
Fall 2005-2006
Computational Complexity Exercise #3

Proposed Solution
By Rani Hod

1. (a) Assume A,B ∈ NL, i.e., there exist NDTMs MA,MB deciding A,B respectively in
logarithmic space. We describe a NDTM deciding A ∪B in logarithmic space:

Algorithm 1 Decide-A-or-B(x)
guess m ∈ {0, 1}
if m = 0 then

return MA(x)
else

return MB(x)

Correctness:
(⇒) If x ∈ A ∪ B, then either x ∈ A or x ∈ B. If x ∈ A, there’s an execution path of
MA that returns true, so by guessing m = 0 and following that path, Decide-A-or-B
returns true. The case x ∈ B is analogous.
(⇐) If Decide-A-or-B returned true, it has found an execution path in either MA or
MB that returns true, hence x ∈ A or x ∈ B. In any case, x ∈ A ∪B.
Space Complexity: Only constant space more than MA,MB ⇒ logarithmic space.

(b) Using NL = co-NL and Question 1a,

A,B ∈ NL ⇒ A,B ∈ NL ⇒ A ∪B ∈ NL ⇒ A ∩B = A ∪B ∈ NL

2. (a) Same-SCC(G, u, v) = (s,t)-Con(G, u, v)∧(s,t)-Con(G, v, u). Since (s,t)-Con ∈ NL,
a reasoning similar to the one used in Question 1 leads to Same-SCC ∈ NL.

(b) NL = co-NL, hence Different-SCC = Same-SCC ∈ co-NL. For some fixed k, let
L≥k = {〈G〉| the directed graph G contains ≥ k SCCs}. Consider the following algo-
rithm:

Algorithm 2 At-Least-k-SCCs(G)
for i = 1 to k do

guess vi ∈ V
for j = 1 to i− 1 do

if Different-SCC(vi, vj) = false then
return false

return true

Correctness:
(⇒) If G has < k SCCs, then for every choice of v1, . . . , vk, there exist j < i such that
vi, vj are in the same SCC, and for that pair, every execution path of Different-SCC
returns false. Thus, all execution paths return false.
(⇐) If G has ≥ k SCCs, then when choosing v1, . . . , vk from distinct SCCs, for all
1 ≤ j < i ≤ k some execution path of Different-SCC(vi, vj) returns true.Thus, there
exists an execution path that returns true.
Space Complexity:
At-Least-k-SCCs has to remember k vertices (k log n) and Different-SCC uses log-
arithmic space ⇒ logarithmic space.

1



Fall 2005-2006
Computational Complexity Exercise #3

Proposed Solution
By Rani Hod

At-Least-k-SCCs accepts L≥k in logarithmic space, so L≥k ∈ NL for all k ∈ N, esp.
for k = 2006, L≥2006 ∈ NL.

(c) Using NL = co-NL, Question 1b and Question 2b,

L=k = L≥k ∩ L<(k+1) = L≥k ∩ L≥(k+1) ∈ NL

3. Let L2 = {〈G〉| G is bipartite}. G is bipartite if and only if G contains no odd cycles, therefore
L2 = {〈G〉| G contains an odd cycle}. A simple modification of Question 1 from Exercise 2
shows L2 ∈ NL, hence L2 ∈ co-NL = NL.

4. Let A ∈ NP and let MA be a NDTM deciding A in polynomial time. Fix an input x. MA runs
≤ poly(|x|) steps, so at most poly(|x|) non-deterministic decisions are made throughout any
execution path. Each decision has a constant number of alternatives (≤ 2|Q||Γ|), so encoding
all decisions taken during some (specific) execution path as y takes poly(|x|) space.

Given (x, y) as input, the DTM M will simulate MA(x) where decisions are made based
on y’s contents (if y ends prematurely then M returns false). M accepts x ⇔ for some
y, |y| = poly(|x|) M(x, y) returns true ⇔ some execution path of MA(x), encoded by y,
returns true. We’ve shown A ∈ NP ∗, hence NP ⊆ NP ∗.

5. Let A ∈ P . Since CV AL is P -complete, A ≤L CV AL using some logarithmic reduction f .
Assuming CV AL ∈ L, we can simulate the TM solving CV AL on f(x) without precomputing
f(x) (same process used in logarithmic reductions chaining), hence deciding A in logarithmic
space. Thus P ⊆ L. Together with the known result L ⊆ P , we get L = P .

6. • |{f : X → {0, 1}}| = 2|X|; n input bits ⇔ 2n input values ⇒ |X| = 2n. Thus, the
number of boolean functions on n bits is 22n

.

• For each of the m = c 2n

n gates we have to choose its type (3 options), its first input
(≤ m + n options) and its second (if exists) input (≤ m + n options). Therefore, the
number of circuits with m gates and n inputs is at most 3m(m + n)2m.

• We presume c < 1 and compare the log of the two numbers: log2 22n

= 2n;

log2

(
3m(m + n)2m

)
= m log2 3 + 2m log2(m + n)
< 2m + 2m(log2 m + log2 n)

< 2c2n + 2c
2n

n
(log2 c + n− log2 n) + 2c log2 n

< 2c(2n + 2n + log2 n) < 5c · 2n

For c ≤ 1
5 we can see that there’re more possible boolean functions on n bits than circuits

of size 2n

5n , hence some function cannot be computed by a circuit of size 2n

5n .

2


