Instructions as before.

- 1. **The Nisan-Szegedy bound [2]:** Let $f : \{0,1\}^n \to \mathbb{R}$ be a nonzero function of degree at most d (i.e., $\hat{f}(S) = 0$ for all S of size at least d + 1).
 - (a) Show that $\Pr[f(x) \neq 0] \geq 2^{-d}$ (this is known as the Schwartz-Zippel lemma). Hint: induction on n.
 - (b) Show that if in addition f maps into [-1,1] then $\mathbb{I}(f) \leq d$.
 - (c) Show that if in addition f maps into $\{-1,1\}$ then f is a $d2^d$ -junta.
 - (d) Consider the address function $Addr_k : \{0,1\}^{k+2^k} \to \{-1,1\}$ defined by

$$Addr_k(x_1,...,x_k,y_1,...,y_{2^k}) = (-1)^{y_x}$$

where we think of x here as an element of $[2^k]$. Show that $deg(Addr_k) = k + 1$. Conclude that the bound in (c) must be at least $2^{d-1} + d - 1$.

2. Total influence of DNFs:

- (a) Assume f can be expressed as a DNF of width w (i.e., each clause has at most w literals). Show that $\mathbb{I}(f) \leq 2w$. Open question: improve on the constant 2.
- (b) Deduce that width-w DNFs can be learned from random examples in time $n^{O(w/\varepsilon)}$. We will improve this in class.
- 3. Unbalanced functions have a low Fourier coefficient: Let $f : \{0,1\}^n \to \{-1,1\}$ be such that $\hat{f}(\emptyset) \notin \{-1,0,1\}$ (i.e., f is neither constant nor balanced).
 - (a) Show that there must exist a nonempty S of size at most 2n/3 such that $\hat{f}(S) \neq 0$. Hint: f^2
 - (b) Optional: show that the 2n/3 bound above is tight.
 - (c) Does a similar statement hold for balanced functions?
- 4. **Bent functions:** Show an upper bound on $\|\hat{f}\|_1 := \sum_{S} |\hat{f}(S)|$ among all functions $f : \{0,1\}^n \to \{-1,1\}$. For infinitely many n, show a function achieving this bound.
- 5. **Deterministically estimating Fourier coefficients:** A set $A \subseteq \{0,1\}^n$ is called ε -biased if for x chosen uniformly from A and for all nonempty $S \subseteq [n]$, $|\operatorname{Exp}_x[\chi_S(x)|| \le \varepsilon$. There is a known algorithm that on inputs ε , n, outputs an ε -biased set of size $(n/\varepsilon)^2$ in time $\operatorname{poly}(n,1/\varepsilon)$. Use this to show how to deterministically estimate $\hat{f}(S)$ to within $\pm \varepsilon$ for any given S in time $\operatorname{poly}(\|\hat{f}\|_1,n,1/\varepsilon)$ using query access to $f:\{0,1\}^n \to \mathbb{R}$. You can assume the algorithm knows $\|\hat{f}\|_1$.
- 6. Close functions and concentration: Recall that f is ε -concentrated on a family \mathcal{S} if $\sum_{S \notin \mathcal{S}} \hat{f}(S)^2 \leq \varepsilon$. Show that if $||f g||_2^2 \leq \varepsilon$ and g is ε -concentrated on \mathcal{S} then f is 4ε -concentrated on \mathcal{S} .

- 7. Learning functions with low $\|\hat{f}\|_1$:
 - (a) For $f: \{0,1\}^n \to \mathbb{R}$ let $L = \|\hat{f}\|_1$. Show that for any $\varepsilon > 0$, f is ε -concentrated on a set of size at most L^2/ε .
 - (b) Deduce that the set of Boolean functions f with $\|\hat{f}\|_1 \leq L$ can be learned in time poly $(L, \frac{1}{\varepsilon}, n)$ using membership queries.
 - (c) Define a *decision tree on parities* as a decision tree where on each node we can branch on an arbitrary parity of variables (as opposed to just a single variable in the usual definition of decision trees). Show that decision trees on parities of size L can be learned in time $poly(L, \frac{1}{\varepsilon}, n)$ using membership queries.
- 8. The Goemans-Williamson MAX-CUT 0.87856-approximation algorithm [1]: (no need to hand in) The input to the algorithm is an undirected graph G=(V,E) on n vertices. The first step is to solve the following optimization problem over vector variables $v_1,\ldots,v_n\in\mathbb{R}^n$: maximize $\sum_{\{i,j\}\in E}(1-\langle v_i,v_j\rangle)/2$ subject to all vectors being unit vectors. It is known that this optimization problem can be solved efficiently (because it is a convex optimization problem, and in fact a semidefinite program). Notice that the value of the optimum is at least the number of edges in the optimal MAX-CUT. The second step in the algorithm is to take the optimal solution v_1,\ldots,v_n and to construct from it a good solution to MAX-CUT (this step is known as rounding). This is done as follows: choose a random unit vector $w\in\mathbb{R}^n$ uniformly and partition the vertices according to the sign of $\langle w,v_i\rangle$. Notice that each edge $\{i,j\}$ is cut with probability $\frac{1}{\pi} \arccos \langle v_i,v_j\rangle$. Hence the expected size of the cut given by the algorithm is $\frac{1}{\pi}\sum_{ij}\arccos \langle v_i,v_j\rangle$. To complete the proof, notice that this is at least $\alpha\cdot\sum_{\{i,j\}\in E}(1-\langle v_i,v_j\rangle)/2$ where $\alpha=\frac{2}{\pi}\min_{\beta\in[-1,1]}\arccos(\beta)/(1-\beta)\approx 0.87856$.

References

- [1] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. *J. Assoc. Comput. Mach.*, 42(6):1115–1145, 1995. Preliminary version in STOC'94.
- [2] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. *Comput. Complexity*, 4(4):301–313, 1994. Preliminary version in STOC'92.