Practice Midterm

Instructions

- Answer each question on a separate page.
- This exam is roughly representative of the difficulty and length of the actual midterm, for which you will have 75 minutes.
- You may use any algorithm or theorem we saw in class without proof, as long as you state it correctly. For all questions asking you to give algorithms, you do not have to give detailed pseudo-code, or even any pseudo-code. It is enough to give a clear description of your algorithm.
- This exam is only for practice. You need not submit your solutions.

Question 1: (30 points)

Answer true or false for the following. If true, provide a brief justification, if false provide a counterexample.

1. If $f=\Omega(g)$ and $g=\Omega(h)$ then $f=\Omega(h)$.
2. Assume that $f(n)=\Theta\left(\log _{2}(n!)\right)$ and $g(n)=\Theta\left(n \log _{2} n\right)$. Then $f=\Theta(g)$. (Hint: compare $n!$ to $\left(\frac{n}{2}\right)^{\frac{n}{2}}$ and n^{n}.)
3. Assume $T(1)=T(2)=1$ and that for $n>2$ we have the recurrence

$$
T(n)=T\left(\left\lceil\frac{n}{3}\right\rceil\right)+T\left(\left\lceil\frac{2 n}{3}\right\rceil\right)+n
$$

Then $T(n)=\Theta\left(n \log _{2} n\right)$. (You can ignore the ceiling function.)

Question 2: ($\mathbf{3 5}$ points)

Let $A[1, \ldots, n]$ be an array of n strictly increasing integers, starting with the number 1 . Consider the set of natural numbers denoted by $\mathbb{N}=\{1,2,3,4, \ldots, n, \ldots$,$\} . If any of these numbers are not in A$, we say it is a missing number. In this problem, you will be working to identify the missing numbers based on some constraints.

1. Design a recursive $O(\log n)$-time algorithm that determines the smallest missing number. For example, if $A=[1,2,4,5,6,8]$ then this would be 3 whereas if $A=[1,2,3,4,5,6]$ then the smallest missing number is 7 .
2. In addition to A and n, you are also provided a positive integer $k \geq 1$ and the task is to determine the k-th missing number (so the case $k=1$ is as before). For example, if $A=[1,2,4,5,6,8,9,10]$ and $k=1$, the output should be 3 , if $k=2$ the output should be 7 , and if $k=4$ the output should be 12. Design a recursive $O(\log n)$-time algorithm that returns the k-th missing number given an array A of n integers and the input k.

Question 3: (35 points)

Let $M_{k}(n)$ be the number of possible strings of length n where the 1 's must be no closer than k apart (i.e., there must be at least k zeros separating any two 1 s). For example, for $n=6$ and $k=2$, " 100100 " is a valid string, but " 100101 " is not.

1. For the special case where $k=1$ justify why $M_{1}(n)=M_{1}(n-1)+M_{1}(n-2)$.
2. Give the recurrence relation that the $M_{k}(n)$ satisfy. Namely, express $M_{k}(n)$ as a function of the values $M_{k}(i)$ for $i<n$ and provide the base case.
3. Design a dynamic programming algorithm that takes as input two natural numbers n and k, and outputs $M_{k}(n)$. Give its running time, with a brief justification.

Extra practice questions

The following questions are more challenging than the level of the exam, but may be useful for further practice:

Question 4:

Consider a set S of $n \geq 2$ distinct numbers. Call a pair of distinct numbers $x, y \in S$ close in S if

$$
|x-y| \leq \frac{1}{n-1}\left(\max _{z \in S} z-\min _{z \in S} z\right)
$$

That is, if the distance between x and y is at most the average distance between consecutive numbers in the sorted order. For example if $S=\{1,2,7\}$ then the average distance is $\frac{7-1}{2}=3$ and so in this case $(1,2)$ are close.

1. Prove that every set S of $n \geq 2$ distinct numbers contains a pair of close elements.
2. Show that for any real numbers $a<p<b$, and natural numbers $k_{1}, k_{2}>1$,

$$
\min \left(\frac{p-a}{k_{1}-1}, \frac{b-p}{k_{2}-1}\right) \leq \frac{b-a}{k_{1}+k_{2}-2} .
$$

(Hint: You can try to first prove this for the special case: $k_{1}=k_{2}$. You will get half the points for this part for proving it only for the special case.)
(Hint: Check that $\frac{b-a}{k_{1}+k_{2}-2}=\frac{k_{1}-1}{k_{1}+k_{2}-2} \cdot \frac{p-a}{k_{1}-1}+\frac{k_{2}-1}{k_{1}+k_{2}-2} \cdot \frac{b-p}{k_{2}-1}$. Now what happens if the inequality does not hold?).
3. Suppose that we partition around a pivot element $p \in S$ organizing the result into two subsets of S : $S_{1}=\{x \in S \mid x \leq p\}$ and $S_{2}=\{x \in S \mid x \geq p\}$. Prove that for some $k \in\{1,2\}$ every close pair in S_{k} is also a close pair in S. (Hint: use part 2. Show that part 2 implies that the average distance between elements in some S_{k} is at most the average distance between elements in S).
4. Describe an $O(n)$ time algorithm to find a close pair of numbers in S. Justify the correctness and run time bound of your algorithm. (Hint: We would like to keep choosing p in the middle of the set we are considering and then have to consider only one of the sets, S_{1} and S_{2}).

