Tel Aviv University, Fall 2004 Lecture 5 Lecturer: Oded Regev
Lattices in Computer Science Some basic complexity results Scribe: Ishay Haviv

In this lecture we present some basic computational complexity results related to lattice problems. We
focus mainly on the closest lattice vector problefivP) and its variants.

1 Decision versus Search

Recall that in the closest vector problem we are given a lattice and a target vector (which is usually not in the
lattice) and we are supposed to find the lattice point that is closest to the target point. More precisely, one
can consider three variants of th&/P, depending on whether we have to actually find the closest vector,
find its distance, or only decide if it is closer than some given number:

e Decisional CVP: Given a lattice basi®3 € Z™*", a target vectot € Z™, and a rationat € Q,
determine whethetist(¢, £(B)) < r or not.

e Optimization CVP: Given a lattice basi® € Z"*™ and a target vectare Z™, find dist (¢, L(B)).

e SearchCVP: Given a lattice basi® € Z™*™ and a target vectdre Z™, findx € Z™ that minimizes
|Bx — t||.

It is not difficult to see that a solution to the search variant immediately implies a solution to the op-
timization variant; furthermore, a solution to the optimization variant implies a solution to the decisional
variant. The next lemma shows that the converse also holds, and hence all three variants are in fact polyno-
mially equivalent.

LEMMA 1 SearchCVP can be solved in polynomial time given an oracle that solves decisidfal

PrROOF. Given a basisB = (b1, ...,b,) and a target, our first goal is to determine = dist(¢, L(B))

(in other words, we first solve the optimization variant@fP). The idea is to use binary search. More
precisely, defind? = > | ||b;|| and notice thah < r < R, soR is a (rough) upper bound on the distance.
Moreover, notice that, as thel, distance between two integer points, must be the square root of an integer.
Hence, there are onlR? possible values for. Therefore, a binary search fdist(¢, £(B)) using the
decisionalCVP oracle needs at mo2fog R steps, which is polynomial in the input size.

Now that we found- = dist(¢, £(B)), our goal is to find the closest vector#toOur first observation is
that it is enough to find the closest lattice vector to any point of the fotm wherev € £(B) (since we
can then easily subtractfrom the answer to obtain the closest vectot)tdn order to do this, we apply an
iterative procedure that makes the lattice sparser and sparser. Eventually, the lattice is so sparse that we can
compute the closest vectortalirectly in polynomial time.

We now describe one iterative step in detail. Its input is a(@rt’) satisfying thatC(B’) is a sublattice
of the original latticeC(B), ¢’ is of the form¢ + v for somev € L(B), anddist(¢', £L(B’)) = r. Define
B" = {2v},b),...,b),} and notice that(B") is a sublattice ofZ(B’) (containing ‘half the points’). Call
the decisionaCVP oracle with the inputB”, ¢, r) to see ifdist(¢', £(B")) < r. If the oracle returnSEs,
we continue in the next iteration with the pa8”, t” = t’). Otherwise, we continue withB”,t” = t'—1/).

We claim that the outputB”,t”) satisfies the three invariants mentioned above. FisB”) is a
sublattice of£(B’) and hence also af(B). Second¢” is eithert’ or ¢’ — b/, and both are of the form+ v
for somev € £(B). Third, let us show thadist(t”, £(B")) = r. If the oracle returnsEs this is obvious.
Otherwise, notice that(B’) = L(B") U (L(B") +b}) so it must be the case thdist (¢, L(B") + b)) = r.
But this is equivalent taist (¢’ — b}, £L(B")) = r and we are done.

We now continue with the description of the algorithm. We apply the above iterativé step+ log r
times starting with B, t). We then apply a similar process to each of the other1 basis vectors (that is,
instead ofb;). Eventually, aftemk steps, we obtain a paji3*, t*) where B* = (2¥by,...,2"b,). By the

invariants above, we know thdist(¢*, £(B*)) = r and that™ is of the form¢ + v,u € £(B). Therefore, it
is enough to find the closest vectortto
In order to do this, notice that
M(L(BY)) >2k=2m .y

since each vector ii(B*) is an integer vector all of whose coordinates are a multip# ofn other words,
the distance between any two vector(if3*) is at least™ - r. Therefore, the second closest vectot'to
in £(B*) must be of distance at least

oM —p >l

Finally, we apply Babai'€VP approximation algorithm t¢* and B* (see Lecture 3). Since the approxima-
tion factor is better tha@™~!, this approximately closest vector must in fact be the closest vectéraod
we are doneld

Interestingly, it is not known how to generalize the above reduction to the approximation version of
CVP. To demonstrate one main difficulty, assume we are given an oracle that gives a 2-approximation to
decisionalCVP (more precisely, the oracle solves the promise problem described later in this lecture). In
one of the iterative steps, the distance betwéandB” becomeLr but the oracle claims that this distance
is still » (as it is allowed to do). We are therefore led to believe that we can continue with thgjaif).

After several more iterations, the oracle ‘suddenly’ decides to tell us the truth: the distance between the
point and the lattice is in fa@r. At this point, we realize we did something wrong, but it seems impossible

to correct things as we don’t know which step is the one that caused the distance to increaséoffom

As we continue, the same thing can happen again and again, as the distance incrégsesand so on
without us being able to do anything about it.

In the next section we show that decisio&IP is anNP-complete problem. Given this fact, the reader
might now wonder: isn’t the above lemma obvious? Indeed, using an oracle to dec{Siuale can solve
any NP problem, and from there it is not difficult to solve seaft¥iP. We argue that the above reduction
has its merits. For instance, assume we had an algorithm that solves dedidifrialtime 2°(v™) (the best
known algorithm require8®(™ time). Then, since the above reduction performs queries whose dimension
is the same as that of the input lattice, we would obtain an algorithm for s€AfBhrunning in time
20(v) On the other hand, a reduction amdxig problems is likely to involve a polynomial blowup in the
dimension, hence leading to an algorithm running in tifie

2 DecisionalCVP is NP-complete

In this part of the lecture we show that decisio@&P is NP-complete.

THEOREM 2 DecisionalCVP is NP-complete.

PROOF. First, we need to show that decisioQAIP is in NP. For any instancéB, ¢, r) such thatlist (¢, £(B)) <

r, letz € L£(B) be a vector that satisfigls: — ¢|| < . We claim thatz can serve as aNP witness. Indeed,
givenz it is easy to verify thatlist(¢, £L(B)) < r (by checking that: € £(B) and||z — t|| < r). Moreover,

we can represent in a polynomial number of bits because it is an integer vector and all its entries are at
most||t|| + r in absolute value.

Second, we prove th&VP is NP-hard by a reduction from the subset-sum problem. Recall that an
instance of the subset-sum problem is givenrby- 1 integersai, as, ..., a,, S and our goal is decide
whether thereisa set C {1,...,n} suchthad _,_, a; = S. Given a subset-sum instance, we reduce it to
the decisionaCVP instance B, ¢,) given by

ap as A, S
2 0 0 1

B=| 0 2 : t= r=+n
: .. 0 :
0 - 02), L/

Clearly, this reduction can be done in polynomial time.

If (a1,a9,...,a,,S) is aYES instance of subset-sum, then there is a4et {1,...,n}, such that
> ica@ = S. Consider the lattice vector obtained by summing the columnB cbrresponding tod.
Its first coordinate is exactly and all remaining coordinates are eitlleor 2. Hence, its distance from
is exactly/n. Conversely, assume there is a lattice paint £(B), such that|t — z| < y/n. By our
construction, the last coordinates ofc must be even. This already means tjiat- x| must be at least
v/n. In order for it to be exactly/n, it must be the case that the first coordinate:a$ S, and all other
coordinates are eithéror 2. Hencex is a sum of a subset of the columns®f and the corresponding set
of indicesA satisfiesy ;. 4 a; = S. O

The above theorem is only presented forthaorm. It is not difficult to generalize it to thg, norm for
anyp > 1, includingp = cc.

One might wonder whether similar methods can be used to provdREompleteness of the Shortest
Vector Problem §VP). It turns out that in the/,, norm, similar methods work [5]. On the other hand,
showing thaSVP in NP-complete in other norms, and in particular thenorm, requires substantially more
work [3, 4, 1].

3 SVP versusCVP

Our aim in this section is to show that for afy> 1, finding y-approximate solutions t8VP is not harder
than findingy-approximate solutions t6VP. At first, this might seem trivial: given a8VP instance, we
can apply a&CVP procedure to it with the target vector taken to be the vettdr moment’s thought reveals
that this does not work, sinceis part of any lattice and hence the closest vectdrig0 itself! Instead, we
could try to make a ‘hole’ in the lattice and then use@wP procedure with the hole as the target point. This
hole need not be the origin; any lattice point is equally good. There is still a problem with this approach: the
set of points obtained by removing one point from a lattice is not a lattice. So, instead of removing just one
point, we are forced to remove a whole set of points so that the remaining set of points feubiatticeof
our lattice. This introduces the possibility that we remove too many points and miss some close-by vectors.
As we will show below, this can be solved by trying several different sublattices, one of which is guaranteed
to reveal the desired short vector.

Before proving this result, let us recall some definitions. All three varianf3/éf mentioned above can
be generalized to the approximation setting, but for our purposes, it is enough to consider the generalization
of decisionalCVP. This generalization is a promise problem knownGapCVP, wherey > 1 is some
approximation factor. Recall that a promise problem is a fdifes, [Ino). We say that an algorithm
solves the promise problefilygs, IIno) if for any input instancd € I1ygs U IIno, it decides correctly
whetherl € TIygg or I € TIno. Unlike (total) decision problemd]ygs U IIyo need not include all
possible input strings.

DEFINITION 1 (GapCVP,) The input consists d8 € Z™*",t € Z™ andr € Q.

e In YESinputs, we havéist(t, L(B)) <.

e In NO inputs, we havéist(¢, L(B)) > v - r.

Notice thatGapCVP, is exactly decisionalVP. Let us also define the corresponding analogue of the
shortest vector problem.

DEFINITION 2 (GapSVP,) The input consists af € Z™*" andr € Q.
e In YESinputs,\i(L(B)) < r.

e In NOinputs, we have\; (L(B)) > v - r.

THEOREM3 Foranyy > 1, given access to@apCVP,, oracle, it is possible to solveapSVP., in polyno-
mial time.

PROOF. We describe an algorithm that solvéspSVP., using aGapCVP,, oracle. Let(B,r) be the given
GapSVP, instance. We construct the following GapCVP,, instances: foi = 1,...,n, theith instance
consists of the basi®; = (b1,...,bi—1,2b;,b;11,...,by,), the target vectob;, and the distance. The
algorithm applies the oracle to each of these instances. It ret®i§ the oracle returnyes for at least
one of the instances, amwb otherwise.

We now prove the correctness of the algorithm. Assimgr) is aNo instance, i.e.\ (L(B)) > v - .
In other words, any nonzeroe £(B) satisfieg|v|| > ~ - r. For eachv € £(B;), we havev — b; € L(B)
andv — b; # 0. So for eachv € L(B;) we see thaflv — b;|| > ~ - . Thus we conclude that the oracle
answersNo on each of they instances.

Now assume that, (L(B)) < r. Letwv be the shortest lattice vector, §o|| < r and write

v = a1by + agby + - - - + a,by,

for some integersy, ..., a,. Atleast one of the;s is odd, since otherwise/2 would also be inf(B) in
contradiction to the minimality ofv||. Let & be an index such thaf, is odd. Clearlyb;, + v € £(By) and
thus the distance betweépandL(By,) is at most|v|| < r. We conclude that there is at least one input on
which the oracle returnses, as desiredd

The above reduction has several desirable features. For instancgafi-igeservingthat is, the ap-
proximation gapy is maintained precisely. Moreover, it iank-preservingn the sense that it calls the
oracle with lattices whose rank is the same as that of the input lattice. These advantages and others make
it very useful in a variety of other scenarios. One drawback of the reduction is that it is a Cook reduction
(as opposed to the more standard Karp reduction) since it needs to c@Vtheracle several times. It
turns out that based on similar ideas, one can constn@sigdomized<arp reduction, hence giving a partial
answer to this drawback (see the homework). It is an open question whether there eetaaanistic
Karp reduction fronzapSVP,, to GapCVP.,.

References

[1] M. Ajtai. The shortest vector problem ig is NP-hard for randomized reductions (extended abstract)
10-19. InProc. 30th ACM Symp. on Theory of Computing (ST@&yes 10-19. ACM, 1998.

[2] O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert. Approximating shortest lattice vectors is not
harder than approximating closest lattice vectéméorm. Process. Lett71(2):55-61, 1999.

[3] S. Khot. Hardness of approximating the shortest vector problem in lattic€otn 45th Annual IEEE
Symp. on Foundations of Computer Science (FOg&)es 126-135. IEEE, 2004.

4

[4] D. Micciancio. The shortest vector problem is NP-hard to approximate to within some corgitant.
Journal on Computing30(6):2008—2035, Mar. 2001. Preliminary version in FOCS 1998.

[5] P. van Emde Boas. Another NP-complete problem and the complexity of computing short vectors in
a lattice. Technical report, University of Amsterdam, Department of Mathematics, Netherlands, 1981.
Technical Report 8104.

