Fall 2005-2006 . Proposed Solution
Computational Complexity Exercise #4 By Rani Hod

1.

2.
3.

We show that 2-SAT is co-N L-hard by reducing s-T-CON € co-N L-complete to it. Let
(G, s,t) be a s-T-CON instance where G = (V, E);s,t € V;s # t. We regard V as variables
and output the following formula:

e(G,s,t)=(sVs)A(-tv-t) A N (-uVvo)
(u,v)eE

Let S C V be the set of vertices reachable from s in G and T C V be the set of vertices
reachable from ¢ in GT.

Correctness:

(=) Consider p : V > {true, false}, p(v) = true for v € S and p(v) = false for v ¢ S. If
t is not reachable from s, then p satisfies (G, s,t) since s € S, t € T CV — S and no
edge (u,v) € Ehasue SAveV —S.

(<) Let p be a satisfying truth assignment for ¢(G, s,t); consider a potential path P in G:
s =wv — vy — -+ — v = t. We have p(s) = true, p(t) = false so there exists
some 1 < i < k such that p(v;) = true and p(vit1) = false. But (=p(u) V p(v)) for all
(u,v) € E, hence (v;,v;41) ¢ E and P is not a path from s to ¢ in G.

Space Complexity:
Logarithmic, as we pass once over the input and have to remember only indices < n.

See Papadimitriou’s book.

(a) We use dynamic programming:
Let m(k,t) be the result of SUBSET-SUM((ayq,...,ax),t) for 0 < k <n,0 <t <s.
Begin with m(0,0) = true, m(0,t) = false for t > 0;
Calculate the next column m(k + 1,t) = m(k,t) V. m(k,t — ax)?’.
The output is m(n, S).
Time Complexity: We fill a (n+1) x (S+1) matrix, spending O(log S) time per cell?,
so the whole algorithm takes ©(nSlogS) time.
Note: space complexity can be reduced from O(nSlogS) to O(SlogS) by keeping only
the previous and current columns.

(b) Recall that the size of the input (A,S) for SUBSET-SUM is log(S) + >, 4log(a) =
O(n10g @maz + log S). The algorithm of 3a uses ©(nSlog S) = O(n2'°% % log S) which is
exponential regarding to the size of the input. Moreover, in the reduction that proves
SUBSET-SUM N P-hardness we actually used S = 2(")

IDefine m(k,r) = false for r < 0.
2For adding two numbers.

Fall 2005-2006 . Proposed Solution
Computational Complexity Exercise #4 By Rani Hod

4.

6.

Clearly DS € NP since we can check whether S C V dominates G in O(|V[*). We show that
DS is NP-hard by reducing VERTEX-COVER (VC) to it.

Let (G,k),G = (V, E) be an instance of VC. Let I C V be the set of isolated vertices in G.
Define p(G, k) = (G', k) where G' = (V/,E"), V' =VUE - I, E' = EU{(v,e)|lv € e € E}.

Correctness:

(=) Let S CV,|S| =k be a vertex cover of G and let S’ =S — 1. For v € V — I, there exists
some edge (u,v) € E such that either u € S or v € §’; for e = (u,v) € E, either u € S’
or v € §’. Hence, V' is dominated by S’ of size < k.

(<) Let S C V',|S| < k be a dominating set of G’ with minimal |[S N E|. We claim that
S C V: if some e = (u,v) € SN E exists, we could take either u or v to S instead of
e, reducing |S N E|. The set remains a dominating set since {u,v, e} is a triangle in G’.
Now, for e = (u,v) € E C V' we have some v € S dominating e, so S is a vertex cover
of size < k in G.

Space Complexity:
Logarithmic, as we remember only indices < n.

. Use a padding argument, analogous to the one used to scale up Sawvitch’s Theorem.

L € NSPACE(n) = NSPACE(log2") = L' € NL =
L' € co-NL =L € co-NSPACE(log2") = co-NSPACE(n)

This actually proves NSPACE(f(n)) = co-NSPACE(f(n)) for all proper complexity func-
tions f(n) > logn.

(a) We can solve 3-SAT in NL*: given a formula ¢ and a witness y, we check that y encodes
a valid truth assignment for ¢ and that each clause of ¢ is satisfied by y. We only need
logarithmic space for indices, and obviously ¢ € 3-SAT if and only if we accept ¢, y.

Since any L € NP can be logarithmically reduced to 3-SAT, NP C NL*.
(b) We have NL C P C NP C NL*. If P # NP, this containment is strict, so NL # NL*.

