Solve at least two out of the three questions (or all three for extra credit).

- 1. A hardness reduction that fails: Consider the following attempt to show that for any $\eta > 0$, $(\frac{1}{2} + \eta, 1 \eta)$ -MAX3LIN is unique-games-hard. Given a unique CSP G = (V, E) over alphabet [k] we reduce it to the following tester over $2^k \cdot |V|$ Boolean variables representing functions $f_v : \{0,1\}^k \rightarrow \{-1,1\}$ for all $v \in V$. The tester chooses an edge $(u,v) \in E$ uniformly at random and then applies the Håstad test with parameter δ to the average of f_u^{odd} and $f_v^{\text{odd}} \circ \sigma_{u \rightarrow v}$ where $\sigma_{u \rightarrow v} : [k] \rightarrow [k]$ is the permutation constraint on the edge (u,v) and for $x \in \{0,1\}^k$ we define $(\sigma_{u \rightarrow v}(x))_j = x_{\sigma_{u \rightarrow v}^{-1}(j)}$.
 - (a) Show that completeness still works (and even better): if $val(G) \ge 1 \lambda$ then the resulting 3-linear CSP has value at least $1 \lambda \delta$.
 - (b) Show that soundness does not work: no matter what *G* is, the resulting 3-linear CSP has an assignment with value at least $5/8 \delta/4$.
- 2. No influential coordinates in the Håstad₂ test: Give an example of a function $\pi : [k] \to [\ell]$ and balanced functions $f : \{0,1\}^k \to \{-1,1\}, g : \{0,1\}^\ell \to \{-1,1\}$ on which the Håstad₂ test passes with probability significantly greater than 1/2 yet f has no influential coordinate.
- 3. Close functions and concentration: We say that f is ε -concentrated on a family S if $\sum_{S \notin S} \hat{f}(S)^2 \le \varepsilon$. Show that if $||f g||_2^2 \le \varepsilon$ and g is ε -concentrated on S then f is 4ε -concentrated on S.