Warm-up Exercises

Prove:

- DTIME $(2^n) \subsetneq \mathsf{NTIME}(2^{2n})$.
- For any language $L \in \mathsf{NP} \cap \mathsf{coNP}$ we have $\mathsf{NP}^L = \mathsf{NP}$.
- If 3SAT is polynomial-time reducible to $\overline{3SAT}$ then PH = NP.

Exercises for Submission

- (a) Let Σ₂SAT denote the following decision problem: given a quantified formula ψ of the form ψ = ∃x ∈ {0,1}ⁿ ∀y ∈ {0,1}ⁿ. φ(x,y) = 1, where φ is a CNF formula, decide whether ψ is true. Prove that if P = NP then Σ₂SAT ∈ P.
 - (b) Prove that if $\Sigma_2 SAT \in SIZE(n^{20})$ then the polynomial-time hierarchy collapses.
- (a) The language FIRST-ACCEPT consists of those pairs (C₁, C₂) for which C₁, C₂ are Boolean circuits, and the lexicographically first string *x* for which C₁(*x*) = 1 is also accepted by C₂.¹ Prove that FIRST-ACCEPT ∈ P^{NP}. Remark: It can be shown that FIRST-ACCEPT is P^{NP}-complete.
 - (b) Prove that $NP \cup coNP \subseteq P^{NP} \subseteq \Sigma_2^p \cap \Pi_2^p$. Is P^{NP} closed under complement?²
 - (c) Prove that $NP = P^{NP}$ if and only if NP = coNP.
- 3. We define the class \mathbf{S}_2^p as the set of all languages *L* for which there exist a polynomial-time Turing machine *M* and a polynomial *p* such that for all $x \in \{0, 1\}^*$,

$$\begin{aligned} x \in L \Rightarrow \exists y \in \{0,1\}^{p(|x|)} \ \forall z \in \{0,1\}^{p(|x|)}. \ M(x,y,z) &= 1\\ x \notin L \Rightarrow \exists z \in \{0,1\}^{p(|x|)} \ \forall y \in \{0,1\}^{p(|x|)}. \ M(x,y,z) &= 0 \end{aligned}$$

- (a) Is \mathbf{S}_2^p closed under complement?
- (b) Prove that $\mathbf{S}_2^p \subseteq \Sigma_2^p \cap \Pi_2^p$.
- (c) (Bonus) Prove a stronger form of Karp-Lipton Theorem: if NP \subseteq P/poly then PH = \mathbf{S}_2^p .
- 4. Prove that there exists an oracle O such that $P^O = PH^O$.
- 5. Prove that for any two functions f, g such that $g(n) = \omega(f(n) \log f(n))$,

 $\mathsf{NTIME}(f(n)) \neq \mathsf{coNTIME}(g(n)).$

¹A string *x lexicographically precedes* a string *y* if the first position *i* in which they differ has $x_i = 0$ and $y_i = 1$.

²A class *C* is *closed under complement* if $L \in C$ implies $\overline{L} \in C$, or equivalently C = coC.