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Instructions as before.

1. The Nisan-Szegedy bound [2]: Let f : {0,1}" — R be a nonzero function of degree
atmost d (i.e., f(S) = 0 for all S of size at least d + 1).

(a) Show that Pr[f(x) # 0] > 27 (this is known as the Schwartz-Zippel lemma).
Hint: induction on n.

(b) Show that if in addition f maps into [—1,1] then I(f) < d.

(c) Show that if in addition f maps into {—1,1} then f is a d2¢-junta.

(d) Consider the address function Addry : {0, 1}¥+2" — {—1,1} defined by

Addri(xy,..., X Y1+ Yx) = (—1)%*

where we think of x here as an element of [2¢]. Show that deg(Addr;) = k + 1.
Conclude that the bound in (c) must be at least 2471 +d — 1.

2. Total influence of DNFs:

(a) Assume f can be expressed as a DNF of width w (i.e., each clause has at most
w literals). Show that I(f) < 2w. Open question: improve on the constant 2.

(b) Deduce that width-w DNFs can be learned from random examples in time
nP@/e) We will improve this in class.

3. Unbalanced functions have a low Fourier coefficient: Let f : {0,1}" — {—1,1} be
such that f(®) ¢ {—1,0,1} (i.e., f is neither constant nor balanced).

(a) Show that there must exist a nonempty S of size at most 211/3 such that f(S) #
0. Hint: f2

(b) Optional: show that the 211/3 bound above is tight.

(c) Does a similar statement hold for balanced functions?

4. Bent functions: Show an upper bound on ||f||; := Y5 |f(S)| among all functions
f:{0,1}" — {—1,1}. For infinitely many 7, show a function achieving this bound.

5. Deterministically estimating Fourier coefficients: A set A C {0,1}" is called e-
biased if for x chosen uniformly from A and for allnonempty S C [n], | Exp, [xs(x)|| <
e. There is a known algorithm that on inputs ¢, 71, outputs an e-biased set of size
(n/¢)? in time poly(1,1/¢). Use this to show how to deterministically estimate f(S)
to within ¢ for any given S in time poly(||f||1,7,1/¢) using query access to f :
{0,1}" — R. You can assume the algorithm knows || f|;.

6. Close functions and concentration: Recall that f is e-concentrated on a family S if
Yszs f(S)? < e. Show that if ||f — g||3 < e and g is e-concentrated on S then f is
4e-concentrated on S.
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7. Learning functions with low || f||;:

(a) For f: {0,1}" — Rlet L = ||f||;. Show that for any ¢ > 0, f is e-concentrated
on a set of size at most L2 /¢.

(b) Deduce that the set of Boolean functions f with ||f||; < L can be learned in
time poly(L, 1, ) using membership queries.

(c) Define a decision tree on parities as a decision tree where on each node we can
branch on an arbitrary parity of variables (as opposed to just a single variable
in the usual definition of decision trees). Show that decision trees on parities of
size L can be learned in time poly(L, 1, 1) using membership queries.

8. The Goemans-Williamson MAX-CUT 0.87856-approximation algorithm [1]: (no
need to hand in) The input to the algorithm is an undirected graph G = (V,E) on
n vertices. The first step is to solve the following optimization problem over vector
variables vy, ...,v, € R": maximize Y ¢; 1 g (1 — (0, vj)) /2 subject to all vectors be-
ing unit vectors. It is known that this optimization problem can be solved efficiently
(because it is a convex optimization problem, and in fact a semidefinite program). Notice
that the value of the optimum is at least the number of edges in the optimal MAX-
CUT. The second step in the algorithm is to take the optimal solution vy, ..., v, and
to construct from it a good solution to MAX-CUT (this step is known as rounding).
This is done as follows: choose a random unit vector w € IR" uniformly and parti-
tion the vertices according to the sign of (w, v;). Notice that each edge {i,j} is cut
with probability L arccos (vi,vj). Hence the expected size of the cut given by the
algorithm is %Zij arccos (v;,vj). To complete the proof, notice that this is at least

o Yqijver(1—(0i,0;))/2 where a = %minﬁe[,lll] arccos(B)/(1 — B) ~ 0.87856.
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