Fall 2005-2006 . Proposed Solution
Computational Complexity Exercise #9 By Rani Hod

1. (a) Consider the complete graph H(G) = (VUE, (VUE) x (VU E)) and use the following

weights:
Yu,v eV W(u,v) =1
Ve, fEE Wie, f)=|E|+|V|
1
YveV,ee E W(v,e) = vee
[E|+|V] vée

Let R = F and ¢ = |E| 4+ k — 1. Obviously the reduction is polynomial.

Proposition. H(G) has a Steiner Tree T spanning R of weight < ¢ if and only if G has
aVC S C V of size < k.

Proof. (<) Consider the subgraph of H consisting of F'U S and the edges of weight 1
between them. S is a VC, so the subgraph is connected, hence contains a spanning tree
T.|[EUS|=|E|+|S| <|E|+k=q+ 1, so the T weighs < q.

(=) Any tree of weight < g cannot use any of the heavy (= |E| + |V|) edges, so T only
uses edges of weight 1. Consider the set S C VNT. T spans F, so every e € E must
have an edge (of weight 1) to some vertex in .S, so S is a VC in G. But T has < ¢ edges
and |E| of them connect F to S; that leaves < ¢ — |E| = k — 1 edges between vertices of
S, s0|S| <k. O

(b) Consider the complete graph H'(G) = (VUEU{r},(VUEU{r}) x (VUEU{r})) and
use the following weights:

Yu,v €V W(u,v) =2

Ve,f € E Wie, f) =2

VweV,ecE W(v,e):{l vee
2 vée

YveV W(r,v) =

Vee E W(r,e) =

Let R=FEU{r} and ¢ = |E| + k. Obviously the reduction is polynomial.
Note that since all weights are 1 or 2, the triangle inequality holds for W.

Proposition. H'(G) has a Steiner Tree T spanning R of weight < ¢ if and only if G
has a VC S C V of size < k.

Proof. (<) Same as in la, except the subtree inside V' is replaced by a star whose origin
is r.

(=) Consider the Steiner Tree T under weight < ¢ spanning R that has the least number
edges of weight 2. We claim that this number is 0: assume that T is rooted ar r and
consider the path from e € F via an endpoint v € e to r. This path uses two edges of
weight 1, so it can replace any path of weight > 2.

From here the proof continues as in la with the obvious adjustments. O

Fall 2005-2006 . Proposed Solution
Computational Complexity Exercise #9 By Rani Hod

2.

3.

(¢) Using the reduction from 1b we can show that
GAP(|v|a,|v|5) BOUNDED-DEGREE-VC <p GAP[y|at|E|,|V|5+ EJMETRIC-ST

So it is N P-hard to approximate within

VIB—a) VIB=a) . B-a _B+2A

1 =1 =
Vet 1B~ " Wiat2vid Tar2A ateoa

VIB+|E] _

- >1
Ve +|E|

1+

Assume without loss of generality that for every variable x, both the literal x and —x occur
in ¢ since otherwise we can substitute x = true/ false in ¢ and drop the clause(s) in which it
appears, without affecting the satisfiablity of ¢.

Consider now the clause-variable incidence bipartite graph H(¢) with vertex sets C' (clauses)
and X (variables).

Proposition. ¢ is satisfiable if and only if H(¢) has a matching that saturates C.

Proof. (=) Every truth assignment to the variable z € X satisfies exactly one clause; thus,
in order to satisfy all clauses in C’ C C, we have to have |C’| variables in N(C"). But ¢ is
satisfiable, so for all C' C C, |N(C")| > |C’|. The result follows by Hall’s Theorem.

(<) Every clause ¢ € C has a unique matching variable x € X. Assign to = the value that
will satisfy ¢. Now all clauses have been satisfied. O

H can be constructed in polynomial time and a saturating matching can be calculated in
polynomial time using max-flow algorithms, so 2-Occ-3-SAT € P.

(a) Note that for every cut S C V, E = E(S,S)U E(V — S,V —S)U E(S,V — 5);
thus a cut is maximal if and only if the uncut is minimal. We’ve shown in class that
GAP[,, g MAX-CuUT is N P-hard for some 0 < a < 8 < 1, so the trivial reduction shows
that GAP[;_g,1_oMIN-UNCUT is N P-hard as well. Therefore, it is N P-hard to approx-
imate within ¢ = =2 > 1.

1-5
(b) Either use a direct probablistic argument — E(|E(S,S)U E(V — S,V — 5)|) = % —or
remember that every graph contains a cut of size > @7 so the corresponding uncut is

of size < @
(¢) Use the 2-approximation algorithm for MAX-CUT shown in class.

(d) No. For instance, a non-complete bipartite graph always has a uncut of size 0, but the
algorithm might find a larger uncut (e.g., for a path of length 3, the algorithm might
put both ends in S).

Fall 2005-2006 Proposed Solution

Computational Complexity EXGTCiSG #9 By Rani Hod
4. (a)
(b)
PSPACE C pPSPACE since we can pass the input to the oracle and
return its reply.

C NpPSPACE since P C NP
C PSPACEPSPACE gince NP C PSPACE
= PSPACE since we can process the queries ourselves

in polynomial space.

by 4c

Thus PPSPACE — pSPACE ™= NPSPACE = N PPSPACE,

(¢) Obviously PSPACE C NPSPACE; the other direction is a result of Savitch Theorem,
as NSPACE(p(n)) C SPACE(p*(n)) for all polynomials p(n).

(d)
(e)
EXP C pPEXP since we can pass the input to the oracle and return its reply.
C NPEXP gince PC NP

CFEXP since we can try all guesses and process each of the polynomially

sized queries in exponential time.

Thus PPXP = NPFXP — EXP.
Note: we’ve shown here NPEXF = EX P; we shouldn’t hope for a stronger claim unless
we solve the open question EX P Z NEXP.

