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By Rani Hod

1. We seek c = min
A⊆V

cA where cA = E(A,V−A)
min(|A|,|V−A|) ; we have to show

• (upper bound) c ≤ min
A⊆V

cA by showing some A such that cA = c;

• (lower bound) c ≥ min
A⊆V

cA by showing that for all A, cA ≥ c.

(a) G = Kn. For any A ⊆ V , E(A, V − A) = |A||V − A|, hence cA = max(|A|, |V − A|).
Therefore, c = min cA = dn

2 e.
(b) G = Zn

2 , a 4-regular lattice. Consider A = {(i, j)|0 ≤ i < n, 0 ≤ j < n
2 }, |A| = nn

2 (of n2

vertices). We have E(A, V − A) = 4n since every vertex on the side boundary of the A
has one neighbor in V −A, so c ≤ cA = 4

n (for even n).

For the lower bound, consider a set A of size |A| ≤ n2

2 . Assume without loss of generality
that both A and V −A are connected1.
By the pigeonhole principle, A has vertices with ≤ 2 neighbours in A (e.g., corner
vertices)2. Any vertex of V − A that has ≥ 3 neighbours in A can switch places with
such a corner vertex, only decreasing E(A, V − A), so we can arrange that both A is
(almost) rectangular.
Consider now a x×y rectangle. If x, y < n, it has 2(x+y) boundary vertices contributing
2(x + y) edges to E(A, V −A), thus cA = 2

x + 2
y ≥

4
√

2
n ; If x = n or y = n (both cannot

happen as xy = |A| ≤ n2

2 ) we have E(A, V −A) = 2n, so cA ≥ 2n
|A| ≥

4
n .

In any case, cA ≥ 4
n .

(c) Consider A = {(0, x2, . . . , xn)|xi ∈ Z2}, |A| = 2n−1. We have E(A, V −A) = 2n−1 since
every vertex (0, x2, . . . , xn) ∈ A has exactly one neighbor (1, x2, . . . , xn) ∈ V − A, so
c ≤ cA = 1.
The proof of the lower bound is similar to 1b.

2. We assume ∆(G) = ∆ (independent on n). For a given vertex w ∈ V , let Ui(w) be the set of
vertices reachable from w in i steps. Obviously, U0(w) = {w}, Ui+1 = Ui ∪N(Ui).

Since G is a c-expander, |E(Ui, V −Ui)| ≥ c|Ui| (as long as |Ui| ≤ n
2 ). Every vertex in N(Ui)

has degree ≤ ∆, so |N(Ui)| ≥ 1
∆ |E(Ui, V −Ui)| ≥ c

∆ |Ui| and |Ui+1| = (1 + c
∆ )|Ui|. Hence, for

i∗ = 1 + log1+ c
∆

n
2 , |Ui∗ | > n

2 .

Now, Ui∗(u) ∩ Ui∗(v) 6= ∅ since both cover more than half of V , thus there exists a path
connecting u and v of length 2i∗ = O(log n).

Note that the above holds for directed graphs as well (consider the analoguous Vi(w), the set
of vertices from which w is reachable in i steps).

3. We reduce from Gap-4-NAE.

Lemma. Gap[a,b]-4-NAE ≤P Gap[a′,b′]-3-NAE for a′ = 1+a
2 , b′ = 1+b

2 .

1If A has more than one connected component, we can decrease E(A, V −A) by moving a connected component
of it near another connected component.

2Unless A is a rectangle of length or width n, but that case is covered as well in the analysis.
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Proof. Given a 4-CNF formula ϕ with m clauses, we generate a 3-CNF formula ϕ′ with
2m clauses by replacing each clause Ci = l1 ∨ l2 ∨ l3 ∨ l4 by two clauses C ′

i = l1 ∨ l2 ∨ zi,
C ′′

i = l3 ∨ l4 ∨ ¬zi where zi is a new variable. Obviously, the reduction is polynomial.

As seen in the 4-NAE ≤P 3-NAE reduction, a truth assignment NAE-satisfies Ci if and
only if it can be extended to a truth assigment that NAE-satisfies both C ′

i and C ′′
i (otherwise

exactly one of C ′
i, C

′′
i is NAE-satisfied).

If ϕ ∈ Y ES, at least bm clauses can be NAE-satisfied in ϕ, so at least b ·2m+(1−b)m = b′2m
clauses can be NAE-satisfied in ϕ′, hence ϕ′ ∈ Y ES.

If ϕ ∈ NO, at most am clauses can be NAE-satisfied in ϕ, so at most a ·2m+(1−a)m = a′2m
clauses can be NAE-satisfied in ϕ′, hence ϕ′ ∈ NO.

Since Gap[a,b]-4-NAE is known to be NP -hard for a = 7
8 + ε, b = 1, we conclude that

Gap[ 1516+ε′,1]-3-NAE is NP -hard as well, so unless P = NP no polynomial algorithm can
approximate 3-NAE to within c for any c > 15

16 .

4. (a) We reduce from Gap-E3-SAT.

Lemma. Gap[a,b]-E3-SAT ≤P Gap[a′,b′]-E4-SAT for a′ = 1+a
2 , b′ = 1+b

2 .

Proof. Given a 3-CNF formula ϕ with m clauses, we generate a 4-CNF formula ϕ′ with
2m clauses by replacing each clause Ci = l1 ∨ l2 ∨ l3 by two clauses C ′

i = l1 ∨ l2 ∨ l3 ∨ z,
C ′′

i = l1 ∨ l2 ∨ l3 ∨¬z where z is a new variable. Obviously, the reduction is polynomial.
Without loss of generality, any truth assignment lets z = true, so ϕ′ = ϕ ∧

∧m
i=1 true.

If ϕ ∈ Y ES, at least bm clauses can be satisfied in ϕ, so at least bm + m = b′2m clauses
can be satisfied in ϕ′, hence ϕ′ ∈ Y ES.
If ϕ ∈ NO, at most am clauses can be satisfied in ϕ, so at most am + m = a′2m clauses
can be satisfied in ϕ′, hence ϕ′ ∈ NO.

Since Gap[a,b]-E3-SAT is assumed to be NP -hard for a = 7
8 + ε, b = 1, we conclude that

Gap[ 1516+ε′,1]-E4-SAT is NP -hard as well, so unless P = NP no polynomial algorithm
can approximate E4-SAT to within c for any c > 15

16 .

(b) For a random truth assignment, the probability of a single clause to be satisfied (†) is
15
16 , hence the expected number of satisfied clauses is 15

16m and there exists some truth
assignment satisfying at least 15

16 of the clauses. Therefore, a conditional expectation
algorithm (similar to the one for E3-SAT) approximates E4-SAT to within 15

16 .

(c) No, as (†) is no longer true. Example: only half of the clauses in ϕ = (x ∨ x ∨ x ∨ x) ∧
(¬x ∨ ¬x ∨ ¬x ∨ ¬x) may be satisfied.

5. (a) Consider any truth assignment ρ and its complement ¬ρ (assigning ¬ρ(x) to each x).
Every 3-equation is satisfied by exactly one of ρ,¬ρ, hence for every system of m 3-
equations, at least m

2 can be satisfied by one of them. Therefore, the algorithm that
tests ρ and returns either ρ or ¬ρ is a polynomial 2-approximation.
Another possible solution is by conditional expectation (as was shown in class for E3-
SAT).
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(b) As seen in 5a, NO = ∅ for this problem; therefore, the trivial return-true algorithm
maps Y ES instances to true and NO instances (none exist) to false, as requested.

(c) Since Y ES instances can be identified by a polynomial-time algorithm (e.g., elimination
over Z2), this algorithm maps Y ES instances to true and all other (i.e., don’t care and
NO instances) to false, as requested.

(d) We show that Gap[ 12+ε,1−ε]-LinEq ≤P Gap[ 78+ε′,1−ε′]-3-SAT for ε′ = ε
4 ; the result

follows.
Assume without loss of generality that all equations are of the form l1 ⊕ l2 ⊕ l3 = 1 (by
negating a literal and the free term, if needed).
Given a system E of m 3-equations, we generate a 3-CNF formula ϕ with 4m clauses
by adding for each equation e : l1 ⊕ l2 ⊕ l3 = 1 the four clauses generated by converting
(l1 ↔ (l2 ↔ l3)) to CNF:

Ce = (l1 ∨ l2 ∨ l3) ∧ (l1 ∨ ¬l2 ∨ ¬l3) ∧ (¬l1 ∨ l2 ∨ ¬l3) ∧ (¬l1 ∨ ¬l2 ∨ l3)

Obviously, the reduction is polynomial.
Observe that an assignment satisfies e if and only it satisfies all four 3-CNF clauses, and
any assignment that doesn’t satisfy e, satisfies exactly three of them.
If E ∈ Y ES, at least (1−ε)m equations in E can be satisfied, so at least (1−ε)4m+ε·3m =
(1− ε′)4m clauses can be satisfied in ϕ, hence ϕ ∈ Y ES.
If E ∈ NO, at most (1

2 + ε)m equations in E can be satisfied, so at most ( 1
2 + ε)4m +

( 1
2 − ε)3m = ( 7

8 + ε′)4m clauses can be satisfied in ϕ, hence ϕ ∈ NO.
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