Warm-Up Exercises

1. Solve the quizzes from last week and verify that you understand their solutions. ${ }^{1}$
2. Let A be a minimization problem. The decision problem Gap- $A[\alpha, \beta]$ is, given an input x, decide whether there exists a solution for A of size at most α or every solution is of size at least β (the other instances are not allowed). Recall that an algorithm is a c-approximation for A if it finds a solution of size at most c times the optimal one ($c>1$). Prove that if there exists a polynomial-time c-approximation algorithm for A for some $c<\frac{\beta}{\alpha}$ then Gap- $A[\alpha, \beta] \in \mathrm{P}$.

Exercises for Submission

1. (a) Prove Markov's inequality. That is, show that if W is a nonnegative random variable whose expectation is μ then for any $a>0, \operatorname{Pr}[W \geq a] \leq \frac{\mu}{a}$.
(b) Let W be a random variable whose expectation is $\mu>0$ and whose maximal value is at most 2μ. Prove that for any $0<\varepsilon<1, \operatorname{Pr}[W \leq(1-\varepsilon) \mu] \leq 1-\frac{\varepsilon}{2}$.
2. Suppose that a CNF formula has less than n^{k} clauses, each with at least $k \log _{2} n$ distinct variables. Use the probabilistic method to show that it has a satisfying assignment.
3. Recall that in the weighted MAX-CUT problem, given a graph $G=(V, E)$ and a weight function $w: E \rightarrow \mathbb{R}^{+}$, the goal is to determine a cut $(S, V \backslash S)$ that maximizes the total weight of the cut's edges. Consider the following algorithm: Initially, define $V_{1}=V_{2}=\phi$. Then, for each vertex $v \in V$, if $\Sigma_{u \in V_{2}} w(v, u) \geq \Sigma_{u \in V_{1}} w(v, u)$ add v to V_{1} and otherwise add it to V_{2}. Finally return the cut $\left(V_{1}, V_{2}\right)$.
Prove that this is a $\frac{1}{2}$-approximation algorithm for weighted MAX-CUT, and that it can be implemented in polynomial running time.
4. (a) Show an undirected connected graph $G=(V, E)$ with n vertices and $\binom{n}{2}$ minimum cuts.
(b) Show an undirected connected graph $G=(V, E)$ with n vertices and exponentially many maximum cuts. How many minimum cuts does your graph have?
(c) Consider running the contraction algorithm for MIN-CUT until the number of vertices is reduced to t and then using a cubic-time algorithm to find the min-cut in the contracted graph. Show that repeating this process as many times as necessary to ensure a probability of success at least $\frac{1}{2}$ leads to an algorithm with running time $\Omega\left(n^{8 / 3}\right)$.
5. Show that if TSP can be approximated to within some constant $c>1$ in polynomial-time then $P=N P .{ }^{2}$ Does your proof work also for non-constant factors (i.e., factors that depend on the input size)?
Hint: Show that given a c-approximation algorithm for TSP one can solve the Hamilton Cycle/Path problem.
[^0]
[^0]: ${ }^{1}$ The quizzes and their solutions are available in the course web page.
 ${ }^{2}$ Note that we do not assume triangle inequality.

