
Tel Aviv University, Fall 2004
Lattices in Computer Science

Lecture 3
CVP Algorithm

Lecturer: Oded Regev
Scribe: Eyal Kaplan

In this lecture, we describe an approximation algorithm to the Closest Vector Problem (CVP).
This algorithm, known as theNearest Plane Algorithm, was developed by L. Babai in 1986. It
obtains a2(2√

3
)n

approximation ratio, wheren is the rank of the lattice. In many applications, this
algorithm is applied for a constantn; in such cases, we obtain a constant approximation factor.

One can define approximate-CVP as a search problem, as an optimization problem, or as a
decision problem (where the latter is often known as agapproblem). In the following definitions,
γ ≥ 1 is the approximation factor. By settingγ = 1 we obtain the exact version of the problems.

DEFINITION 1 (CV Pγ , SEARCH) Given a basisB ∈ Zm×n and a pointt ∈ Zm, find a point
x ∈ L(B) such that∀y ∈ L(B), ‖x− t‖ ≤ γ‖y − t‖.

DEFINITION 2 (CV Pγ , OPTIMIZATION) Given a basisB ∈ Zm×n and a pointt ∈ Zm, findr ∈ Q
such thatdist(t,L(B)) ≤ r ≤ γ · dist(t,L(B)).

DEFINITION 3 (CV Pγ , DECISION) Given a basisB ∈ Zm×n, a pointt ∈ Zm andr ∈ Q, decide
if dist(t,L(B)) ≤ r or dist(t,L(B)) > γ · r.

Babai’s nearest plane algorithm solves the search variant ofCV Pγ for γ = 2(2√
3
)n

. It is easy
to see that this implies a solution to the other two variants ofCV Pγ as they are not harder than the
search version. For simplicity, the algorithm we present here achievesγ = 2

n
2 . It is possible to

achieveγ = 2(2√
3
)n

by a straightforward modification of the parameters.

1 The Nearest Plane Algorithm

The algorithm has two main steps. First, it applies the LLL reduction to the input lattice. It then
looks for an integer combination of the basis vectors that is close to the target vectort. This step is
essentially the same as one inner loop in the reduction step of the LLL algorithm.

INPUT: BasisB ∈ Zm×n, t ∈ Zm

OUTPUT: A vectorx ∈ L(B) such that‖x− t‖ ≤ 2
n
2 dist(t,L(B))

1. Runδ-LLL on B with δ = 3
4

2. b ← t
for j = n to 1 do

b← b− cjbj wherecj = d〈b, b̃j〉/〈b̃j , b̃j〉c
Outputt− b

It can be seen that this algorithm runs in polynomial time in the input size; indeed, the LLL
procedure runs in polynomial time and the reduction step was already analyzed in the previous
class. Notice that unlike our description of the LLL algorithm, here we consider the algorithm for
arbitrary lattices that are not necessarily full-rank. This will, in fact, make our analysis slightly
easier.

A useful way to imagine the second step of the algorithm is the following. Consider the or-
thonormal set given bỹb1/‖b̃1‖, . . . , b̃n/‖b̃n‖. For full-rank lattices (i.e.,m = n) this is a basis but

1

in general, we need to extend it withm − n additional vectors to make it an orthonormal basis of
Rm. Using such a basis, we can now write the matrixB and the vectort as follows.




‖b̃1‖ ∗ · · · ∗
0 ‖b̃2‖ · · · ∗
...

...
...
∗

0 · · · ‖b̃n‖
0 · · · 0
... · · · ...
0 · · · 0







∗
∗
...
∗
∗
∗
...
∗




The algorithm looks for an integer combination of the columns for which each coordinatei =
1, . . . , n is within ±1

2‖b̃i‖ of the ith coordinate oft. So our algorithm first finds a multiple of
the nth matrix column that brings thenth coordinate to within±1

2‖b̃n‖. It then continues to the
n− 1st column and so on. Notice that in case the lattice is not full-rank, the lastm− n dimensions
correspond to the space orthogonal to the span of the lattice.

We now consider another equivalent description of the second step. This description is recursive
and will be the most convenient for our analysis. It emphasizes the geometric nature of the nearest
plane algorithm and also explains its name. See Figure 1 for an illustration.











‖b̃3‖
t = s

b1

b2

b3b̃3

t

s b1

b2

Figure 1: The nearest plane algorithm for a rank 3 lattice and the resulting rank 2 instance. The
chosen hyperplanes are thicker.

1. Let s be the projection oft on span(b1, . . . , bn).

2. Find c such that the hyperplanecb̃n + span(b1, . . . , bn−1) is as close as possible tos.

3. Let s′ = s− cbn. Call recursively withs′ andL(b1, . . . , bn−1). Let x′ be the answer.

4. Returnx = x′ + cbn.

It is easy to verify that the above is indeed equivalent to the second step of the algorithm. Our
first step is to projectt on span(b1, . . . , bn). Some thought reveals that the closest lattice vector to
s is the same as the closest lattice vector tot and hence this step makes sense. In Step 2 we identify
one translate of the latticeL(b1, . . . , bn−1) where we suspect that the closest vector tos resides. It
is on this translate that we recurse in Step 3. More precisely, in Steps 3 and 4 we compute a close

2

vector tos in cbn +L(b1, . . . , bn−1). Since the latter set is not a lattice (it does not contain the zero
vector), we shift it (together withs) by−cbn. Then, when we obtain the answerx′, we shift it back
by cbn. Hence, the answerx is indeed a close vector tos in cbn + L(b1, . . . , bn−1).

2 Correctness of the Algorithm

We first notice that the algorithm never returns points that are too far away from the input point (for
the case wheret ∈ span(B)). This follows easily from the matrix description above since each
coordinatei of the output is within±1

2‖b̃i‖ of that oft.

CLAIM 4 For anyt ∈ span(B), the outputx of the algorithm is such that‖x−t‖2 ≤ 1
4

∑n
i=1 ‖b̃i‖2

.

SinceB is LLL-reduced, we obtain the following.

CLAIM 5 For anyt ∈ span(B), the outputx of the algorithm is such that‖x− t‖ ≤ 1
22n/2‖b̃n‖.

PROOF: By properties of an LLL reduced basis, we have that

∀1 ≤ i ≤ n, ‖b̃i‖ ≤ 2
n−i
2 ‖b̃n‖

and hence

‖x− t‖2 ≤ 1
4

n∑

i=1

‖b̃i‖2 ≤ 1
4

n∑

i=1

2n−i‖b̃n‖2 ≤ 1
4
2n‖b̃n‖2.

2

The above claim shows that whendist(t,L(B)) ≥ 1
2‖b̃n‖, the output of the algorithm is a2n/2

approximation to CVP. However, we still need to handle the case wheret is very close to the lattice
(and also the case wheret /∈ span(B)). This is done in the following lemma, which completes the
proof of correctness.

LEMMA 6 For any t ∈ Zm, let y ∈ L(B) be the closest lattice point to t. Then the algorithm
described above finds a pointx ∈ L(B) such that‖x− t‖ ≤ 2

n
2 ‖y − t‖.

PROOF: We prove by induction on the rankn that our algorithm finds a pointx ∈ L(B) such that
‖x− s‖ ≤ 2

n
2 ‖y − s‖. This yields the claim, since

‖x− t‖2 = ‖s− t‖2 + ‖s− x‖2

≤ ‖s− t‖2 + 2n‖y − s‖2

≤ 2n(‖s− t‖2 + ‖y − s‖2) = 2n‖y − t‖2

where the first equality follows sinces − t ands − x are orthogonal and the last equality follows
similarly.

Now distinguish two cases. If‖s− y‖ < ‖b̃n‖
2 , theny ∈ cb̃n + span(b1, . . . , bn−1), because all

other hyperplanes are of distance at least‖b̃n‖
2 . Therefore,y ∈ cbn + L(b1, . . . , bn−1). Intuitively,

3

this means that we identified the correct translate in Step 2. So we obtain thaty′ = y − cbn ∈
L(b1, . . . , bn−1) is the closest point tos′. Hence, by our inductive assumption,

‖x− s‖ = ‖x′ − s′‖
≤ 2

n−1
2 ‖y′ − s′‖

= 2
n−1

2 ‖y − s‖
≤ 2

n
2 ‖y − s‖.

Otherwise, we must have that‖s − y‖ ≥ ‖b̃n‖
2 . In this case, it is possible that we identify the

wrong translate in Step 2. However, by Claim 5, we have that

‖s− x‖ ≤ 1
2
2n/2‖b̃n‖ ≤ 2n/2‖s− y‖.

2

Finally, let us mention the following possible extension to Babai’s algorithm. Instead of iden-
tifying only one translate in Step 2, we take (say) two translates and recurse on both. Such an
extension (slightly) improves the approximation ratio but unfortunately runs in time exponential in
the rank.

4

