
Spring 2008
Computational Complexity

Homework 7
Due 08/07/2008

School of Computer Science
Tel Aviv University

Warm-Up Exercises

1. Solve the quizzes from last week and verify that you understand their solutions.1

2. Let A be a minimization problem. The decision problem Gap-A[α, β] is, given an input x,
decide whether there exists a solution for A of size at most α or every solution is of size at
least β (the other instances are not allowed). Recall that an algorithm is a c-approximation for
A if it finds a solution of size at most c times the optimal one (c > 1). Prove that if there exists
a polynomial-time c-approximation algorithm for A for some c < β

α then Gap-A[α, β] ∈ P.

Exercises for Submission

1. (a) Prove Markov’s inequality. That is, show that if W is a nonnegative random variable
whose expectation is µ then for any a > 0, Pr[W ≥ a] ≤ µ

a .

(b) Let W be a random variable whose expectation is µ > 0 and whose maximal value is at
most 2µ. Prove that for any 0 < ε < 1, Pr[W ≤ (1− ε)µ] ≤ 1− ε

2 .

2. Suppose that a CNF formula has less than nk clauses, each with at least k log2 n distinct
variables. Use the probabilistic method to show that it has a satisfying assignment.

3. Recall that in the weighted MAX-CUT problem, given a graph G = (V, E) and a weight
function w : E → R+, the goal is to determine a cut (S, V \ S) that maximizes the total
weight of the cut’s edges. Consider the following algorithm: Initially, define V1 = V2 = φ.
Then, for each vertex v ∈ V, if Σu∈V2 w(v, u) ≥ Σu∈V1 w(v, u) add v to V1 and otherwise add
it to V2. Finally return the cut (V1, V2).
Prove that this is a 1

2 -approximation algorithm for weighted MAX-CUT, and that it can be
implemented in polynomial running time.

4. (a) Show an undirected connected graph G = (V, E) with n vertices and (n
2) minimum

cuts.

(b) Show an undirected connected graph G = (V, E) with n vertices and exponentially
many maximum cuts. How many minimum cuts does your graph have?

(c) Consider running the contraction algorithm for MIN-CUT until the number of vertices
is reduced to t and then using a cubic-time algorithm to find the min-cut in the con-
tracted graph. Show that repeating this process as many times as necessary to ensure a
probability of success at least 1

2 leads to an algorithm with running time Ω(n8/3).

5. Show that if TSP can be approximated to within some constant c > 1 in polynomial-time
then P = NP.2 Does your proof work also for non-constant factors (i.e., factors that depend
on the input size)?
Hint: Show that given a c-approximation algorithm for TSP one can solve the Hamilton Cy-

cle/Path problem.

1The quizzes and their solutions are available in the course web page.
2Note that we do not assume triangle inequality.

1


