Basic Algorithms, Spring 2022 CSCI-UA.0310-001,003

Homework 3: Due February 14 (11:55 a.m.)

Instructions

* Answer each question on a separate page.

* Honors questions are optional. They will not count towards your grade in the course. How-
ever you are encouraged to submit your solutions on these problems to receive feedback on
your attempts. Our estimation of the difficulty level of these problems is expressed through an
indicative number of stars ('+’ = easiest) to ('« * x x ' = hardest).

* You must enter the names of your collaborators or other sources as a response to Question 0.
Do NOT leave this blank; if you worked on the homework entirely on your own, please write
“None’” here. Even though collaborations in groups of up to 3 people are encouraged, you are
required to write your own solution.

Question 0: List all your collaborators and sources: (—oo points if left blank)

Question 1: (20 points)
This problem involves coding. Please make sure to:

1. Sign the consent form (click here) to use HackerRank.

2. Create an account at HackerRank and join the contest (click here).

For credit on the coding part, please list your HackerRank username here:

Question 2: (10 points)

Naively, in order to compute 2022" given input n, we need to perform n — 1 many multiplications. Give
an algorithm that takes as input n and computes 2022 using only O(log, n) many multiplications. Prove
the correctness and complexity (number of multiplications used) bound of your algorithm. (Hint: consider
the case when n is a power of 2, i.e. n = 2% Then, extend it to the general case).

Question 3: (10 points)

A sorting algorithm is stable if objects with equal keys appear in the same order in the sorted output
as in the unsorted input. Formally, if A[] is the unsorted array, for any two indices ¢ and j, ¢ < j, such
that Afi].key = A[j].key, their final positions 7" and j’ in the output of Merge Sort satisfy i’ < j'. For
example consider a list of Student Objects, with two fields, Student.name and Student.age. Now given a
list of Student objects, a stable sort with respect to age would order the list in increasing order (say) of the
student ages but if two students have the same age, they will appear in the same order as in the unsorted
list. Prove that Merge Sort (as seen in class) is stable.

https://docs.google.com/forms/d/e/1FAIpQLSda7IZ5uTnOAq9H2CKdmgMO_Wo_QFsNEFoh5vToZ9bb1aaC1w/viewform?usp=sf_link
https://www.hackerrank.com/spring2022-basic-algorithms-hw2

Basic Algorithms, Spring 2022 CSCI-UA.0310-001,003

Question 4: (2+3+5+5+5=20 points)

Suppose you are given a list A of n distinct numbers. You are guaranteed that this list is ‘close to sorted’
in the following sense: if Agyeq denotes the list fully sorted in increasing order, then Aoeq differs from
A only at log, n many positions. Intuitively, this says that at most log, n elements are out of place in the
original list. For instance, in the list

(2,5,9,11,20,14,15,12, 25, 30)
only two elements are out of place (20 and 12), since after sorting, we get
(2,5,9,11,12,14, 15, 20, 25, 30) .

The following exercises will ultimately lead to an algorithm which sorts A in time O(n) ﬂ Answer each
exercise. Don’t forget to read the hints!

1. (Warm up) Prove that the leftmost (first) out of place element must be too big (not too small) for its
place.

2. Suppose we construct a stack S as follows: We go through A from left to right, pushing elements
one by one into S as long as the next element from A is larger than the top element s of the stack so
far. If at any step 4 the element A[i] which we are currently considering in A is smaller than s, we
instead pop s from S and continue. This idea is described in the pseudo code below:

Algorithm 1 Construct increasing subsequence S

Input: A and an empty stack S.
Output: S representing an increasing subsequence of A
n < len(A)
fori =1tondo
if S is empty or S.topElement() < A[i] then
S.push(A[i])
else
S.pop()
end if
end for

return S

If A is initially (2, 5,9, 11,20, 14, 15, 12, 25, 30), what will S be after Algorithm 1 has run?

3. Prove that S is an increasing subsequence of A (the elements of the output stack are increasing from
bottom to top).

4. Prove that S contains all but at most 2 log, n of the elements of A. (Hint: show that every time we
leave out a pair of elements (the “else” case) at least one of them must have been an out of place
element.)

"Note that sorting algorithms take O(n log n) time without any assumptions on the inputs. Here, we are able to get the faster
O(n) run-time by assuming that the input array A is already close to being sorted.

Basic Algorithms, Spring 2022 CSCI-UA.0310-001,003

5. Use the previous statements to design and prove the correctness and run-time of an algorithm to sort
the nearly sorted array in time O(n). (Hint: Suppose the out of place elements could be separated
from the rest of A which is sorted (This is what parts 3 and 4 show). Then since there are only a few
of them they can be sorted quickly and the rest of the elements are in S which is already increasing.
Now think of the “Merge” subroutine in Merge Sort.)

Question 5: (2+2+4+2=10 points)

In the lecture (and previous homework) we looked at using Recursion Trees to solve recurrence relations.
However, there is a simplified result called Master Theorem, for a limited class of recurrence relations.
An expansive discussion on this can be found in CLRS, Section 4.5.

Theorem 1 (Master Theorem). Let a > 1 and b > 1 be constants, let f(n) be a function, and let T'(n) a
function defined on non-negative integers by the recurrence.

T(n) =aT(n/b)+ f(n) .
Then, T'(n) has the following asymptotic bounds:
(a) If f(n) = O(n'°% =€) for some constant ¢ > 0, then T'(n) = O(n'°% %),
(b) If f(n) = O(n'°% %), then T'(n) = O(n'°&*logn).

(c) If f(n) = Q(n'°%9€) for some constant ¢ > 0, and a f(n/b) < cf(n) for some constant c < 1 and
all sufficiently large n, then T'(n) = ©(f(n)).

The proof of this theorem is immediate by applying recursion tree approach to solving the recurrence
relation but we omit it for sake of simplicity.
We now illustrate a simple example of how you can use the Master theorem. We want to solve the
recurrence
T(n)=2T(n/2) +n.

* Looking at the theorem statement: a = 2,b = 2 and f(n) = n.
* We observe that log, a = log, 2 = 1. So n'°#:® = n,

* Since f(n) = n = O(n), we are in Case|(b)|

e SoT(n) = O(n#%logn) = O(nlogn).

The fancy language with the € is a mathematical way of formalizing the following idea: Take the
function f(n), and take the function g(n) = n'°# 2. We can only apply Case [(a) or Case [(c)|if functions f
and g are “polynomially” larger than each other. If f is polynomially smaller than g, apply Case[(a)} If f
is polynomially larger than g apply Case[(c)} For example, if f(n) = n% and g(n) = n'°#% = n, then
they can be compared and it would satisfy Case but f(n) = nlogn and n'°»* = n they would not
satisfy this formulation of the Master Theorem, and you cannot apply it.

Read the above preamble before you proceed. We promise it will be useful!

For each of the following recurrence relations, solve by Master Theorem. State and justify which case
of the Master Theorem is applied. If Master Theorem cannot be applied, justify why it cannot be applied.

2For simplicity, we ignore issues of divisibility, and assume that 7 /b is an integer.

Basic Algorithms, Spring 2022 CSCI-UA.0310-001,003

1. T(n) = 4T (%) + nlogn
2. T(n) = 4T(2) + n?

3. T(n) = 4T(2) + n2logn
4. T(n) = 4T(Z) +n®

Honors Questions

Question 6: Honors

(*) We have just seen how to sort in linear time when there are only O(logn) elements out of place in
the original list. But can it be done even if more than O(logn) elements are out of place? What is the
largest number of out of place elements you can handle while still maintaining linear running time? (Hint:
Does the method we developed in the homework require that only O(logn) elements are out of place?
What happens if there are more elements out of place? What is the run-time if there are k out of place
elements?)

Question 7: Honors

Recall the closest pair algorithm. In class you have seen the algorithm to find the closest pair of points in
a plane.

1. (**) Consider the 3-dimensional version of this problem: given n points in Z* we want to find the
closest pair of points. Try to use the ideas seen in class to develop an algorithm to solve this problem
as efficiently as possible.

2. (**%) Can you find an O(n log® n) time algorithm?
3. (***%) What about an O(nlogn) time algorithm?

4. (¥*#¥%%) In fact there is an algorithm which solves this problem for any constant size dimension d
in time O(nlogn)!

You can look at these notes for ideas (preferably after trying the problem): https://sites.cs.ucsb.
edu/"suri/cs235/ClosestPair.pdf

https://sites.cs.ucsb.edu/~suri/cs235/ClosestPair.pdf
https://sites.cs.ucsb.edu/~suri/cs235/ClosestPair.pdf

	List all your collaborators and sources: (-∞ points if left blank)
	(20 points)
	(10 points)
	(10 points)
	(2+3+5+5+5=20 points)
	(2+2+4+2=10 points)
	Honors
	Honors

