogue of
Lemma 5.2or existential variables, and its proof essentially appeared already in SEsziton3.

Lemma 5.3. For any large enouglf there exists &-SAT formula®(ys,...,Yy,) on ¢ variables of size
O(¢) in which each variable appears at md8ttimes (for some absolute consta®) such that the

IWe remark that the fact that we write max,, max as opposed to MR, will be crucial when we apply
Lemma 5.2as this prevents an additional quantifier alternation.
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following holds. For any integer-valued function f 6Boolean variables with the property that flipping
any one variable changes the value of f by at most one, we have that

mylnf(y7 .. ay) = y{n”}[(f(yla .. ayf) +Sﬁ(q}7ylv .- '7y4)) )

where yy,...,y, are Boolean variables.

The reduction is as follows. We are giveaCNF formulaW¥ on variable seX; UY1U---UX UY;.
We perform the following modifications for each existential variaplé.eti be such thay € Y; and/
be the number of timeg occurs inW. Let @ be as given by.emma 5.3 First, we replace € Y; with
¢ variablesy,...,y; € Yi. Next, we replace thé occurrences of with y1,...,y,. Finally, we append
®(ys,...,Yr) to the formula. This completes the description of the reduction. The proof of correctness
is similar to the previous one and udemmma 5.3

5.3 Step3

To complete the proof ofheorem 5..ve now modify the formula so that the number of literals in each
clause is exactly 3. Given a formulion variable seX; UY; U---U X UY; we apply the modification

of Step 3,Section3. We add the new existential variablesoand the new universal variables Xp.
The proof of correctness is easy and is omitted.
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