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Let us recall the promise probleGapCVP.,.

DEFINITION 1 GapCVP,,
YESinstances: tripleg B, v, d) such thaddist(v, £L(B)) < d
No instances: triples B, v, d) such thadist(v, £L(B)) > ~vd
whereB is a basis for a lattice ifQ™, v € Q" is a vector, and! € Q is some number.

Itis easy to see thaiapCVP, € NP for any~y > 1. Indeed, a witness is a vectore £(B) such that
|lv — ul| < d. This witness is of polynomial size (since the length of the vector is at fndist- d) and it
can be verified efficiently (simply check thigt — || < d).

What about the complement GapCVP_? In other words, for what values ¢fis GapCVP., € coNP?
In order to show such a containment, we need to give a witnesslidét, £(B)) > vyd. Some thought
reveals that this is no longer a trivial task. After all, there is a huge number of lattice vectors that can
potentially be very close to. Some of the early results in this direction [5, 2] showed taiCVP,, €
coNP. These results are based on the use of dual lattices. Later, Goldreich and Goldwasser [4] showed
thatGapCVPm € coAM (we define the clasAM later). More recently, Aharonov and Regev [1]

showed thatapCVP_ . € coNP. All of these results also hold fdtapSVP sinceGapSVP is not harder
thanGapCVP (this was shown rigorously in the previous class).

To summarize, we have thﬁprVPW € NP N coAM andGapCVP 5 € NP N coNP. One
of the interesting implications of these results is the following. It is known &aCVP, is NP-hard for
v < nO/loglogn) [3] Can we hope to improve thidP-hardness result to, say, = /n? The above
results imply that the answer is probabiy. if GapCVP, is NP-hard fory > \/n/logn (even under Cook
reductions) then the polynomial hierarchy collapses. The proof requires some care (especially for Cook
reductions) and is discussed in Section 2.

Finally, another interest in the above results arises from lattice-based cryptographic constructions. All
known constructions are based on the worst-case hardness of lattice problems Gaeh\é3,,. for some
constant > 1. Hence, the above results imply that these constructions are based on a prakRncioNP
(like factoring).

1 The Goldreich-Goldwasser protocol
In this section we focus on the Goldreich-Goldwasser protocol.
THEOREM1 GapCVPW € COAM

REMARK 1 In fact, the proof implies a stronger result, namely, tﬁabCVPW is contained in a
complexity class known as Statistical Zero KnowledgeSaK.

For simplicity, we will show thaGapCVP - € coAM. A slightly more careful analysis of the same
protocol yields a gap aof\/n/log n for any constant > 0. First, let us define the clagsv .

DEFINITION 2 A promise problem is iAM if there exists a protocol with a constant number of rounds
between 8PP machine Arthur and a computationally unbounded Merlin, and two consiafits < b < 1
such that

e for anyYEs input, there exists a strategy for Merlin such that Arthur accepts with probability at least
b, and

e for anyNoO input, and any strategy for Merlin, Arthur accepts with probability at most



In order to prove Theorem 1, we present a protocol that allows Arthur to verify that a point is far from
the lattice. Specifically, giveB, v, d), Arthur accepts with probability if dist(v, £(B)) > /nd and
rejects with some positive probabilitydiist(v, £(B)) < d.

Informally, the protocol is as follows. Arthur first flips a fair coin. If it comes up heads, he randomly
chooses a ‘uniform’ point in the lattic&(B); if it comes up tails, he randomly chooses a ‘uniform’ point in
the shifted lattice + £(B). Letw denote the resulting point. Arthur randomly chooses a uniform point
from the ball of radiu%\/ﬁd aroundw and then sends to Merlin. Merlin is supposed to tell Arthur if the
coin came up heads or not.

The correctness of this protocol follows from the following two observations (see Figureligt(if, £(B)) >
v/nd then the two distributions are disjoint and the Merlin can answer correctly with probabil@dn the
other hand, iflist(v, £(B)) < d, then the overlay between the two distributions is too large and the prover
must make a mistake with some positive probability.
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Figure 1: Two distributions

This informal description hides two technical problems. First, we cannot really work with thespoint
since it is chosen from a continuous distribution (and hence cannot be represented precisely in any finite
number of bits). This is easy to take care of by working with an approximatiormath some polynomial
number of bits. Another technical issue is the choice of a ‘random’ point f£¢/). This is an infinite
set and there is no uniform distribution on it. On possible solution is to take the uniform distribution on
points in the intersection of (B) with, say, some very large hypercube. This indeed solves the problem,
but introduces some unnecessary complications to the proof since one needs to argue that the probability to
fall close to the boundary of the hypercube is low. The solution we choose here is different and avoids this
problem altogether by working with distribution on the basic parallelepiped of the lattice. We describe this
solution in Subsection 1.3.

In the next few subsections, we present the necessary preliminaries for the proof.

1.1 Statistical Distance

DEFINITION 3 The statistical distance between two distributionsY on some se® is defined as
A(X,Y) =maxacq|Pr(X € A) — Pr(Y € A4)|.

One useful special case of this definition is the case wieamdY” are discrete distributions over some
countable sef. In this case, we have

A(X,Y) = % S Pr(X = w) — Pr(Y = w)|.
weN



Another useful special case is whé&handY are distributions ofR™ with density functionsf, g. In this

case, we have .
AXY) =5 [ 1f(@) - g(a)] o

For any distributionsX, Y, A(X,Y") obtains values betwednand1. Itis 1 if and only if the supports
of X andY are disjoint; it is 0 if and only if X andY are equivalent distributions. It is helpful to consider
the following interpretation of statistical distance. Assume we are given a sample that is takex fuitin
probability% or fromY with probability%. Our goal is to decide which distribution the sample comes from.
Then, it can be seen that our best strategy succeeds with probéb’ﬂi@'A(X, Y).

One important fact concerning the statistical distance is that cannot increase by the application of a
possibly randomized function. In symbola(f(X), f(Y)) < A(X,Y) for any (possibly randomized)
function f. This fact is easy to deduce from the above interpretatiaf.of

1.2 Balls inn-dimensional Space

FAcT 1 The volume of the unit ball in dimensions is

7.[.71/2

= )l

where we define! = n(n —1)! forn > 1and3! = /7.

It can be shown that
(n+3)! . nl
n! (n—3)!

LEMMA 2 For anye > 0 and any vector of length||v|| < ¢, the relative volume of the intersection of two
unit balls whose centers are separated Bgtisfies

n—1

vol(B(0,1) N B(v, 1)) (1—-¢2) 2
vl(B(0,1) - ° 3

vn

PROOF. As shown in Figure 2, the above intersection contains a cylinder of heightl radiusy/1 — 2
centered around/2. Hence, the volume of the intersection satisfies:

)

Figure 2: A cylinder in the intersection of two balls

vol(B(0,1) N B(v, 1)) _ eV 1 (VI—e2)t (). w1 /12
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'More precisely, in the continuous case, the intersection needs to be a set of measure zero.

3



Notice that fore < ln the right hand side of the expression in Lemma 2 is at least some positive

constant independent af This yields the following corollary.

COROLLARY 3 There exists a constabit> 0 such that for any > 0 and anyy € R™ such that|y|| < d,
A(UB(0, 3vnd)), UB(y, 3v/nd))) <1 -4,
whereU (-) denotes the uniform distribution on a set.

PROOF. This statistical distance is exactly the volume of the symmetric difference of two balls divided by
the sum of their volumes. According to the above lemma, this is bounded away fidm

REMARK 2 Forany constantand any < c¢v/log n, the right hand side of the expression in Lemma 2 is still
greater than somg/poly(n). Using this, one can obtain the improved residbCVPcW € COAM.

1.3 Working with periodic distributions

In the informal description above, we talked about the ‘uniform distribution’ on the lattice. This is clearly
not defined. One possible solution is to restrict our attention to some large enough-¢ibg|". While
possible, this solution introduces some technical annoyances as one has to argue that the probability to fall
too close to the boundary of the cube (where the protocol might behave badly) is small.

Instead, our solution will be to work with only one period of the distribution. To demonstrate this
approach, let us first consider the one-dimensional case. Assume we want to represent the distribution
intuitively described as follows: choose a random point farZ and add to it a number chosen uniformly
from [—0.1,0.1]. The first solution above would require us to take some large segment-3890, 1000},
and to restrict our distribution on it. Instead, we take one period of the distribution, say the sé@2ept
and consider the distribution on it. Hence, we obtain the uniform distributiolo,onl] U [27 — 0.1, 27].

Notice that we could take another period, say the segfrent, 0], and work with it instead. Crucially, the
transformation from one representation to another can be performed efficiently (in this case, by subtracting
or adding2m).

A similar idea works for higher dimensions. If we want to represent a periodic distribution on a lattice,
we consider it as a distribution on some period, $2¢3) for some basid3. As before, we have several
possible representation, depending on the choice of iasife transformation from a representation using
B to one usingB; can be done efficiently by reducing points mod#0B2). Mathematically speaking,
the objects we work with are distributions on the quotiRihf £(B), andP(B) is its set of representatives.

We emphasize that it is much easier to imagine ‘periodic distribution® anHowever, technically, it
is much easier to work with distributions W B).
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1.4 The protocol

We now prove Theorem 1. First, recall the following definition.
DEFINITION 4 For z € R”, x mod P(B) is the uniquey € P(B) such thatr — y € £(B).

The AM protocol:

1. Arthur selectss € {0, 1} uniformly and a random pointin the ball B(0, /nd). He then sends
x = (ov +t) mod P(B) to Merlin.

2. Merlin checks ifdist(z, £(B)) < dist(z,v + £(B)). If so, he responds with = 0; otherwise, he
responds withr = 1.

3. Arthur accepts if and only if = o.

REMARK 3 For simplicity, we ignore issues of finite precision; these can be dealt with by standard tech-
niques. One issue that we do want to address is how to choose a point from ti#®akll) uniformly

at random. One option is to use known algorithms for sampling (almost) uniformly from arbitrary convex
bodies, and apply them to the case of a ball. A simpler solution is the following. "Takdependent
samplesyy, ..., v, € R from the standard normal distribution and lebe the vectofvy,...,v,) € R™.
Thenw is distributed according to the standarddimensional Gaussian distribution, which is rotationally
invariant. Now, choose from the distribution orj0, R] whose probability density function is proportional

to r»~1 (this corresponds to the — 1-dimensional surface area of a sphere of radjug he vectorﬁv is

distributed uniformly inB(0, R).
CLAIM 4 (CoMPLETENESY If dist(v, £(B)) > /nd then Arthur accepts with probability 1.
PROOF. Assumes = 0. Then
dist(z, £(B)) = dist(t, L(B)) < ||¢]| < %\/ﬁd.

On the other hand,

dist(z,v + L(B)) = dist(t,v + L(B)) = dist(t — v, L(B)) > dist(v, L(B)) — ||t]| > %\/ﬁd.
Hence, Merlin answers correctly and Arthur accepts. The ¢asd is similar. O
CLAIM 5 (SOUNDNESS If dist(v, £(B)) < d then Arthur rejects with some constant probability.
PROOF. Let y be the difference betweenand its closest lattice point. Spis such thaty — y € L(B)
and|ly|| < d. Letnq be the uniform distribution ol (0, /nd) and lety; be the uniform distribution on
B(y, %\/ﬁd). Notice that the point Arthur sends can be equivalently seen as a point chosef freduced
moduloP(B). Accordingly to Corollary 3A(ng, n1) is smaller tharl — §. Hence,

A(rno mod P(B),m mod P(B)) < A(no,m) <1—46

and Arthur rejects with probability at lea&t O



2 NP-hardness

In this section we show that, based on the following theorem ofddpCVP  is unlikely to beNP-hard,
even under Cook reductions.

THEOREM6 GapCVP 5 € NP coNP

A similar proof shows that, based on TheorenGipCVPm is unlikely to beNP-hard. However,

for simplicity, we show this only for §/n gap.

First, let us consider the simpler case of Karp reductions. If a problemNi?is NP-hard under a Karp
reduction (i.e., there is a many-to-one reduction from SAT to our problem) then the following easy claim
shows thatNP C coNP (and hence the polynomial hierarchy collapses).

CLAIM 7 If a promise problenil = (IIygs, IIno) is in coNPand isNP-hard under Karp reductions, then
NP C coNP.

PROOF. Take any languagé in NP. By assumption, there exists an efficient procedRriat maps any
x € Lto R(z) € Ilygs and anyz ¢ L to R(x) € IIyo. Sincell € coNP, we have arNP verifier VV such
that for anyy € IIyo there exists a such thal/(y, w) accepts, and for any € IIygs and anyw, V (y, w)
rejects. Consider the verifiéf(x,w) given byV (R(z),w). Notice that for allc ¢ L there exists a» such
thatU (z, w) accepts and moreover, for alle L and allw U (z, w) rejects. Hencel, € coNP. O

The case of Cook reductions requires some more care. For starters, there is nothing special about a
problem incoNPthat is NP-hard under Cook reductions (for exampéSAT is such a problem). Instead,
we would like to show that if a problem iIRP N coNPis NP-hard under Cook reductions, the polynomial
hierarchy collapses. This implication is not too difficult to showtfatal problems (i.e., languages). How-
ever, we are dealing withromiseproblems and for such problems this implication is not known to hold
(although still quite believable). In a nutshell, the difficulty arises because a Cook reduction might perform
queries that are neitherv&s instance nor alo instance and for such queries we have no witness.

This issue can be resolved by using the fact that not GalyCVP . € NP but alsoCVP € NP. In
other words, no promise is needed in order to show that a point is close to the lattice. In the following, we
show that any problem with the above properties is unlikely to be NP-hard.

LEMMA 2 LetIl = (Ilygs, IIno) be a promise problem and I&fyayge denote all instances outside
ITygsUIINo. Assume thdil is in coNPand that the (non-promise) probleiit = (ITygsUIlumayBsEe, IINO)

is in NP. Then, ifII is NP-hard under Cook reductions th&#P C coNP and the polynomial hierarchy
collapses.

PROOF. Take any languagé in NP. By assumption, there exists a Cook reduction frorto II. That
is, there exists a polynomial time proceddrehat solvesl given access to an oracle fol. The oracle
answersres on queries imllygs andNoO on queries idlyo. Notice, however, that its answers on queries
from IIyyaygE are arbitrary and should not affect the outpuffof

Sincell € coNP, there exists a verifier; and a witness; (x) for everyz € IIyo such thafl; accepts
(z,w1(z)). Moreover,V; rejects(z, w) for anyx € Ilygg and anyw. Similarly, sincell’ € NP, there
exists a verifiel; and a witnessv, () for everyx € Ilygs U IIyayse such thatl; acceptyz, wa(x)).
Moreover,V; rejects(x, w) for anyz € IIno and anyw.

We now show thaL is in coNPby constructing afNP verifier. Let® be an inputtd. and letxy, ...,z
be the set of oracle queries whi€hperforms on inputb. Our witness consists d@f pairs, one for each;.
For z; € IIyo we include the pai(NO,w;(z;)) and forz; € Ilygs U IIyayge We include the pair
(YES,wa(x;)). The verifier simulated”; for each queryr; thatT' performs, the verifier reads the pair
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corresponding te; in the witness. If the pair is of the forfvEs, w) then the verifier checks th&t (x;, w)
accepts and then returngs to 7. Similarly, if the pair is of the form{NO, w) then the verifier checks that
Vi(x;, w) accepts and then return® to 7'. If any of the calls tol; or V5 rejects, then the verifier rejects.
Finally, if T' decides tha® € L, the verifier rejects and otherwise it accepts.

The completeness follows easily. More specificallypif¢ L then the witness described above will
cause the verifier to accept. In order to prove soundness, assuniedhhatand let us show that the verifier
rejects. Notice that for each query € TIyo the witness must include a pair of the fofmo, w) because
otherwisel, would reject. Similarly, for each queny; € Tlygs the witness must include a pair of the form
(YES, w) because otherwisi, would reject. This implies thaf' receives the correct answers for all of its
queries insiddIno U ITygg and must therefore output the correct answer, i.e., ¢hat L. and then the
verifier rejects 0
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