- 1. **Stronger KKL theorem:** Prove the following strengthening of the KKL theorem. There exists a c > 0 such that if $f : \{0,1\}^n \to \{-1,1\}$ is a balanced function with $\mathrm{Inf}_i(f) \leq \delta$ for all i, then $\mathbb{I}(f) \geq c \log(1/\delta)$.
- 2. **Talagrand's lemma:** Let $f: \{0,1\}^n \to [-1,1]$ and assume $p = \mathbb{E}[|f|] \ll 1$. Show that $W_1(f) = \sum_{|S|=1} \hat{f}(S)^2 \le O(p^2 \log(1/p))$.
- 3. **Generalized Chernoff bound:** Let $p(x_1, ..., x_n)$ be a multilinear polynomial over the reals of degree at most d, and assume that $\mathbb{E}[p(x_1, ..., x_n)^2] = 1$ where the x_i are chosen independently from $\{-1, 1\}$ (equivalently, this says that the sum of squares of p's coefficients is 1). Then for any large enough t,

$$\Pr[|p(x_1,\ldots,x_n)| \ge t] \le \exp(-\Omega(t^{2/d})),$$

where the x_i are chosen as before. The case d=1 is a version of the Chernoff bound. Hint: use Markov's inequality and a corollary of the hypercontractive inequality that we saw in class.

- 4. Logarithmic Sobolev inequality:
 - (a) Using the hypercontractive inequality, show that for any $f: \{0,1\}^n \to \mathbb{R}$ and $0 \le \varepsilon \le \frac{1}{2}$,

$$||T_{\sqrt{1-2\varepsilon}}f||_2^2 \le ||f||_{2-2\varepsilon}^2$$
.

(b) Notice that we have equality at $\varepsilon = 0$ and use this to deduce

$$\left. \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \|T_{\sqrt{1-2\varepsilon}}f\|_2^2 \right|_{\varepsilon=0} \le \left. \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \|f\|_{2-2\varepsilon}^2 \right|_{\varepsilon=0}.$$

- (c) Show that the left hand side is $-2\mathbb{I}(f)$.
- (d) Show that the right hand side is $-\operatorname{Ent}[f^2]$ where $\operatorname{Ent}[g]$ is defined for non-negative g as $\mathbb{E}[g \ln g] \mathbb{E}[g] \ln \mathbb{E}[g]$ (with $0 \ln 0$ defined as 0). No need to be 100% rigorous.

This establishes the *logarithmic Sobolev inequality*, saying that for any $f: \{0,1\}^n \to \mathbb{R}$,

$$\operatorname{Ent}[f^2] \leq 2\mathbb{I}(f).$$

(e) Show that if $f:\{0,1\}^n \to \{-1,1\}$ has $p=\Pr[f=-1] \le \frac{1}{2}$ then

$$\mathbb{I}(f) \ge 2p \ln(1/p).$$

For small value of p, this significantly improves the Poincaré inequality $\mathbb{I}(f) \geq 4p(1-p)$ from Homework 1.

5. **Talagrand's open question (\$1000):** Fix some $0 < \rho < 1$. Let $f : \{0,1\}^n \to [0,1]$ and let $\mu = \mathbb{E}[f]$. Note that $\mathbb{E}[T_{\rho}f] = \mu$ as well. Clearly, Markov's inequality implies that $\Pr[(T_{\rho}f)(x) \ge t\mu] \le \frac{1}{t}$. Can you improve this upper bound to $o(\frac{1}{t})$? perhaps $O(1/(t\sqrt{\log t}))$? Intuitively, since T_{ρ} smoothes f, one would expect the peaks to shrink. See [1] for some recent progress on the Gaussian analogue.

References

[1] K. Ball, F. Barthe, W. Bednorz, K. Oleszkiewicz, and P. Wolff. L_1 -smoothing for the Ornstein-Uhlenbeck semigroup. *Mathematika*, 2012.