
Fall 2005-2006
Computational Complexity Exercise #2

Proposed Solution
By Rani Hod

1. (a) Consider the following algorithm:

Algorithm 1 Is-Cycle-Limited-Version(G)
Require: G = (V,E) is a directed graph with n vertices such that ∀u ∈ V d+(u) ≤ 1.
Ensure: Returns true if G contains a cycle and false otherwise.

for i← 1 to n do
u← V [i]
k ← 0
while ∃v ∈ V such that (u, v) ∈ E do

u← v {there can be only one such v since d+(u) ≤ 1}
k ← k + 1
if k = n then

return true
return false

Space Analysis:
At any given time, we only need to keep i, k, u, v ⇒ O(log n).
Correctness:
(⇒) Assume G contains a cycle C. When Is-Cycle-Limited-Version’s for-loop reaches
i such that V [i] ∈ C, the while condition will always be true since we always pick v ∈ C.
Thus, after n steps, we get k = n and the algorithm will return true.
(⇐) Assume Is-Cycle-Limited-Version returned true during the ith iteration. Then,
it has found a directed path P of length n+1 in G, starting at V [i]. Since G only contains
n vertices, P is not simple and thus contains a cycle.

(b) Consider the following algorithm:

Algorithm 2 Is-Cycle(G)
Require: G = (V,E) is a directed graph with n vertices.
Ensure: Returns true if G contains a cycle and false otherwise.

guess i ∈ {1, . . . , n}
u← V [i]
for k ← 1 to n + 1 do

guess j ∈ {1, . . . , n}
v ← V [j]
if (u, v) ∈ E then

u← v
else

return false
return true

Space Analysis:
O(log n) for i, j, k, u, v ⇒ O(log n).
Correctness:
(⇒) Assume G contains a cycle C. Then, some execution path will begin in some u ∈ C,

1

Fall 2005-2006
Computational Complexity Exercise #2

Proposed Solution
By Rani Hod

follow edges along C, complete the for-loop and return true. Thus, Is-Cycle returns
true.
(⇐) Assume Is-Cycle returned true. Then, there is a path of length n + 1 in G. As
|V | = n, this path cannot be simple, thus contains a cycle.

2. Let B ∈ co-C. By definition, B ∈ C. A is C-complete, so there exists a (polynomial,
logarithmic, ...) reduction f from B to A, mapping x ∈ B to f(x) ∈ A and x 6∈ B to
f(x) 6∈ A. In other words, f maps x 6∈ B to f(x) 6∈ A and x ∈ B to f(x) ∈ A. But this makes
f a (polynomial, logarithmic, ...) reduction from B to A. Hence, A is co-C-hard.

A ∈ C, thus A ∈ co-C; Therefore A is co-C-complete.

3. (s,t)-Con is NL-complete, so by Question 3, (s,t)-Con is co-NL-complete. If we had
(s,t)-Con ∈ NL, that would mean NL ⊆ co-NL, hence NL = co-NL (why?).

4. (a) Consider the following algorithm:

Algorithm 3 Decide-PAL(x)
Require: x ∈ {0, 1}n.
Ensure: Returns true if x ∈ PAL and false otherwise.

for i← 1 to n do
if x[i] 6= x[n + 1− i] then

return false
return true

Space Analysis:
O(log n) for i⇒ O(log n).
Correctness:
(⇔) x ∈ PAL if and only if ∀i x[i] = x[n− i + 1]; Decide-PAL returns true if and only
if x[i] = x[n− i + 1] for all i.

(b) Consider the following algorithm:

Algorithm 4 Decide-Not-PAL(x)
Require: x ∈ {0, 1}n.
Ensure: Returns false if x ∈ PAL and true otherwise.

guess 1 ≤ i ≤ n {actually i ≤
⌊

n
2

⌋
is enough}

if x[i] 6= x[n− i + 1] then
return true

else
return false

Space Analysis:
O(log n) for i⇒ O(log n).
Time Analysis:
One sweep forward to find n, one sweep backward to gather x[i], x[n − i + 1] ⇒ O(n).
As we saw in Exercise 1, incrementing a counter from 0 to n only costs O(n).

2

Fall 2005-2006
Computational Complexity Exercise #2

Proposed Solution
By Rani Hod

Correctness:
(⇔) x 6∈ PAL if and only if ∃i such that x[i] 6= x[n− i + 1]; Decide-Not-PAL returns
true if and only if for some execution path, i.e., a guess for i, x[i] 6= x[n− i + 1].
Note: PAL ∈ L ⊆ NL ⇒ PAL ∈ co-NL = NL is a simple result of Immerman-
Szelepcsényi theorem, but we needed the algorithm presented to enforce linear running
time.

5. Consider the following algorithm:

Algorithm 5 Add-Binary-Numbers(x, y)
Require: Two integers x, y < 2n in binary representation, least-to-most significant bit order.
Ensure: Returns x + y in binary representation, least-to-most significant bit order.

carry ← 0 {can be embodied into the internal state}
for i← 1 to n do

output[i]← x[i]⊕ y[i]⊕ carry { assume 0 if x[i] or y[i] don’t exist }
carry ← maj(x[i], y[i], carry)

output[n + 1]← carry

Space Analysis:
O(log n) for i, O(1) for carry ⇒ O(log n).

Correctness:
Trivial - we add bit by bit using a full adder.

Note: The algorithm shown uses least-to-most sigfinicant bit order. If we require most-to-least
order, this can be achieved as a composition of this algorithm with a rather trivial O(log n)-
space Reverse algorithm, in O(log n)-space (as done with composing log-space reductions).

3

