- 1. Give an alternative approach to the Marriott-Watrous witness-preserving QMA amplification based on eigenvalue estimation of $\Pi_1 + \Pi_2$. Hint: use Trotter's formula; also, make sure that the witness is still an *m* qubit state!
- 2. It is known that QMA is contained in PSPACE (and in fact in somewhat smaller classes). Let us show this using witness-preserving amplification.
 - (a) Given any QMA verifier V_x , we defined a $2^m \times 2^m$ Hermitian matrix Q_x that gives the acceptance probability of any witness $|\psi\rangle$ as $\langle\psi|Q_x|\psi\rangle$. Show that we can compute any given entry of this matrix in polynomial space. Deduce that we can also compute its trace in polynomial space.
 - (b) Prove that $QMA \subseteq PSPACE$.
- 3. We have a quantum circuit (see Figure 1) whose input is an arbitrary quantum state |ψ⟩ on m qubits and some ancilla qubits |0^k⟩ on k qubits. Its output is a 'success' qubit and an output register |φ⟩ (on m + k 1 qubits). The computation is *successful* if, when measuring the success qubit in the computational basis, the result is |1⟩. The *output* of the circuit is the state |φ⟩, conditioned on success.
 - (a) Show that we can *boost* the success probability of the circuit on *classical* inputs: there exists another circuit that given any classical input state $|\psi\rangle$ whose acceptance probability (in the original circuit) is, say, p > 0.1, gives the same output with success probability (exponentially) close to 1.
 - (b) Now assume, in addition, that for any input |ψ⟩, the success probability of the circuit is some *fixed* 0.1
 - (c) Try to explain why boosting is impossible if the success probability is not fixed over all $|\psi\rangle$.

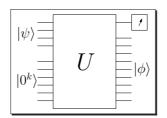


Figure 1: Boosting

 Our goal is to show that Group Membership (GM) is in NP relative to any group oracle. Recall that we are given group elements h, g₁,..., g_k ∈ G and our goal is to find a way to verify that h ∈ H := ⟨g₁,..., g_k⟩ (in time polynomial in log |G|).

- (a) Show that for any $A \subseteq G$, if $b \notin A^{-1}A$ (i.e., b cannot be written as $a_1^{-1}a_2$ for some two elements in A), then $|A \cup Ab| = 2|A|$.
- (b) Show that for any strict subset $A \subsetneq H$, there exists an *i* and an element $a \in A$ such that $ag_i \notin A$.
- (c) For a sequence of elements a_1, \ldots, a_r define the 'cube' generated by them as

$$C(a_1,\ldots,a_r) := \{a_1^{b_1}\cdots a_r^{b_r} \mid b_1,\ldots,b_r \in \{0,1\}\}.$$

Use this to show that there exists a witness (verifiable in polynomial time) to the property $h \in H$.