
Tel Aviv University, Fall 2004
Lattices in Computer Science

Lecture 5
Integer Programming

Lecturer: Oded Regev
Scribe: Ishay Haviv

In this lecture we present another application of the LLL algorithm, namely, integer programming in
fixed dimension.

1 Integer Programming Overview

The Integer Programming problem (IP ) is that of deciding whether there exists an integer solution to a given
set ofm rational inequalities onn variables. Equivalently, given a matrixA ∈ Qm×n andb ∈ Qm, decide
if there is az ∈ Zn such thatAz ≤ b. Yet another equivalent formulation is: given a matrixA ∈ Qm×n

decide whether the set
Zn ∩ {x ∈ Rn | Ax ≤ b}

is non-empty. The integer programming problem is quite powerful, and many combinatorial problems can
be formulated as instances ofIP . In fact, it is ‘too powerful’ since it isNP-complete, as the following claim
shows.

REMARK 1 Without the requirement on an integer solution (i.e., if we allowz ∈ Rn), the problem is known
as Linear Programming, and has a polynomial time solution (such as the ellipsoid method).

REMARK 2 There are many equivalent formulations of integer programming. We could, for instance, allow
equalities in addition to inequalities. Moreover, we could ask to find an integer solution and not just decide
if one exists.

CLAIM 1 The integer programming problem isNP-complete.

PROOF: IP is in NP because the integer solution can be used as a witness and can be verified in polynomial
time.1 We now prove thatIP is NP-hard by reduction from SAT. A SAT instance is described by a set of
Boolean variables and clauses. We reduce it to an Integer Programming instance with the same number of
variables. In addition, for each variablevi we have the constraints

0 ≤ vi ≤ 1.

For each clause we have a constraint that correspond to it; for example, for the clausev1 ∨ v3 ∨ v7 in the
SAT instance, we have the constraint

v1 + (1− v3) + v7 ≥ 1.

Clearly, this reduction can be done in polynomial time. Moreover, it is easy to verify that if the given SAT
instance has a satisfying assignment then the correspondingIP instance has an integer solution and vice
versa.2

Although it is NP-complete, one might hope to obtain efficient algorithms for the case where the di-
mension (i.e., the number of variables) is fixed. Forn = 1, it is easy to come up with an efficient solution.
However, even forn = 2, this is no longer obvious. In the next section, we describe the celebrated algorithm
by Lenstra that solvesIP in polynomial time for any fixed dimensionn.

1In fact, one also has to show that the size of the witness is polynomial in the input size. We omit the details.

1



2 Lenstra’s Algorithm

In this section, we present a solution to a generalization of the integer programming problem. Informally, it
can be stated as follows:

Given a convex bodyK ⊆ Rn, find a point inK ∩ Zn or decide that this set is empty. (1)

Recall that a setK is convex if for allx, y ∈ K and anyα ∈ [0, 1], αx + (1 − α)y ∈ K. By a convex
bodywe mean a convex bounded set with non-empty interior. We can assume without loss of generality
that a set specified by a list of linear inequalities is a convex body2; hence, the above problem is indeed a
generalization of the integer programming problem.

In order to define (1) formally, we need to specify howK is given. We could ask for a description of
K as the set of solutions to a list of linear inequalities, or as the convex hull of a set of points. However, in
order to achieve the greatest generality, we choose to use an oracle description ofK. That is, our algorithm
is given access to an oracle that can answer queries like “isx ∈ K?”. However, for this oracle to be useful,
it needs to be defined carefully. We postpone the discussion of this somewhat technical issue to the next
section.

The following theorem, known as John’s theorem, says that any convex body can be ‘approximated’ by
an ellipsoid.

THEOREM 2
For any convex bodyK ⊆ Rn there exists a pair(E′, E) of concentric ellipsoids such thatE′ ⊆ K ⊆ E and
E is obtained by expandingE′ by a factor ofn. Such a pair is known as aLöwner-John pairfor K.

The proof definesE′ as the ellipsoid of maximum volume contained inK. It is then shown that the ellipsoid
obtained by expandingE′ by a factor ofn containsK.

For this theorem to be useful for us, we need to have an efficient way to come up with such a pair.
Luckily, there exists an efficient algorithm that finds aweakLöwner-John pair, where such a pair is defined
as above with the factorn replaced by(n + 1)

√
n.

We can now describe Lenstra’a algorithm. The first step in the algorithm is to compute a weak Löwner-
John pair forK. Using this pair, we can compute a linear transformationT that transforms the two concentric
ellipsoids into two concentric balls. So now we have thatB(p, r) ⊆ TK ⊆ B(p,R) for some pointp and
radii r,R with R

r = (n + 1)
√

n. In other words,TK is ‘ball-like’.
Our goal can be equivalently stated as: decide ifTZn ∩ TK is empty. Notice that the setTZn is exactly

the lattice whose basis is given by the columns of T, i.e.,L(T ). We apply the LLL algorithm toT and obtain
some basisb1, . . . , bn for L(T ). Equipped with this LLL reduced basis, we now show how to determine
whetherL(T ) ∩ TK is empty.

Let k be such that‖bk‖ is maximal. According to Homework 2, Question 2, for anyx ∈ Rn we can find
y ∈ L(T ) such that

‖x− y‖ ≤ 1
2
(‖b1‖2 + . . . + ‖bn‖2)1/2 < n · ‖bk‖.

By applying this procedure top, we obtain a pointy ∈ L(T ) such that‖y− p‖ ≤ n · ‖bk‖. If this y happens
to be insideTK then we found a point in the intersection and we are done. Otherwise,y is also not inB(p, r)
and hence‖y − p‖ > r. Therefore,‖bk‖ > r/n. This means that‖bk‖ is not much smaller thanr. In the
following, we proceed by partitioning the lattice according tobk and solving each subproblem recursively.

LetL′ be the lattice spanned by{b1, . . . , bk−1, bk+1, . . . , bn}. ThenL(T ) can be written as
⋃

i∈Z (L′ + i · bk).
Homework 2, Question 4(g) says that in an LLL reduced basis, each vector rises a bit above the hyperplane

2This requires some more effort to make completely rigorous.

2



spanned by the othern− 1 vectors. More precisely, it says that the distance between two successive hyper-
planes is

dist(bk, span(L′)) ≥ 2−n(n−1)/4 · ‖bk‖ ≥ 2−n(n−1)/4 · r/n.

Hence, the number of hyperplanes span(L′) + i · bk that intersectB(p,R) is at most

n2n(n−1)/4 · R

r
< n32n(n−1)/4.

This is a constant that depends only on the dimensionn. Hence, we can recurse on each of the resulting
n − 1 dimensional problems. More precisely, for eachi in the appropriate range we consider the problem
given by the intersection of the hyperplane span(L′)+i ·bk with the bodyTK and the sublattice ofL(T ) that
is contained in that hyperplane. After a linear transformation, this becomes ann − 1 dimensional instance
of our problem so we can recurse.

The depth of the recursion tree isn, so the total running time is(n32n(n−1)/4)n times some polynomial
in the input size. For any constantn this is polynomial in the input size, as required.

REMARK 3 There are improvements of this algorithm that achieve better running times (but with similar
asymptotic running time).

3 How to describe convex bodies

It turns out that in order to perform interesting tasks on convex bodies (such as computing a weak Löwner-
John pair, approximating volume, etc.) one needs an oracle that does more than simply answer if a pointx
is in the body. An oracle that is sufficient for most interesting tasks is what is known as awell-guaranteed
weak-separation oracle, defined next.

By well-guaranteed, we mean that in addition to the oracle, our algorithm is given as input two numbers
r,R ∈ Q such thatK is contained inB(0, R) and contains some ball of radiusr. Intuitively, the purpose of
this is to give the algorithm some sense of the scale of the body with which it is dealing. Moreover, since
the numbersr andR are part of the input, the running time of our algorithm is allowed to be polynomial in
the bit-size of their representation.

A separation oracleanswers queries of them form “isy ∈ K” for any y ∈ Qn. In case the answer is NO,
the oracle returns a hyperplane that separatesy from the body (i.e.,y is on one side of the hyperplane and
K is on the other side). This requirement is often too strong and is difficult to implement due to precision
issue. Therefore, we settle for a slightly weaker oracle that is called aweak separation oracle. Such an
oracle is given as input a query pointy ∈ Qn and a precision parameterε > 0. Its output is the same as that
of a separation oracle except that it can answer for any pointy′ that is within distanceε of y. Hence, when
the query pointy is very close to the boundary ofK, both YES and NO answers are valid (and a NO answer
should be accompanied by a hyperplane that almost separatesy from the body).

To summarize, a more formal way to define the problem we solved in the previous section is:

Given a convex bodyK by a well-guaranteed weak-separation oracle, find a point inK∩Zn or say that it is
empty in polynomial time for fixedn

References

[1] Karen Aardal. Lattice basis reduction and integer programming. Technical Report UU-CS-1999-37,
Universiteit Utrecht, 1999.

[2] Lovász, L.An Algorithmic Theory of Number, Graphs and Convexity. SIAM Publications, 1986.

3


