Introduction to Cryptography Instructor: Oded Regev
Courant, Fall 2014 Homework 1 Student: YOUR NAME HERE

Homework is due by noon of Sep 15. Send both TEX and PDF by email to Oded and bring a printed copy to
class. Start early!

Instructions. Solutions must be typeset in IZIEX (a template for this homework is available on the course
web page). Your work will be graded on correctness, clarity, and conciseness. You should only submit work
that you believe to be correct; if you cannot solve a problem completely, you will get significantly more
partial credit if you clearly identify the gap(s) in your solution. It is good practice to start any long solution
with an informal (but accurate) “proof summary” that describes the main idea.

You are expected to read all the hints either before or after submission, but before the next class.

You may collaborate with others on this problem set and consult external sources. However, you must write
your own solutions. You must also list your collaborators/sources for each problem.

1. (Due by noon on Wed, Sep 10.) Send email to Oded (regev at cims) with subject CSCI-GA 3210
student containing (1) a few sentences about yourself and your background (including your de-
partment, graduate program, how long in program), and (2) your comfort level with the following:
mathematical proofs, elementary probability theory, big-O notation and analysis of algorithms, Turing
machines, and P, BPP, NP, and NP-completeness. Please also mention any courses you’ve taken
covering these topics.

2. (5 points) (Shannon) Prove that in any perfectly secret shared-key encryption scheme, || > |M]|.

3. (Perfect secrecy.E]) Prove or disprove (giving the simplest counterexample you can find) the following
statements about perfect secrecy for shared-key encryption. You may use any of the facts from class.

(a) (1 point) There is a perfectly secret encryption scheme for which the ciphertext always reveals 99%
of the bits of the key £ to the adversary.

(b) (2 points) There is an encryption scheme that is not perfectly secure, yet the adversary cannot guess
the key with probability greater than 1/|KC|.

(c) (2 points) In a perfectly secret encryption scheme, the ciphertext is uniformly random. That is, for
every m € M, the probability Pry. gen[Enci(m) = ¢] is the same for every ciphertext ¢ € C.

(d) (5 points) Perfect secrecy is equivalent to the following definition, which says that the adversary
cannot determine which of two messages was encrypted any better than by random guessing.
Formally, for any mg, m; € M, and any function A : C — {0, 1},

[A(Enci(myp)) =b] = .

Pr
k<+Gen, b+{0,1}

(e) (5 points) Perfect secrecy is equivalent to the following definition, which says that the ciphertext
and message are independent (as random variables). Formally, for any probability distribution D
over the message space M and any m € M and ¢ € C,

P =m A Enc =c/=P =m|- P Enc =c.
m<+D, lgeGen [m m k (m> C] m<—rD[m m] m<+D, lgeGen[ k (m) C]
4. (Encryption schemes with a computationally bounded adversary.)

Consider the scenario of an encryption scheme in which Alice wants to send a message to Bob in such a
way that Eve, who monitors the transmission, cannot read the message.

"Based on a question from Peikert’s class
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(a) (1 point) Explain in one sentence why Bob needs to have a secret from Eve.
(b) (1 point) Explain in one or two sentences why Alice needs to have a secret from Eve.

(c) (2 points) Now assume that Eve is computationally bounded (i.e., is restricted to run in polynomial
time in the length of the message). Does Bob still need to have a secret from Eve? Does Alice?
(your feeling for the latter is enough)

[’m done solving and want to know more! (ID 18764)

5. (Working with negligible functions.[]) Recall that a non-negative function v : N — R is negligible if it
decreases faster than the inverse of any polynomial (otherwise, we say that v is non-negligible). More
precisely, v(n) = o(n™°) for every fixed constant ¢ > 0, or equivalently, lim,, ,~, v(n) - n® = 0.

State whether each of the following functions is negligible or non-negligible, and give a brief justification.
In the following, negl(n) denotes some arbitrary negligible function, and poly(n) denotes some arbitrary
polynomial in n. (If you are not comfortable with these notion, read Section 4.2 of Lecture 2 in Peikert’s

notes)
(a) (1 point) v(n) = 1/2100len,
(b) (1 point) v(n) =n" logloglogn, (Compare with the previous item for “reasonable” values of n.)
(¢) (1 point) v(n) = poly(n) - negl(n). (State whether v is always negligible, or not necessarily.)
(d) (1 point) v(n) = (negl(n))'/ Poy(®), (Same instructions as previous item.)
(e) (1 point)
2—n if n is composite
(n) = {100_100 if n is prime.

6. (2 points) (Defining one-way functions.El) Next class we will define the notion of a one-way function.
Informally, this is a function f : {0,1}* — {0, 1}* thatis (1) easy to compute, and (2) hard to invert.

(a) Suggest a way (or ways) to formally define it. After thinking about this question for at least 10
minutes and before writing your solution, click here for some food for thought (ID 19166)
Next, for each of the following functions, say if you think it’s one way according to your definition.
(b) The function that given an n-bit string outputs the same string with its first half zeroed out.
(c) The function f on domain {1,..., N} x {1,..., N} that maps a pair (z, y) to their product xy.
(d) Choose elements aj, ..., a, uniformly from Zy for N = 2" and define f : {0,1}" — Zy by
F(b1,...bn) = D00 bia.
(e) Same as previous part, except a1, . . . , @, are chosen uniformly from Z3.

7. (Error-correcting codes (optional, no credit).) This is a bit off topic, but will give you a glimpse to an
immensely important topic that also dates back to Shannon’s seminal work. These ideas are used in
pretty much all digital communication protocols: cell phones, Internet, satellites, etc.

(a) Assume we choose 2"/2° strings from the set {0, 1}" uniformly at random. Show that with positive
probability (in fact, high probability) the Hamming distance (i.e., number of different coordinates)
between any two strings in the set is more than n/4. [ need a hint! (ID 84542)

*Questions marked with a club are more open-ended and meant to encourage you to think in preparation for next class. You are
not expected to answer correctly. Instead, you are expected to spend time thinking about it.
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(b) Show how Alice can communicate to Bob a message of k bits by sending only n = 20k bits
in such a way that Bob can recover the message even if an adversary flips up to n/8 bits of the
communication. Would simply repeating the message 20 times be good enough?

8. (The group Z,) (Not yet for submission! Included here so you can start thinking about it, and also for
you to get a sense of the level of math expected in this course) Let p be an odd prime.

(a) Find an efficient algorithm that given a € Z; and an integer b > 0 computes ab € Z,,. Can we
simply compute a® as integers and then reduce the result modulo p?

(b) Find an efficient algorithm to check if a given a € Z,, is a quadratic residue.

(c) What fraction of the elements of Z,, are generators? How does it behave asymptotically? (You can
use Wikipedia for the latter)

(d) Describe an efficient algorithm to check if a given g € Z;, is a generator. Assume that the algorithm
is also given a factorization of p — 1. (It is not known how to perform this task efficiently without
this factorization.)

(e) There is a known efficient algorithm that given a number n (in unary) outputs a uniform n-bit prime
p, together with a generator g of Z;. How can that be in light of what we said earlier about the
necessity of the factorization of p — 1?7 Explain the apparent paradox and suggest a solution.
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