
Fall 2005-2006
Computational Complexity Exercise #9

Proposed Solution
By Rani Hod

1. (a) Consider the complete graph H(G) = (V ∪E, (V ∪E)× (V ∪E)) and use the following
weights:

∀u, v ∈ V W (u, v) = 1
∀e, f ∈ E W (e, f) = |E|+ |V |

∀v ∈ V, e ∈ E W (v, e) =

{
1 v ∈ e

|E|+ |V | v /∈ e

Let R = E and q = |E|+ k − 1. Obviously the reduction is polynomial.

Proposition. H(G) has a Steiner Tree T spanning R of weight ≤ q if and only if G has
a VC S ⊂ V of size ≤ k.

Proof. (⇐) Consider the subgraph of H consisting of E ∪ S and the edges of weight 1
between them. S is a VC, so the subgraph is connected, hence contains a spanning tree
T . |E ∪ S| = |E|+ |S| ≤ |E|+ k = q + 1, so the T weighs ≤ q.
(⇒) Any tree of weight ≤ q cannot use any of the heavy (= |E|+ |V |) edges, so T only
uses edges of weight 1. Consider the set S ⊂ V ∩ T . T spans E, so every e ∈ E must
have an edge (of weight 1) to some vertex in S, so S is a VC in G. But T has ≤ q edges
and |E| of them connect E to S; that leaves ≤ q− |E| = k− 1 edges between vertices of
S, so |S| ≤ k.

(b) Consider the complete graph H ′(G) = (V ∪E ∪ {r}, (V ∪E ∪ {r})× (V ∪E ∪ {r})) and
use the following weights:

∀u, v ∈ V W (u, v) = 2
∀e, f ∈ E W (e, f) = 2

∀v ∈ V, e ∈ E W (v, e) =

{
1 v ∈ e

2 v /∈ e

∀v ∈ V W (r, v) = 1
∀e ∈ E W (r, e) = 2

Let R = E ∪ {r} and q = |E|+ k. Obviously the reduction is polynomial.
Note that since all weights are 1 or 2, the triangle inequality holds for W .

Proposition. H ′(G) has a Steiner Tree T spanning R of weight ≤ q if and only if G
has a VC S ⊂ V of size ≤ k.

Proof. (⇐) Same as in 1a, except the subtree inside V is replaced by a star whose origin
is r.
(⇒) Consider the Steiner Tree T under weight ≤ q spanning R that has the least number
edges of weight 2. We claim that this number is 0: assume that T is rooted ar r and
consider the path from e ∈ E via an endpoint v ∈ e to r. This path uses two edges of
weight 1, so it can replace any path of weight ≥ 2.
From here the proof continues as in 1a with the obvious adjustments.
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(c) Using the reduction from 1b we can show that

Gap[|V |α,|V |β]Bounded-Degree-VC ≤P Gap[|V |α+|E|,|V |β+|E|]Metric-ST

So it is NP -hard to approximate within

|V |β + |E|
|V |α + |E|

= 1 +
|V |(β − α)
|V |α + |E|

≥ 1 +
|V |(β − α)
|V |α + 2|V |∆

= 1 +
β − α

α + 2∆
=

β + 2∆
α + 2∆

> 1

2. Assume without loss of generality that for every variable x, both the literal x and ¬x occur
in φ since otherwise we can substitute x = true/false in φ and drop the clause(s) in which it
appears, without affecting the satisfiablity of φ.

Consider now the clause-variable incidence bipartite graph H(φ) with vertex sets C (clauses)
and X (variables).

Proposition. φ is satisfiable if and only if H(φ) has a matching that saturates C.

Proof. (⇒) Every truth assignment to the variable x ∈ X satisfies exactly one clause; thus,
in order to satisfy all clauses in C ′ ⊆ C, we have to have |C ′| variables in N(C ′). But φ is
satisfiable, so for all C ′ ⊆ C, |N(C ′)| ≥ |C ′|. The result follows by Hall’s Theorem.

(⇐) Every clause c ∈ C has a unique matching variable x ∈ X. Assign to x the value that
will satisfy c. Now all clauses have been satisfied.

H can be constructed in polynomial time and a saturating matching can be calculated in
polynomial time using max-flow algorithms, so 2-Occ-3-SAT ∈ P .

3. (a) Note that for every cut S ⊂ V , E = E(S, S) ∪ E(V − S, V − S) ∪ E(S, V − S);
thus a cut is maximal if and only if the uncut is minimal. We’ve shown in class that
Gap[α,β]Max-Cut is NP -hard for some 0 < α < β < 1, so the trivial reduction shows
that Gap[1−β,1−α]Min-Uncut is NP -hard as well. Therefore, it is NP -hard to approx-
imate within c = 1−α

1−β > 1.

(b) Either use a direct probablistic argument – E(|E(S, S) ∪ E(V − S, V − S)|) = |E|
2 – or

remember that every graph contains a cut of size ≥ |E|
2 , so the corresponding uncut is

of size ≤ |E|
2 .

(c) Use the 2-approximation algorithm for Max-Cut shown in class.

(d) No. For instance, a non-complete bipartite graph always has a uncut of size 0, but the
algorithm might find a larger uncut (e.g., for a path of length 3, the algorithm might
put both ends in S).
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4. (a)

(b)

PSPACE ⊆ PPSPACE since we can pass the input to the oracle and
return its reply.

⊆ NPPSPACE since P ⊆ NP

⊆ PSPACEPSPACE since NP ⊆ PSPACE

= PSPACE since we can process the queries ourselves
in polynomial space.

Thus PPSPACE = PSPACE
by 4c
= NPSPACE = NPPSPACE .

(c) Obviously PSPACE ⊆ NPSPACE; the other direction is a result of Savitch Theorem,
as NSPACE(p(n)) ⊆ SPACE(p2(n)) for all polynomials p(n).

(d)

(e)

EXP ⊆ PEXP since we can pass the input to the oracle and return its reply.

⊆ NPEXP since P ⊆ NP

⊆ EXP since we can try all guesses and process each of the polynomially
sized queries in exponential time.

Thus PEXP = NPEXP = EXP .
Note: we’ve shown here NPEXP = EXP ; we shouldn’t hope for a stronger claim unless
we solve the open question EXP

?= NEXP .
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