Warm-up Exercises

- 1. Prove that for any language *L* and any class of languages *C*, *L* is *C*-complete if and only if \overline{L} is co*C*-complete.
- 2. For two languages L_1, L_2 define $L_1 \Delta L_2 = (L_1 \setminus L_2) \cup (L_2 \setminus L_1)$. We say that a class *C* is closed under Δ if $L_1, L_2 \in C$ implies $L_1 \Delta L_2 \in C$. For each class decide if it is closed under Δ (if known): P, P/poly, NP, NP \cap coNP.
- 3. Prove that the following problems are self reducible by a polynomial Cook reduction from the search version to the decision version of the same problem.
 - (a) Clique = { (G, k) | G contains a clique of size k }.¹
 - (b) GraphIsomorphism = { $(G_1, G_2) | G_1 \text{ and } G_2 \text{ are isomorphic } \}^2$

Exercises for Submission

- 1. Let UpToOneSat be the following language: UpToOneSat = { $\phi \mid \phi$ is a CNF formula that has at most one satisfying assignment}. Prove that UpToOneSat \in NP if and only if NP = coNP.
- 2. We say that a non-deterministic machine is *nice* if for every input $x \in \{0,1\}^*$ the following holds: Every computation path returns either 'accept', 'reject' or 'quit'. There is at least one non-quit path, and all non-quit paths have the same value.

Let NICE be the class of all languages that are accepted by some non-deterministic, polynomial time, nice machine. Prove that NICE = NP \cap coNP.

- 3. The class DP is defined as the set of all languages *L* for which there are two languages $L_1 \in \mathsf{NP}$ and $L_2 \in \mathsf{coNP}$ such that $L = L_1 \cap L_2$. Define: SAT-UNSAT = { $(\phi_1, \phi_2) | \phi_1$ and ϕ_2 are CNF formulas; ϕ_1 is satisfiable and ϕ_2 is not}, MAX-IndSet = { (G, k) | the largest independent set in *G* has size *k*}.
 - (a) Show that $\mathsf{DP} \subseteq \Sigma_2^p$.
 - (b) Show that SAT-UNSAT is DP-complete, i.e., SAT-UNSAT \in DP and every language in DP is polynomial-time reducible to it.
 - (c) Is $DP = NP \cap coNP$? (prove or disprove or show that it is equivalent to a well-known open question).
 - (d) (Bonus) Show that MAX-IndSet is DP-complete.
- 4. Prove that P ⊆ P/poly.Hint: Similar to the proof of Cook-Levin Theorem (and actually simpler).
- 5. Prove that if every unary NP-language is in P then EXP = NEXP, and conclude that if EXP \neq NEXP then there exists a language $L \in NP \setminus P$ that is not NP-complete.

Remark: It is known that there exists a language $L \in NP \setminus P$ that is not NP-complete assuming the weaker assumption $P \neq NP$ (Ladner's Theorem).

¹The decision version is "Given a pair (G, k) does *G* contain a clique of size *k*?" and the search version is "Given a pair (G, k) find a clique of size *k* in *G* if exists, and reject otherwise".

²Two graphs are *isomorphic* if there is a way to label the vertices of one graph, such that the two graphs become identical.