
Tel Aviv University, Fall 2004
Lattices in Computer Science

Lecture 5
Some basic complexity results

Lecturer: Oded Regev
Scribe: Ishay Haviv

In this lecture we present some basic computational complexity results related to lattice problems. We
focus mainly on the closest lattice vector problem (CVP) and its variants.

1 Decision versus Search

Recall that in the closest vector problem we are given a lattice and a target vector (which is usually not in the
lattice) and we are supposed to find the lattice point that is closest to the target point. More precisely, one
can consider three variants of theCVP, depending on whether we have to actually find the closest vector,
find its distance, or only decide if it is closer than some given number:

• DecisionalCVP: Given a lattice basisB ∈ Zm×n, a target vectort ∈ Zm, and a rationalr ∈ Q,
determine whetherdist(t,L(B)) ≤ r or not.

• Optimization CVP: Given a lattice basisB ∈ Zm×n and a target vectort ∈ Zm, find dist(t,L(B)).

• SearchCVP: Given a lattice basisB ∈ Zm×n and a target vectort ∈ Zm, findx ∈ Zn that minimizes
‖Bx− t‖.

It is not difficult to see that a solution to the search variant immediately implies a solution to the op-
timization variant; furthermore, a solution to the optimization variant implies a solution to the decisional
variant. The next lemma shows that the converse also holds, and hence all three variants are in fact polyno-
mially equivalent.

LEMMA 1 SearchCVP can be solved in polynomial time given an oracle that solves decisionalCVP.

PROOF: Given a basisB = (b1, . . . , bn) and a targett, our first goal is to determiner = dist(t,L(B))
(in other words, we first solve the optimization variant ofCVP). The idea is to use binary search. More
precisely, defineR =

∑n
i=1 ‖bi‖ and notice that0 ≤ r ≤ R, soR is a (rough) upper bound on the distance.

Moreover, notice thatr, as thel2 distance between two integer points, must be the square root of an integer.
Hence, there are onlyR2 possible values forr. Therefore, a binary search fordist(t,L(B)) using the
decisionalCVP oracle needs at most2 log R steps, which is polynomial in the input size.

Now that we foundr = dist(t,L(B)), our goal is to find the closest vector tot. Our first observation is
that it is enough to find the closest lattice vector to any point of the formt + v wherev ∈ L(B) (since we
can then easily subtractv from the answer to obtain the closest vector tot). In order to do this, we apply an
iterative procedure that makes the lattice sparser and sparser. Eventually, the lattice is so sparse that we can
compute the closest vector tot directly in polynomial time.

We now describe one iterative step in detail. Its input is a pair(B′, t′) satisfying thatL(B′) is a sublattice
of the original latticeL(B), t′ is of the formt + v for somev ∈ L(B), anddist(t′,L(B′)) = r. Define
B′′ = {2b′1, b

′
2, . . . , b

′
n} and notice thatL(B′′) is a sublattice ofL(B′) (containing ‘half the points’). Call

the decisionalCVP oracle with the input(B′′, t′, r) to see ifdist(t′,L(B′′)) ≤ r. If the oracle returnsYES,
we continue in the next iteration with the pair(B′′, t′′ = t′). Otherwise, we continue with(B′′, t′′ = t′−b′1).

We claim that the output(B′′, t′′) satisfies the three invariants mentioned above. First,L(B′′) is a
sublattice ofL(B′) and hence also ofL(B). Second,t′′ is eithert′ or t′ − b′1, and both are of the formt + v
for somev ∈ L(B). Third, let us show thatdist(t′′,L(B′′)) = r. If the oracle returnsYES this is obvious.
Otherwise, notice thatL(B′) = L(B′′)∪ (L(B′′)+ b′1) so it must be the case thatdist(t′,L(B′′)+ b′1) = r.
But this is equivalent todist(t′ − b′1,L(B′′)) = r and we are done.

We now continue with the description of the algorithm. We apply the above iterative stepk = n + log r
times starting with(B, t). We then apply a similar process to each of the othern − 1 basis vectors (that is,
instead ofb1). Eventually, afternk steps, we obtain a pair(B∗, t∗) whereB∗ = (2kb1, . . . , 2kbn). By the

1



invariants above, we know thatdist(t∗,L(B∗)) = r and thatt∗ is of the formt + v,v ∈ L(B). Therefore, it
is enough to find the closest vector tot∗.

In order to do this, notice that
λ1(L(B∗)) ≥ 2k = 2n · r

since each vector inL(B∗) is an integer vector all of whose coordinates are a multiple of2k. In other words,
the distance between any two vectors inL(B∗) is at least2n · r. Therefore, the second closest vector tot∗

in L(B∗) must be of distance at least
2n · r − r ≥ 2n−1 · r.

Finally, we apply Babai’sCVP approximation algorithm tot∗ andB∗ (see Lecture 3). Since the approxima-
tion factor is better than2n−1, this approximately closest vector must in fact be the closest vector tot∗ and
we are done.2

Interestingly, it is not known how to generalize the above reduction to the approximation version of
CVP. To demonstrate one main difficulty, assume we are given an oracle that gives a 2-approximation to
decisionalCVP (more precisely, the oracle solves the promise problem described later in this lecture). In
one of the iterative steps, the distance betweent′ andB′′ becomes2r but the oracle claims that this distance
is still r (as it is allowed to do). We are therefore led to believe that we can continue with the pair(B′′, t′).
After several more iterations, the oracle ‘suddenly’ decides to tell us the truth: the distance between the
point and the lattice is in fact2r. At this point, we realize we did something wrong, but it seems impossible
to correct things as we don’t know which step is the one that caused the distance to increase fromr to 2r.
As we continue, the same thing can happen again and again, as the distance increases to4r, 8r and so on
without us being able to do anything about it.

In the next section we show that decisionalCVP is anNP-complete problem. Given this fact, the reader
might now wonder: isn’t the above lemma obvious? Indeed, using an oracle to decisionalCVP we can solve
anyNP problem, and from there it is not difficult to solve searchCVP. We argue that the above reduction
has its merits. For instance, assume we had an algorithm that solves decisionalCVP in time2O(

√
n) (the best

known algorithm requires2O(n) time). Then, since the above reduction performs queries whose dimension
is the same as that of the input lattice, we would obtain an algorithm for searchCVP running in time
2O(

√
n). On the other hand, a reduction amongNP problems is likely to involve a polynomial blowup in the

dimension, hence leading to an algorithm running in time2nc
.

2 DecisionalCVP is NP-complete

In this part of the lecture we show that decisionalCVP is NP-complete.

THEOREM 2 DecisionalCVP is NP-complete.

PROOF: First, we need to show that decisionalCVP is inNP. For any instance(B, t, r) such thatdist(t,L(B)) ≤
r, let x ∈ L(B) be a vector that satisfies‖x− t‖ ≤ r. We claim thatx can serve as anNP witness. Indeed,
givenx it is easy to verify thatdist(t,L(B)) ≤ r (by checking thatx ∈ L(B) and‖x− t‖ ≤ r). Moreover,
we can representx in a polynomial number of bits because it is an integer vector and all its entries are at
most‖t‖+ r in absolute value.

Second, we prove thatCVP is NP-hard by a reduction from the subset-sum problem. Recall that an
instance of the subset-sum problem is given byn + 1 integersa1, a2, . . . , an, S and our goal is decide
whether there is a setA ⊆ {1, . . . , n} such that

∑
i∈A ai = S. Given a subset-sum instance, we reduce it to

the decisionalCVP instance(B, t, r) given by

2



B =




a1 a2 · · · an

2 0 · · · 0

0 2
...

...
...

... ... 0
0 · · · 0 2




(n+1)×n

t =




S
1
1
...
1




(n+1)×1

r =
√

n.

Clearly, this reduction can be done in polynomial time.
If (a1, a2, . . . , an, S) is a YES instance of subset-sum, then there is a setA ⊆ {1, . . . , n}, such that∑

i∈A ai = S. Consider the lattice vector obtained by summing the columns ofB corresponding toA.
Its first coordinate is exactlyS and all remaining coordinates are either0 or 2. Hence, its distance fromt
is exactly

√
n. Conversely, assume there is a lattice pointx ∈ L(B), such that‖t − x‖ ≤ √

n. By our
construction, the lastn coordinates ofx must be even. This already means that‖t − x‖ must be at least√

n. In order for it to be exactly
√

n, it must be the case that the first coordinate ofx is S, and all other
coordinates are either0 or 2. Hence,x is a sum of a subset of the columns ofB, and the corresponding set
of indicesA satisfies

∑
i∈A ai = S. 2

The above theorem is only presented for the`2 norm. It is not difficult to generalize it to thèp norm for
anyp ≥ 1, includingp = ∞.

One might wonder whether similar methods can be used to prove theNP-completeness of the Shortest
Vector Problem (SVP). It turns out that in thè∞ norm, similar methods work [5]. On the other hand,
showing thatSVP in NP-complete in other norms, and in particular the`2 norm, requires substantially more
work [3, 4, 1].

3 SVP versusCVP

Our aim in this section is to show that for anyγ ≥ 1, findingγ-approximate solutions toSVP is not harder
than findingγ-approximate solutions toCVP. At first, this might seem trivial: given anSVP instance, we
can apply aCVP procedure to it with the target vector taken to be the vector0. A moment’s thought reveals
that this does not work, since0 is part of any lattice and hence the closest vector to0 is 0 itself! Instead, we
could try to make a ‘hole’ in the lattice and then use theCVP procedure with the hole as the target point. This
hole need not be the origin; any lattice point is equally good. There is still a problem with this approach: the
set of points obtained by removing one point from a lattice is not a lattice. So, instead of removing just one
point, we are forced to remove a whole set of points so that the remaining set of points forms asublatticeof
our lattice. This introduces the possibility that we remove too many points and miss some close-by vectors.
As we will show below, this can be solved by trying several different sublattices, one of which is guaranteed
to reveal the desired short vector.

Before proving this result, let us recall some definitions. All three variants ofCVP mentioned above can
be generalized to the approximation setting, but for our purposes, it is enough to consider the generalization
of decisionalCVP. This generalization is a promise problem known asGapCVPγ whereγ ≥ 1 is some
approximation factor. Recall that a promise problem is a pair(ΠYES, ΠNO). We say that an algorithm
solves the promise problem(ΠYES, ΠNO) if for any input instanceI ∈ ΠYES ∪ ΠNO, it decides correctly
whetherI ∈ ΠYES or I ∈ ΠNO. Unlike (total) decision problems,ΠYES ∪ ΠNO need not include all
possible input strings.

DEFINITION 1 (GapCVPγ) The input consists ofB ∈ Zm×n, t ∈ Zm andr ∈ Q.

• In YES inputs, we havedist(t,L(B)) ≤ r.

3



• In NO inputs, we havedist(t,L(B)) > γ · r.

Notice thatGapCVP1 is exactly decisionalCVP. Let us also define the corresponding analogue of the
shortest vector problem.

DEFINITION 2 (GapSVPγ) The input consists ofB ∈ Zm×n andr ∈ Q.

• In YES inputs,λ1(L(B)) ≤ r.

• In NO inputs, we haveλ1(L(B)) > γ · r.

THEOREM 3 For anyγ ≥ 1, given access to aGapCVPγ oracle, it is possible to solveGapSVPγ in polyno-
mial time.

PROOF: We describe an algorithm that solvesGapSVPγ using aGapCVPγ oracle. Let(B, r) be the given
GapSVPγ instance. We construct the followingn GapCVPγ instances: fori = 1, . . . , n, the ith instance
consists of the basisBi = (b1, . . . , bi−1, 2bi, bi+1, . . . , bn), the target vectorbi, and the distancer. The
algorithm applies the oracle to each of these instances. It returnsYES if the oracle returnsYES for at least
one of the instances, andNO otherwise.

We now prove the correctness of the algorithm. Assume(B, r) is aNO instance, i.e.,λ1(L(B)) > γ · r.
In other words, any nonzerov ∈ L(B) satisfies‖v‖ > γ · r. For eachv ∈ L(Bi), we havev − bi ∈ L(B)
andv − bi 6= 0. So for eachv ∈ L(Bi) we see that‖v − bi‖ > γ · r. Thus we conclude that the oracle
answersNO on each of then instances.

Now assume thatλ1(L(B)) ≤ r. Let v be the shortest lattice vector, so‖v‖ ≤ r and write

v = a1b1 + a2b2 + · · ·+ anbn

for some integersa1, . . . , an. At least one of theais is odd, since otherwisev/2 would also be inL(B) in
contradiction to the minimality of‖v‖. Let k be an index such thatak is odd. Clearlybk + v ∈ L(Bk) and
thus the distance betweenbk andL(Bk) is at most‖v‖ ≤ r. We conclude that there is at least one input on
which the oracle returnsYES, as desired.2

The above reduction has several desirable features. For instance, it isgap-preserving, that is, the ap-
proximation gapγ is maintained precisely. Moreover, it isrank-preservingin the sense that it calls the
oracle with lattices whose rank is the same as that of the input lattice. These advantages and others make
it very useful in a variety of other scenarios. One drawback of the reduction is that it is a Cook reduction
(as opposed to the more standard Karp reduction) since it needs to call theCVP oracle several times. It
turns out that based on similar ideas, one can construct arandomizedKarp reduction, hence giving a partial
answer to this drawback (see the homework). It is an open question whether there exists adeterministic
Karp reduction fromGapSVPγ to GapCVPγ .

References

[1] M. Ajtai. The shortest vector problem inl2 is NP-hard for randomized reductions (extended abstract)
10-19. InProc. 30th ACM Symp. on Theory of Computing (STOC), pages 10–19. ACM, 1998.

[2] O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert. Approximating shortest lattice vectors is not
harder than approximating closest lattice vectors.Inform. Process. Lett., 71(2):55–61, 1999.

[3] S. Khot. Hardness of approximating the shortest vector problem in lattices. InProc. 45th Annual IEEE
Symp. on Foundations of Computer Science (FOCS), pages 126–135. IEEE, 2004.

4



[4] D. Micciancio. The shortest vector problem is NP-hard to approximate to within some constant.SIAM
Journal on Computing, 30(6):2008–2035, Mar. 2001. Preliminary version in FOCS 1998.

[5] P. van Emde Boas. Another NP-complete problem and the complexity of computing short vectors in
a lattice. Technical report, University of Amsterdam, Department of Mathematics, Netherlands, 1981.
Technical Report 8104.

5


