## Warm-Up Exercise

Find a Fermat witness and a root witness for 341, and a Miller-Rabin witness for 561 (the smallest Carmichael number).

## Exercises for Submission

1. Recall that the greatest common divisor of $a$ and $b$, denoted $\operatorname{gcd}(a, b)$, is the largest $d$ such that $d \mid a$ and $d \mid b$ (where $d \mid a$ denotes that $d$ divides $a$ ). Consider the following algorithm:
$\operatorname{Euclid}(a, b)$ : If $b=0$ return $a$, otherwise return Euclid $(b, a \bmod b)$.
(a) Prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$, and that $\operatorname{Euclid}(a, b)$ calculates $\operatorname{gcd}(a, b)$.
(b) Prove that if $a \geq b$ then $a \bmod b<a / 2$, and conclude that Euclid can be implemented in polynomial running time (in the input size).
(c) Show that Euclid can be extended to compute two integers $x, y$ such that $x \cdot a+y \cdot b=$ $\operatorname{gcd}(a, b)$. Use it to show a polynomial time algorithm Inverse that given $n$ and $m \in \mathbb{Z}_{n}^{*}$ outputs the inverse of $m \bmod n$ (the unique integer $m^{-1}$ such that $m \cdot m^{-1}=1 \bmod n$ ).
2. (a) Show a polynomial-time algorithm that given three positive integers $a, e, n$ outputs $a^{e} \bmod n$. Hint: Try it first with $e$ which is a power of $2 .{ }^{1}$
(b) A positive integer $n$ is a power if it is of the form $q^{k}$, where $q, k$ are positive integers and $k>1$. Show a polynomial-time algorithm for determining whether a positive integer $n$ is a power.
3. (a) Show that BPP ${ }^{B P P}=B P P$.
(b) Show that if SAT $\in B P P$ then $P H=N P^{R P}$.
4. Let PP be the set of languages for which there exists a probabilistic polynomial-time Turing machine $M$, such that for every $x \in L$ the machine $M$ accepts $x$ with probability greater than $1 / 2$, and for every $x \notin L$ the machine $M$ accepts $x$ with probability at most $1 / 2$.
(a) Show that BPP is closed under union and intersection and explain why your argument fails for PP.
(b) Show that $N P \subseteq P P \subseteq P S P A C E$.
5. Let $\mathrm{BPP}_{\text {path }}$ be the class of all languages $L$ that can be decided by a polynomial-time probabilistic Turing machine with the following properties: For every $x \in L$ at least $\frac{2}{3}$ of the computation paths end with a 'yes'. For every $x \notin L$ at least $\frac{2}{3}$ of the computation paths end with a 'no'. Prove that NP $\subseteq \mathrm{BPP}_{\text {path. }}{ }^{2}$
[^0]
[^0]:    ${ }^{1}$ Analyze the running time in terms of number of multiplications. Be specific about the number of bits each number you store takes.
    ${ }^{2} \mathrm{~A}$ computation path is determined by a sequence of coins. In the standard BPP class, for every input in the language the probability to accept is at least $\frac{2}{3}$, but it does not imply that at least $\frac{2}{3}$ of the computation paths end with 'yes', since they might have different probabilities.

