Warm-Up Exercise

Find a Fermat witness and a root witness for 341, and a Miller-Rabin witness for 561 (the smallest Carmichael number).

Exercises for Submission

- Recall that the *greatest common divisor* of *a* and *b*, denoted gcd(*a*, *b*), is the largest *d* such that *d*|*a* and *d*|*b* (where *d*|*a* denotes that *d* divides *a*). Consider the following algorithm: Euclid(*a*, *b*): If *b* = 0 return *a*, otherwise return Euclid(*b*, *a* mod *b*).
 - (a) Prove that $gcd(a, b) = gcd(b, a \mod b)$, and that Euclid(a, b) calculates gcd(a, b).
 - (b) Prove that if $a \ge b$ then $a \mod b < a/2$, and conclude that Euclid can be implemented in polynomial running time (in the *input size*).
 - (c) Show that Euclid can be extended to compute two integers x, y such that $x \cdot a + y \cdot b = gcd(a, b)$. Use it to show a polynomial time algorithm Inverse that given n and $m \in \mathbb{Z}_n^*$ outputs the inverse of $m \mod n$ (the unique integer m^{-1} such that $m \cdot m^{-1} = 1 \mod n$).
- 2. (a) Show a polynomial-time algorithm that given three positive integers a, e, n outputs $a^e \mod n$. Hint: Try it first with *e* which is a power of 2.¹
 - (b) A positive integer *n* is a *power* if it is of the form *q^k*, where *q*, *k* are positive integers and *k* > 1. Show a polynomial-time algorithm for determining whether a positive integer *n* is a power.
- 3. (a) Show that $\mathsf{BPP}^{\mathsf{BPP}} = \mathsf{BPP}$.
 - (b) Show that if SAT \in BPP then PH = NP^{RP}.
- 4. Let PP be the set of languages for which there exists a probabilistic polynomial-time Turing machine M, such that for every $x \in L$ the machine M accepts x with probability greater than 1/2, and for every $x \notin L$ the machine M accepts x with probability at most 1/2.
 - (a) Show that BPP is closed under union and intersection and explain why your argument fails for PP.
 - (b) Show that $NP \subseteq PP \subseteq PSPACE$.
- 5. Let $\mathsf{BPP}_{\mathsf{path}}$ be the class of all languages *L* that can be decided by a polynomial-time probabilistic Turing machine with the following properties: For every $x \in L$ at least $\frac{2}{3}$ of the computation paths end with a 'yes'. For every $x \notin L$ at least $\frac{2}{3}$ of the computation paths end with a 'yes'. For every $x \notin L$ at least $\frac{2}{3}$ of the computation paths end with a 'no'. Prove that $\mathsf{NP} \subseteq \mathsf{BPP}_{\mathsf{path}}$.²

¹Analyze the running time in terms of number of multiplications. Be specific about the number of bits each number you store takes.

²A computation path is determined by a sequence of coins. In the standard BPP class, for every input in the language the probability to accept is at least $\frac{2}{3}$, but it does not imply that at least $\frac{2}{3}$ of the computation paths end with 'yes', since they might have different probabilities.