Warm-Up Exercises

- 1. Solve the quizzes from last week and verify that you understand their solutions.¹
- 2. Let *A* be a *minimization* problem. The decision problem Gap- $A[\alpha, \beta]$ is, given an input *x*, decide whether there exists a solution for *A* of size at most α or every solution is of size at least β (the other instances are not allowed). Recall that an algorithm is a *c*-approximation for *A* if it finds a solution of size at most *c* times the optimal one (c > 1). Prove that if there exists a polynomial-time *c*-approximation algorithm for *A* for some $c < \frac{\beta}{\alpha}$ then Gap- $A[\alpha, \beta] \in P$.

Exercises for Submission

- 1. (a) Prove Markov's inequality. That is, show that if *W* is a nonnegative random variable whose expectation is μ then for any a > 0, $\Pr[W \ge a] \le \frac{\mu}{a}$.
 - (b) Let *W* be a random variable whose expectation is $\mu > 0$ and whose maximal value is at most 2μ . Prove that for any $0 < \varepsilon < 1$, $\Pr[W \le (1 \varepsilon)\mu] \le 1 \frac{\varepsilon}{2}$.
- 2. Suppose that a CNF formula has less than n^k clauses, each with at least $k \log_2 n$ distinct variables. Use the probabilistic method to show that it has a satisfying assignment.
- 3. Recall that in the weighted MAX-CUT problem, given a graph G = (V, E) and a weight function $w : E \to \mathbb{R}^+$, the goal is to determine a cut $(S, V \setminus S)$ that maximizes the total weight of the cut's edges. Consider the following algorithm: Initially, define $V_1 = V_2 = \phi$. Then, for each vertex $v \in V$, if $\sum_{u \in V_2} w(v, u) \ge \sum_{u \in V_1} w(v, u)$ add v to V_1 and otherwise add it to V_2 . Finally return the cut (V_1, V_2) .

Prove that this is a $\frac{1}{2}$ -approximation algorithm for weighted MAX-CUT, and that it can be implemented in polynomial running time.

- 4. (a) Show an undirected connected graph G = (V, E) with *n* vertices and $\binom{n}{2}$ minimum cuts.
 - (b) Show an undirected connected graph G = (V, E) with *n* vertices and exponentially many maximum cuts. How many minimum cuts does your graph have?
 - (c) Consider running the contraction algorithm for MIN-CUT until the number of vertices is reduced to *t* and then using a cubic-time algorithm to find the min-cut in the contracted graph. Show that repeating this process as many times as necessary to ensure a probability of success at least $\frac{1}{2}$ leads to an algorithm with running time $\Omega(n^{8/3})$.
- 5. Show that if TSP can be approximated to within some constant c > 1 in polynomial-time then P = NP.² Does your proof work also for non-constant factors (i.e., factors that depend on the input size)?

Hint: Show that given a *c*-approximation algorithm for TSP one can solve the Hamilton Cycle/Path problem.

¹The quizzes and their solutions are available in the course web page.

²Note that we do *not* assume triangle inequality.