1. **Tribes function:** For any k,l we define the *tribes function* $f:\{0,1\}^n \to \{-1,1\}$ on n=kl variables as

$$f(x_1,...,x_n) = OR(AND(x_1,...,x_l),AND(x_{l+1},...,x_{2l}),...,AND(x_{(k-1)l+1},...,x_{kl})).$$

- (a) Compute the influence of each of its variables.
- (b) Show that for any l, there is a way to choose k such that the tribes function is more-or-less balanced (or more precisely, that the limit of Exp[f] is 0 as l goes to infinity).
- (c) Compare the maximum influence of the balanced tribes function with that of the majority function.
- 2. Quasirandomness implies low correlation with juntas:
 - (a) For $f,g:\{0,1\}^n\to\mathbb{R}$ define $\mathrm{Cov}[f,g]:=\mathrm{Exp}_x[f(x)g(x)]-\mathrm{Exp}_x[f(x)]$ $\mathrm{Exp}_x[g(x)]$. Find an expression for $\mathrm{Cov}[f,g]$ in term of the Fourier coefficients of f and g.
 - (b) Show that for any (ε, δ) -quasirandom function $h : \{0,1\}^n \to [-1,1]$ and any r-junta $f : \{0,1\}^n \to \{-1,1\}$, $Cov[h,f] < \sqrt{\varepsilon r/(1-\delta)^r}$. Notice that this result is trivial for $r \ge \ln(1/\varepsilon)/\delta$. Hint: recall the Cauchy-Schwarz inequality $\sum a_i b_i \le \sqrt{\sum a_i^2} \sqrt{\sum b_i^2}$.
- 3. **The Nisan-Szegedy bound [2]:** Let $f : \{0,1\}^n \to \mathbb{R}$ be a nonzero function of degree at most d (i.e., $\hat{f}(S) = 0$ for all S of size at least d + 1).
 - (a) Show that $\Pr[f(x) \neq 0] \geq 2^{-d}$ (this is known as the Schwartz-Zippel lemma). Hint: induction on n.
 - (b) Show that if in addition f maps into [-1,1] then $\mathbb{I}(f) \leq d$.
 - (c) Show that if in addition f maps into $\{-1,1\}$ then f is a $d2^d$ -junta.
 - (d) Consider the address function $Addr_k : \{0,1\}^{k+2^k} \to \{-1,1\}$ defined by

$$Addr_k(x_1,...,x_k,y_1,...,y_{2^k}) = (-1)^{y_x}$$

where we think of x here as an element of $[2^k]$. Show that $deg(Addr_k) = k + 1$. Conclude that the bound in (c) must be at least $2^{d-1} + d - 1$.

- 4. Unbalanced functions have a low Fourier coefficient: Let $f : \{0,1\}^n \to \{-1,1\}$ be such that $\hat{f}(\emptyset) \notin \{-1,0,1\}$ (i.e., f is neither constant nor balanced).
 - (a) Show that there must exist a nonempty S of size at most 2n/3 such that $\hat{f}(S) \neq 0$. Hint: f^2
 - (b) Optional: show that the 2n/3 bound above is tight.
 - (c) Does a similar statement hold for balanced functions?

- 5. **Bent functions:** Show an upper bound on $\|\hat{f}\|_1 := \sum_{S} |\hat{f}(S)|$ among all functions $f : \{0,1\}^n \to \{-1,1\}$. For infinitely many n, show a function achieving this bound.
- 6. **Deterministically estimating Fourier coefficients:** A set $\mathcal{A} \subseteq \{0,1\}^n$ is called ε -biased if for x chosen uniformly from \mathcal{A} and for all nonempty $S \subseteq [n]$, $|\operatorname{Exp}_x[\chi_S(x)]| \le \varepsilon$. There is a known algorithm that on inputs ε , n, outputs an ε -biased set of size $(n/\varepsilon)^2$ in time $\operatorname{poly}(n,1/\varepsilon)$. Use this to show how to *deterministically* estimate $\hat{f}(S)$ to within $\pm \varepsilon$ for any given S in time $\operatorname{poly}(\|\hat{f}\|_1,n,1/\varepsilon)$ using query access to $f:\{0,1\}^n \to \mathbb{R}$. You can assume the algorithm knows $\|\hat{f}\|_1$.
- 7. The Goemans-Williamson MAX-CUT 0.87856-approximation algorithm [1]: (no need to hand in) The input to the algorithm is an undirected graph G = (V, E) on n vertices. The first step is to solve the following optimization problem over vector variables $v_1, \ldots, v_n \in \mathbb{R}^n$: maximize $\sum_{\{i,j\} \in E} (1 \langle v_i, v_j \rangle)/2$ subject to all vectors being unit vectors. It is known that this optimization problem can be solved efficiently (because it is a *convex optimization problem*, and in fact a *semidefinite program*). Notice that the value of the optimum is at least the number of edges in the optimal MAX-CUT. The second step in the algorithm is to take the optimal solution v_1, \ldots, v_n and to construct from it a good solution to MAX-CUT (this step is known as *rounding*). This is done as follows: choose a random unit vector $w \in \mathbb{R}^n$ uniformly and partition the vertices according to the sign of $\langle w, v_i \rangle$. Notice that each edge $\{i, j\}$ is cut with probability $\frac{1}{\pi} \arccos \langle v_i, v_j \rangle$. Hence the expected size of the cut given by the algorithm is $\frac{1}{\pi} \sum_{ij} \arccos \langle v_i, v_j \rangle$. To complete the proof, notice that this is at least $\alpha \cdot \sum_{\{i,j\} \in E} (1 \langle v_i, v_j \rangle)/2$ where $\alpha = \frac{2}{\pi} \min_{\beta \in [-1,1]} \arccos(\beta)/(1-\beta) \approx 0.87856$.

References

- [1] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. *J. Assoc. Comput. Mach.*, 42(6):1115–1145, 1995. Preliminary version in STOC'94.
- [2] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. *Comput. Complexity*, 4(4):301–313, 1994. Preliminary version in STOC'92.