- 1. Learning juntas with queries: Show an algorithm for *exactly* learning *k*-juntas in time $poly(n, 2^k)$ using query access, without using the Fourier transform.
- 2. Weakly learning DNFs [1]: Show that if $f : \{0,1\}^n \to \{-1,1\}$ is computable by a DNF with at most *s* clauses then $|\hat{f}(S)| \ge \Omega(1/s)$ for some *S* with $|S| \le \log_2(s) + O(1)$ (possibly |S| = 0). This is the first step in Jackson's algorithm [2]. Hint: deal separately with the case where there are no small terms. If there is a small term, consider a restriction.
- 3. Learning noise insensitive functions: For $f : \{0,1\}^n \to \mathbb{R}$ define the δ -noise sensitivity of f as $\mathbb{NS}_{\delta}(f) = \frac{1}{2}(1 \langle f, T_{1-2\delta}f \rangle)$.
 - (a) Show that for $f : \{0,1\}^n \to \{-1,1\}$, $\mathbb{NS}_{\delta}(f) = \Pr_{x,w}[f(x) \neq f(x+w)]$ where *x* is chosen uniformly from $\{0,1\}^n$ and *w* is chosen according to μ_{δ} .
 - (b) Let $C_{\delta,\varepsilon}$ be the class of all $f : \{0,1\}^n \to \{-1,1\}$ with $\mathbb{N}S_{\delta}(f) \leq \varepsilon$. Show that for any $0 < \delta < \frac{1}{2}$ and $\varepsilon > 0$, $C_{\delta,\varepsilon}$ can be PAC learned under the uniform distribution from random examples to within accuracy $O(\varepsilon)$ in time $\operatorname{poly}(n^{1/\delta}, 1/\varepsilon)$.
 - (c) Optional: show that for the majority function, $\mathbb{NS}_{\delta}(MAJ_n) = \Theta(\sqrt{\delta})$ assuming *n* is large enough.

References

- [1] A. Blum, M. L. Furst, J. C. Jackson, M. J. Kearns, Y. Mansour, and S. Rudich. Weakly learning DNF and characterizing statistical query learning using Fourier analysis. In *STOC*, pages 253–262, 1994.
- [2] J. C. Jackson. An efficient membership-query algorithm for learning DNF with respect to the uniform distribution. *J. Comput. Syst. Sci.*, 55(3):414–440, 1997. Preliminary version in FOCS'94.