
Fall 2005-2006
Computational Complexity Exercise #1

Proposed Solution
By Rani Hod

1. (a) Mf compute f in time O(n+f(n)), and space O(f(n)), Mg compute g in time O(n+g(n)),
and space O(g(n));

• M1 will compute f(g(n)):
i. M1 will simulate Mg over the input string, and will write g(n) on string k1.
ii. M1 will simulate Mf and will take k1 as its input string. M1 will write the result

on the output string.
Time complexity: O(n+g(n))+O(g(n)+f(g(n))). As f(n) ≥ n, time complexity
is O(n + f(g(n))).
Space complexity: O(g(n)) + O(f(g(n))) = O(f(g(n))).

• M2 will compute f + g:
i. M2 will simulate Mf and write its output on the output string.
ii. M2 will simulate Mg and write its output concatenated to the first stage output.
Time complexity: O(n + f(n)) + O(n + g(n)) = O(n + f(n) + g(n)).
Space complexity: O(f(n)) + O(g(n)) = O(f(n) + g(n)).

• M3 will compute f · g:
i. M3 will simulate Mf over the input string, and will write f(n) on string k1.
ii. M3 will simulate Mg over the input string, and will write g(n) on string k2.
iii. For each 1 on k1, M3 will copy all k2 to the output string.
Time complexity: O(n + f(n)) + O(n + g(n)) + O(f · g(n)) = O(n + f · g(n)).
Space complexity: O(f(n)) + O(g(n)) + O(f · g(n)) = O(f · g(n)).
(We assume f(n) > 0, g(n) > 0)

• M4 will compute 2g:
i. M4 will simulate Mg over the input string, and will write g(n) on string k1.
ii. M4 will write 1 on string k2.
iii. M4 will use strings k2 and k3 to compute 2g, for each 1 on k1, M4 will copy

twice the 1’s from k2 to k3 and vice versa.
Time complexity: O(n + g(n) + 2g(n)) = O(n + 2g(n)).
Space complexity: O(g(n) + 2g(n)) = O(2g(n)).

(b) First we will see that log n is proper complexity function:
M will count the number of 1’s on the input string, and compute n in binary representa-
tion (exact method was needed for full grade) over string k1. M will copy each character
(0, 1) from k1 to 1 over the output string.
Time complexity: O(n + log n).
Space complexity: O(log n).
log n is proper complexity function. log2 n = log n · log n, and as shown in 1a if f ,g are
proper complexity functions than f · g is proper complexity function ⇒ log2 n is proper
complexity function.
n2 = n · n, n is proper complexity function (why?) ⇒ n2 is proper complexity function.
As shown in 1a if g is proper complexity functions than, 2g is proper complexity function
⇒ 2n is proper complexity function.
Express

√
n = 20.5·log n, 0.5 · log n is proper complexity function (why?) ⇒

√
n is proper

complexity function.

1

Fall 2005-2006
Computational Complexity Exercise #1

Proposed Solution
By Rani Hod

2. Let p(n) be a polynomial with degree m, P (n) = Θ(nm).

(a) C = {nk|k > 0}:
Left: p(f(n)) = p(nk) = O(nkm), nkm ∈ C ⇒ closed.
Right: f(p(n)) = p(n)k ≤ (cnm)k = O(nkm), nkm ∈ C ⇒ closed.

(b) C = {k · n|k > 0}:
Let p(n) = n2.
Left: p(f(n)) = (kn)2 = Ω(n2), n2 6∈ C ⇒ not closed.
Right: f(p(n)) = kn2, n2 6∈ C ⇒ not closed.

(c) C = {kn|k > 0}:
Left: p(f(n)) = p(kn) = O((kn)m), for k′ = km, k′n ∈ C ⇒ closed.
Right: Let p(n) = n2. f(p(n)) = f(n2) = kn2

, kn2 6∈ C ⇒ not closed.

(d) C = {2nk |k > 0}:
Left: p(f(n)) = O((2nk

)m) = O(2mnk

) = O(2nk+1
), for k′ = k + 1, 2nk′

∈ C ⇒ closed.
Right: f(p(n)) ≤ f(cnm) = 2cknkm

= O(2nkm+1
) ⇒ closed.

(e) C = {logkn|k > 0}:
Left: p(f(n)) = p(logk n) = O((logk n)m) = O(logkm n), for k′ = km, logk′

n ∈ C ⇒
closed.
Right: f(p(n)) ≤ f(cnm) = logk cnm = (log c + m log n)k = O(logk n) ⇒ closed.

(f) C = {k · log n|k > 0}:
Left: Let p(n) = n2. p(f(n)) = (k log n)2 = Ω(log2 n) 6∈ C ⇒ not closed.
Right: f(p(n)) ≤ f(cnm) = k · log cnm = k(log c+m log n) ≤ k′ log n for k′ = k(| log c|+
m) ⇒ closed.

Note: there is need to prove that f(p(n)) ≤ f(cnm) whenever this was used.

3. We describe a k′-string O(f(n)) time bounded block respecting TM M ′ with k′ = 2k+O(1) =
O(k) equivalent to M . We must assume f(n) ≥ n is a proper complexity function as described
in Question 1.

First, M ′ calculates the unary representation of
√

f(n) on the clock string. This can be done
in O(

√
f(n) space and O(n +

√
f(n)) = O(f(n)) time (prove! use results from Question 1

carefully since
√

n 6≥ n). We use a constant number of strings such that on every string we
don’t cross the

√
f(n) boundary.

M ′ simulates M , keeping the even and odd blocks of each string s on the strings s0, s1,
respectively. Every step is accompanied with a to-and-fro movement on the clock string, so
we know when it is safe to cross. Whenever M moves from an odd block to an even block or
vice versa, M ′ uses the respective string. When M ′ needs to cross a boundary, it waits until
due time and then crosses safely1.

Correctness: M ′ is equivalent to M since it simulates it, perhaps adding null steps; M ′

respects blocks, since it only crosses block boundaries on steps which are integer multiples of√
f(n).

1M ′ looks left, right and left again before crossing.

2

Fall 2005-2006
Computational Complexity Exercise #1

Proposed Solution
By Rani Hod

Time complexity: M ′ only waits when M passes from one odd/even block to the adjacent
odd/even block. In any case, M needs to stroll along a whole block, and this takes ≥

√
f(n)

steps. M only runs for f(n) steps, so no more than
√

f(n) stalls may occur. For each stall,
M ′ waits no more than

√
f(n) steps, so the total cost of stalls is bounded by f(n). Hence

the total running time of M ′ is O(f(n)).

4. We build the required circuit inductively. For n = 1 naught is to be done, as the parity
function is the identity function. For n = 2, naming the inputs x1, x2

XOR(x1, x2)
def
= (¬x1 ∧ x2) ∨ (x1 ∧ ¬x2)

is a circuit of depth 3 = O(1) and size 8 = O(1) that calculates the parity function (verify!).

For the general circuit (n > 2), we rely on the associativity of addition modulo 2 to represent
the parity function as a binary tree of XOR gates.

We split the n inputs into two groups of size bn
2 c and dn

2 e. For each group we recursively
build a parity circuit of depth 3 log2

n
2 = 3(log2 n− 1) and size O(n

2). Finally, we connect the
outputs of the two circuits via a XOR gate.

The depth of the resulting circuit is 3 + 3(log2 n− 1) = 3 log2 n;

The size of the resulting circuit is O(n) since it contains exactly n− 1 XOR gates (prove!) of
size O(1) each2.

5. We use the subroutine CV AL(C, x) that computes the value of a circuit C given the input x.
This can be computed in polynomial space.

Let C be the input circuit, n = |C|. C has k ≤ n inputs.

Algorithm: Enumerate (e.g., in lexicographic order) all circuits C ′ of size |C ′| ≤ |C|. If C ′

doesn’t have k inputs, skip it. For each C ′, we enumerate (e.g., in lexicographic order) all
inputs x ∈ {0, 1}k. If for any x CV AL(C, x) 6= CV AL(C ′, x), skip C ′ altogether; otherwise
return “true”. If all C ′ were skipped and we’ve reached C itself, return “false”.

Correctness: Obviously, the algorithm finds an equivalent C ′ if and only if such exists.

Space complexity: Each of C ′, x and the temporary calculation of CV AL consume poly-
nomial space which can be recycled between iterations. Thus the whole algorithm uses poly-
nomial space.

2Notice that the depth bound is calculated using the induction step whereas the size bound is proved directly.
Use the method easier for you.

3

