Warm-up Exercises

1. Let $f,g : \mathbb{N} \to \mathbb{N}$ be two functions. Recall that f = O(g) if there exists a c > 0 such that $f(n) \le c \cdot g(n)$ for every sufficiently large n. We say that $f = \Omega(g)$ if g = O(f) and that $f = \Theta(g)$ if f = O(g) and g = O(f). Also, we say that f = o(g) if for any $\varepsilon > 0$, $f(n) \le \varepsilon \cdot g(n)$ for every sufficiently large n. Finally, we say that $f = \omega(g)$ if g = o(f). Prove or disprove:

(a) $(5n)! = O(n!^5)$.

- (b) If f(n) = O(n) then $10^{f(n)} = O(2^n)$.
- (c) $\log(n!) = \Theta(n \log n)$.
- (d) Every two functions f, g satisfy f = O(g) or g = O(f).
- (e) There exists a function *f* such that $f(n) = O(n^{1+\varepsilon})$ for any $\varepsilon > 0$ but $f(n) = \omega(n)$.
- 2. (a) Show that all Boolean functions can be expressed in terms of 'and' and 'not'.
 - (b) Define the connectives NOR and NAND as follows:

 $NOR(x, y) = \neg(x \lor y)$ and $NAND(x, y) = \neg(x \land y)$.

Show that all Boolean functions can be expressed in term of NOR alone. Repeat for NAND.

- (c) Show that there is no other single binary connective besides these two that can express all Boolean functions.
- 3. Prove that there exists a Turing machine that is a circuit simulator. That is, a Turing machine that given an *n*-input circuit *C* and an input $x \in \{0,1\}^n$ outputs C(x). Explain how you choose to represent a circuit and analyze the running time.

Exercises for Submission

- 1. The *n*-input parity function $\text{parity}_n : \{0,1\}^n \to \{0,1\}$ is defined to output the number of input bits that equal one, modulo 2.
 - (a) Show that $parity_n$ can be computed with circuits of size $O(n \cdot 2^{\sqrt{n}})$ and constant depth. The gates may have large fan-in.
 - (b) Show that $parity_n$ can be computed with circuits of size O(n) and depth $O(\log n)$.
- 2. (a) Define the function $\operatorname{add}_n : \{0,1\}^{2n} \to \{0,1\}^{n+1}$ that calculates the sum of two *n* bit binary integers and produces the n + 1 bit result. Show that the add_n function can be computed with O(n) size circuits.
 - (b) Define the function majority_n : {0,1}ⁿ → {0,1} by majority_n(x₁,...,x_n) = 0 if ∑x_i < n/2 and 1 otherwise. Thus the majority_n function returns the majority vote of the inputs. Show that majority_n can be computed with O(n log n) size circuits. Hint: Use (2a). Bonus: Improve it to O(n).
- 3. We define a partial order on $\{0,1\}^n$ by $x \le y$ if for every $i \in \{1,2,\ldots,n\}$, $x_i \le y_i$. We say that $f : \{0,1\}^* \to \{0,1\}^*$ is monotone if whenever $x \le y$ we have $f(x) \le f(y)$. A circuit is monotone if it has only 'and' and 'or' gates. Prove that a monotone circuit computes a monotone function, and that every monotone nonconstant function has a monotone circuit.
- 4. Prove that SIZE(n) is strictly contained in $SIZE(n^2)$ (i.e., $SIZE(n) \subsetneq SIZE(n^2)$).