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Instructions: As before.

Problems

1. Finite fields: Let Fq be the field with q = pm elements for some prime p and m ≥ 1.

(a) Show that there is a bijection f : Fq → Fm
p which is Fp linear (i.e., f(x+y) = f(x)+f(y)

and f(αx) = αf(x) for all x, y ∈ Fq, α ∈ Fp). This shows that we can think of the
field Fq as the set of m-dimensional vectors over Fp with standard addition of vectors,
and some rule for the multiplication of two vectors. Hint: Recall/show that Fq is an
m-dimensional vector space over Fp.

(b) Show that for any a, b ∈ Fq, (a + b)p = ap + bp. Deduce that (a + b)pl
= apl

+ bpl
for any

l ≥ 0. Hint: In Fq, the element p = 1 + · · ·+ 1︸ ︷︷ ︸
p

is equal to 0 (why?).

(c) Prove the following equality in Fq[x]:
∏

α∈F∗q
(x− α) = xq−1 − 1.

Hint: Do not expand the left hand side.

(d) Assume p is odd. An element α ∈ Fq is called a quadratic residue if it is the square of a
nonzero element in Fq. Show that there are exactly (q − 1)/2 quadratic residues in Fq.
Hint: Recall that the nonzero elements in Fq are given by 1, γ, γ2, . . . , γq−2 where γ is a
generator of F∗q .

2. Binary BCH codes: Let q = 2m for some m ≥ 1, n = q− 1 and k = n− 2t for some t ≥ 1. The
generator matrix of a primitive [n, k, 2t + 1]q RS code is given by

G =




1 1 · · · 1
α1 α2 · · · αn

...
...

...
αk−1

1 αk−1
2 · · · αk−1

n




where α1, . . . , αn are all nonzero elements of Fq. In class we showed that the parity check
matrix of this code is given by

H =




α1 α2 · · · αn

α2
1 α2

2 · · · α2
n

...
...

...
α2t

1 α2t
2 · · · α2t

n




(make sure you remember why).

(a) Show that any 2t = n− k columns of H are linearly independent (over Fq).
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(b) By removing all even rows, we obtain the t× n matrix

H ′ =




α1 α2 · · · αn

α3
1 α3

2 · · · α3
n

...
...

...
α2t−1

1 α2t−1
2 · · · α2t−1

n




.

Show that any 2t columns of H ′ are linearly independent over F2 (i.e., any sum of at
most 2t columns of H ′ is nonzero). Hint: Use (1b).

(c) Let H ′′ be the tm× n matrix over F2 obtained from H ′ by replacing each element of Fq

with an m-bit column vector, as in (1a). Show that any 2t columns of H ′′ are linearly
independent (over F2).

(d) Deduce the existence of a [n,≥ n − t log(n + 1),≥ 2t + 1]2 code. Notice that for any
constant t, this code almost matches the Hamming bound.

3. Hadamard matrices: Recall that an n× n matrix H all of whose entries are from {+1,−1} is
a Hadamard matrix if H ·HT = n · I where the matrix product is over the reals and I is the
n× n identity matrix.

(a) Show that the determinant of an n× n Hadamard matrix is nn/2 in absolute value and
that this is the largest achievable by any ±1 matrix. Hint: Use Hadamard’s inequality.

(b) Show that if there is an n × n Hadamard matrix then n is either 1 or 2 or a multiple of
4. It is conjectured that this condition is also sufficient.

(c) Given an n × n Hadamard matrix Hn and an m ×m Hadamard matrix Hm, construct
an nm× nm Hadamard matrix.

(d) (Not to be turned in) Let q be a prime power equivalent to 3 modulo 4. Let H = {hij} be
the q × q matrix with hij = 1 if i = j, and hij = (j − i)(q−1)/2 otherwise where we think
of i, j as running over all elements of Fq. Let H ′ be the (q + 1)× (q + 1) matrix obtained
from H by adding one row and one column of 1s. Verify that H ′ is a Hadamard matrix.
This is Paley’s construction of Hadamard matrices. The first dimension not covered by
Paley’s nor Sylvester’s construction is n = 36. Other constructions are known there.
The first dimension where no Hadamard matrix is known is 668.

4. Wozencraft ensemble: Show that for any 0 ≤ δ ≤ 1 and ε > 0 there is a family of 2k codes
such that all but an ε fraction of them are [(1 + δ)k, k, (H−1(1 − 1

1+δ ) − ε)(1 + δ)k]2-codes,
i.e., almost all codes nearly match the Gilbert-Varshamov bound for rate 1

1+δ . Use the family
of linear codes {Sα | α ∈ F2k} where Sα is obtained from the linear code {(x, αx) | x ∈
F2k} ⊆ F2k

2 by removing some arbitrary (1 − δ)k coordinates from all codewords. Deduce
that Justesen codes can match the Zyablov bound for all large enough rates.
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