
Fall 2006-2007
Computational Complexity Exercise #1

Proposed Solution
By Rani Hod, Ziv Bronstein

1. (a) Mf compute f in time O(n+f(n)), and space O(f(n)), Mg compute g in time O(n+g(n)),
and space O(g(n));

• M1 will compute f(g(n)):
i. M1 will simulate Mg over the input string, and will write g(n) on string k1.
ii. M1 will simulate Mf and will take k1 as its input string. M1 will write the result

on the output string.
Time complexity: O(n+g(n))+O(g(n)+f(g(n))). As f(n) ≥ n, time complexity
is O(n + f(g(n))).
Space complexity: O(g(n)) + O(f(g(n))) = O(f(g(n))).
• M2 will compute f + g:

i. M2 will simulate Mf and write its output on the output string.
ii. M2 will simulate Mg and write its output concatenated to the first stage output.
Time complexity: O(n + f(n)) + O(n + g(n)) = O(n + f(n) + g(n)).
Space complexity: O(f(n)) + O(g(n)) = O(f(n) + g(n)).
• M3 will compute f · g:

i. M3 will simulate Mf over the input string, and will write f(n) on string k1.
ii. M3 will simulate Mg over the input string, and will write g(n) on string k2.
iii. For each 1 on k1, M3 will copy all k2 to the output string.
Time complexity: O(n + f(n)) + O(n + g(n)) + O(f · g(n)) = O(n + f · g(n)).
Space complexity: O(f(n)) + O(g(n)) + O(f · g(n)) = O(f · g(n)).
(We assume f(n) > 0, g(n) > 0)

• M4 will compute 2g:
i. M4 will simulate Mg over the input string, and will write g(n) on string k1.
ii. M4 will write 1 on string k2.
iii. M4 will use strings k2 and k3 to compute 2g, for each 1 on k1, M4 will copy

twice the 1’s from k2 to k3 and vice versa.
Time complexity: O(n + g(n) + 2g(n)) = O(n + 2g(n)).
Space complexity: O(g(n) + 2g(n)) = O(2g(n)).

(b) First we will see that log n is proper complexity function:
M will count the number of 1’s on the input string, and compute n in binary representa-
tion (exact method was needed for full grade) over string k1. M will copy each character
(0, 1) from k1 to 1 over the output string.
Time complexity: O(n + log n).
Space complexity: O(log n).
log n is proper complexity function. log2 n = log n · log n, and as shown in 1a if f ,g are
proper complexity functions than f · g is proper complexity function ⇒ log2 n is proper
complexity function.
n2 = n · n, n is proper complexity function (why?) ⇒ n2 is proper complexity function.
As shown in 1a if g is proper complexity functions than, 2g is proper complexity function
⇒ 2n is proper complexity function.
Express

√
n = 20.5·log n, 0.5 · log n is proper complexity function (why?) ⇒

√
n is proper

complexity function.

1

Fall 2006-2007
Computational Complexity Exercise #1

Proposed Solution
By Rani Hod, Ziv Bronstein

2. Let p(n) be a polynomial with degree m, P (n) = Θ(nm).

(a) C = {nk|k > 0}:
Left: p(f(n)) = p(nk) = O(nkm), nkm ∈ C ⇒ closed.
Right: f(p(n)) = p(n)k ≤ (cnm)k = O(nkm), nkm ∈ C ⇒ closed.

(b) C = {k · n|k > 0}:
Let p(n) = n2.
Left: p(f(n)) = (kn)2 = Ω(n2), n2 6∈ C ⇒ not closed.
Right: f(p(n)) = kn2, n2 6∈ C ⇒ not closed.

(c) C = {kn|k > 0}:
Left: p(f(n)) = p(kn) = O((kn)m), for k′ = km, k′n ∈ C ⇒ closed.
Right: Let p(n) = n2. f(p(n)) = f(n2) = kn2

, kn2 6∈ C ⇒ not closed.

(d) C = {2nk |k > 0}:
Left: p(f(n)) = O((2nk

)m) = O(2mnk

) = O(2nk+1
), for k′ = k + 1, 2nk′

∈ C ⇒ closed.
Right: f(p(n)) ≤ f(cnm) = 2cknkm

= O(2nkm+1
)⇒ closed.

(e) C = {logkn|k > 0}:
Left: p(f(n)) = p(logk n) = O((logk n)m) = O(logkm n), for k′ = km, logk′

n ∈ C ⇒
closed.
Right: f(p(n)) ≤ f(cnm) = logk cnm = (log c + m log n)k = O(logk n) ⇒ closed.

(f) C = {k · log n|k > 0}:
Left: Let p(n) = n2. p(f(n)) = (k log n)2 = Ω(log2 n) 6∈ C ⇒ not closed.
Right: f(p(n)) ≤ f(cnm) = k · log cnm = k(log c+m log n) ≤ k′ log n for k′ = k(| log c|+
m)⇒ closed.

Note: there is need to prove that f(p(n)) ≤ f(cnm) whenever this was used.

3. (a) Consider the following algorithm:

Algorithm 1 Decide-PAL(x)
Require: x ∈ {0, 1}n.
Ensure: Returns true if x ∈ PAL and false otherwise.

for i← 1 to n do
if x[i] 6= x[n + 1− i] then

return false
return true

Space Analysis:
O(log n) for i⇒ O(log n).
Correctness:
(⇔) x ∈ PAL if and only if ∀i x[i] = x[n− i + 1]; Decide-PAL returns true if and only
if x[i] = x[n− i + 1] for all i.

2

Fall 2006-2007
Computational Complexity Exercise #1

Proposed Solution
By Rani Hod, Ziv Bronstein

Algorithm 2 Decide-Not-PAL(x)
Require: x ∈ {0, 1}n.
Ensure: Returns false if x ∈ PAL and true otherwise.

guess 1 ≤ i ≤ n {actually i ≤
⌊

n
2

⌋
is enough}

if x[i] 6= x[n− i + 1] then
return true

else
return false

(b) Consider the following algorithm:
Space Analysis:
O(log n) for i⇒ O(log n).
Time Analysis:
One sweep forward to find n, one sweep backward to gather x[i], x[n − i + 1] ⇒ O(n).
As we saw in Exercise 1, incrementing a counter from 0 to n only costs O(n).
Correctness:
(⇔) x 6∈ PAL if and only if ∃i such that x[i] 6= x[n− i + 1]; Decide-Not-PAL returns
true if and only if for some execution path, i.e., a guess for i, x[i] 6= x[n− i + 1].
Note: PAL ∈ L ⊆ NL ⇒ PAL ∈ co-NL = NL is a simple result of Immerman-
Szelepcsényi theorem, but we needed the algorithm presented to enforce linear running
time.

4. Consider the following algorithm:

Algorithm 3 Add-Binary-Numbers(x, y)
Require: Two integers x, y < 2n in binary representation, least-to-most significant bit order.
Ensure: Returns x + y in binary representation, least-to-most significant bit order.

carry ← 0 {can be embodied into the internal state}
for i← 1 to n do

output[i]← x[i]⊕ y[i]⊕ carry { assume 0 if x[i] or y[i] don’t exist }
carry ← maj(x[i], y[i], carry)

output[n + 1]← carry

Space Analysis:
O(log n) for i, O(1) for carry ⇒ O(log n).

Correctness:
Trivial - we add bit by bit using a full adder.

Note: The algorithm shown uses least-to-most sigfinicant bit order. If we require most-to-least
order, this can be achieved as a composition of this algorithm with a rather trivial O(log n)-
space Reverse algorithm, in O(log n)-space (as done with composing log-space reductions).

5. Solution draft: We will use a binary encryption for each letter of Σ. To read and to write
those extended letters we will need to expand our set of machine states and the transition

3

Fall 2006-2007
Computational Complexity Exercise #1

Proposed Solution
By Rani Hod, Ziv Bronstein

function. For each old state we will now need |Σ| new stats to read the encrypted letter in this
state, and |Σ| new stats to write a new letter in its place (we will actually need double of that
amount since we also need to remember whether we should move left or right). We will also
need additional 2 log(|Σ|) new states to move left and right. The size of each ’letter’ is now
log(|Σ|) so the time complexity should not exceed 4 log(|Σ|) times the old time complexity,
since for a standard TM operation we will need to read the old ’letter’ then write a new one
and then move at most 2 log(|Σ|) spaces (a move left).

4

