
Fall 2005-2006
Computational Complexity Exercise #11

Proposed Solution
By Rani Hod

1. (a) Let L be an arbitrary NP language, accepted by a DTM M(x, y).
Recall the reduction L ≤P 3-Sat presented in Cook’s theorem:
Given x we construct f(x) = φM,x in variables {yi}ni=1 that is satisfiable if and only if
M(x, y) accepts. Since the same y is a witness for both x ∈ L and f(x) ∈ 3-Sat, we
conclude that 3-Sat is NP -hard under Levin reductions as (f, identity) are the requested
functions.

(b) Consider the polynomial self-reduction for Sat presented in class. We needed a Sat
oracle, but as A is assumed to be NP -hard, we can polynomially reduce every Sat
query to an A query. Thus, there’s a polynomial oracle TM MA that given a formula φ,
computes a satisfying assignment ρ(φ) for it, if exists.
Consider the Levin reduction (f, g) from A to 3-Sat (shown to exist in 1a since A ∈ NP).
Given x /∈ L, we have f(x) /∈ 3-Sat so MA(f(x)) rejects; Given x ∈ L, we have
f(x) ∈ 3-Sat so MA(f(x)) computes the witness w = ρ(f(x)). Using g, we can compute
y = g(w), a witness for x ∈ L.
Obviously, all the reductions are done in polynomial time.

2. Let L be a PH-complete language. Then, ∃k ∈ N L ∈ Σk as L ∈ PH =
∨

k∈N Σk. By
definition Σk ⊆ PH; since L is PH-hard, every L′ ∈ PH can be reduced to L so L′ ∈ ΣK ,
i.e., PH ⊆ Σk; the result follows.

3. The claim is true.

We have Sat ∈ NP -complete ⊂ PSPACE-complete, so every L ∈ PSPACE can be poly-
nomially reduced to Sat and solved in NP , therefore PSPACE ⊆ NP .

We already know that NP ⊆ PSPACE; the result follows.

4. (a) Let v = v1 − v2 and let V = span{v}. We have dim V = 1 as v 6= 0, so

Prob(xv1 = xv2) = Prob(xv = 0) = Prob(x ∈ V ⊥) =
|V ⊥|
|Zn

2 |
= 2dim V ⊥−n = 2− dim V =

1
2

Alternative reasoning:
since v 6= 0 there’s a coordinate i such that vi = 1. {xi} are independent, so

Prob(xv = 0) = Prob(xivi =

z︷ ︸︸ ︷∑
j 6=i

xjvj) =

= Prob(xi = 0) Prob(z = 0) + Prob(xi = 1)Prob(z = 1) =

=
Prob(z = 0) + Prob(z = 1)

2
=

1
2

(b) Let x ∈ Zn
2 be a random vector. Compute c = Cx, b = Bx, a = Ab(= ABx) and output

true if and only if a = c.
Time Complexity:
Thrice we multiply a n× n matrix by a vector, so it takes 3O(n2) = O(n2) time.
Correctness:
If AB = C then obviously c = Cx = ABx = a for any x ∈ Zn

2 .

1

Fall 2005-2006
Computational Complexity Exercise #11

Proposed Solution
By Rani Hod

Otherwise, there’s some row index i such that ABi 6= Ci. Using 4a with v1 = ABi,
v2 = Ci, we get ai 6= ci with probability 1

2 , so

Prob(a = c) = Prob(aj = cj j = 1, . . . , n) ≤ Prob(ai = ci) =
1
2

5. (a) We use a binary search on the range [1,m].
Initialize low ← 1, high← m. A typical round looks like this:

• Alice has her element list {ai}ni=1 and Bob has his list {bi}ni=1. Both Alice and Bob
know low, high, n, m, k; they calculate mid = d low+high

2 e.
• Alice calculates a = |{i|ai < mid}| and sends it to Bob.
• Bob calculates b = |{i|bi < mid}| and compares a + b to k.
• If a + b > k, then the answer lies in [low,mid− 1] so Bob sends “low” to Alice and

both update high← mid− 1;
• If a+ b < k, then the answer lies in [mid+1, high] so Bob sends “high” to Alice and

both update low ← mid + 1;
• Otherwise, a + b = k, i.e., the answer is mid so Bob sends “stop” to Alice and the

protocol ends.

Communication Complexity:
On every round high− low is halved so we have blog2 mc rounds until the protocol ends;
Each round costs O(log n) since Alice sends 0 ≤ a ≤ n and Bob sends one of 3 possible
replies. The total communication complexity is O(log n log m).
Correctness:
Each round maintains the invariant: the answer lies in [low, high] so the algorithm will
reach a point where high = low = the correct answer.

(b)

2

