
Introduction to Cryptography
Courant, Fall 2018 Homework 4

Instructor: Oded Regev
Student: YOUR NAME HERE

Homework is due by 11pm of Oct 8. Send by email to both “regev” (under the cs.nyu.edu domain)
and “des480” (under the nyu.edu domain) with subject line “CSCI-GA 3210 Homework 4” and name the
attachment “YOUR NAME HERE HW4.tex/pdf”. There is no need to print it. Start early!

1. (3 points) (Rabin’s permutation) Assume p, q ≡ 3 (mod 4). Does Rabin’s function remain one way
when its domain is restricted to QR∗N (and so becomes a one way permutation)?

2. (PRGs.)1 A (deterministic) function G : {0, 1}∗ → {0, 1}∗ is called a pseudorandom generator (PRG)
with output length `(n) > n if

1. G can be computed by a PPT algorithm,

2. ∀n, x ∈ {0, 1}n, |G(x)| = `(n), and

3. {G(Un)} is computationally indistinguishable from U`(n), the uniform distribution on `(n) bits.

Prove or disprove (giving the simplest counterexample you can find) the following statements. In
constructing a counterexample, you may assume the existence of another OWF / PRG.

(a) (4 points) Let G be a PRG with output length `(n) > n. The function G′(s) = G(s)⊕(s|0`(|s|)−|s|)
is a PRG, where | denotes concatenation. I need a hint! (ID 99102)

(b) (4 points) For a PRG f , define g(x) = f(x)|f(x̄), where x̄ is the bit-wise negation of x. Then g is
a PRG.

(c) (5 points) A PRG G with output length `(n) = 2n is itself a one-way function. I need a hint! (ID
15489)

(d) (4 points) (extra credit) A PRG G with output length `(n) = n + 1 is itself a one-way function. I
need a hint for 1 points! (ID 19634)

3. (a) (2 points) (Computing square roots efficiently modulo prime) Let p > 2 be a prime. Assume we are
given a quadratic residue x ∈ Z∗p and we wish to compute its (two) square roots. Show that when
p ≡ 3 mod 4, this can be done efficiently by computing ±x(p+1)/4, a formula due to Lagrange.
(The case p ≡ 5 mod 8 is a bit more difficult; the case of a general prime can also be done efficiently
but is more involved; feel free to look it up and summarize it here!)

(b) (2 points) (LSB is not hard.1) Show how given a prime p > 2, a generator g of Z∗p, and gx mod p
for an unknown x ∈ {0, . . . , p− 2}, we can efficiently decide if x is odd. (This shows that “least
significant bit” [x is odd] is not a hard-core predicate for the modular exponentiation function
fp,g(x) = gx mod p.)

(c) (2 points) Here is a sketch of an attempt to efficiently compute discrete logs (a problem believed to
be hard). Complete the missing details and identify the bug.

We are given y = gx mod p for an unknown x ∈ {0, . . . , p − 2}. Write x =
∑dlog pe

j=0 2jbj in its
binary expansion. Efficiently find b0 as above. Let y1 = y/gb0 and notice that it is a quadratic
residue. Compute the square root of y1, and continue recursively to recover all the bits of x.

4. (2 points) ♣ (Using hard core predicates to construct PRGs) We say that an efficiently computable
function h : {0, 1}∗ → {0, 1} is hard-core for a function f if for all non-uniform PPT algorithms A,

Pr
x←{0,1}n

[A(f(x)) = h(x)] ≤ 1

2
+ negl(n) .

1A question from Peikert’s class

http://www.cims.nyu.edu/~regev/teaching/crypto_fall_2018/
http://www.cims.nyu.edu/~regev/
http://www.cims.nyu.edu/~regev/cgi-bin/hints/index.html?99102
http://www.cims.nyu.edu/~regev/cgi-bin/hints/index.html?15489
http://www.cims.nyu.edu/~regev/cgi-bin/hints/index.html?15489
http://www.cims.nyu.edu/~regev/cgi-bin/hints/index.html?19634
http://www.cims.nyu.edu/~regev/cgi-bin/hints/index.html?19634

Introduction to Cryptography
Courant, Fall 2018 Homework 4

Instructor: Oded Regev
Student: YOUR NAME HERE

Assume we’re able to show that a certain h is hard-core for a one-way permutation f . Suggest a way to
construct a PRG from f and h, and try to think what the analysis would entail. (We’ll do the analysis in
class and in the next homework.)

http://www.cims.nyu.edu/~regev/teaching/crypto_fall_2018/
http://www.cims.nyu.edu/~regev/

