Fall 2012 Homework 3 Oded Regev
Analytical Methods in CS Due 2012/10/22 Courant Institute

1. Tribes function: For any k, [ we define the tribes function f : {0,1}" — {—1,1} on
n = kl variables as

f(xl,. . .,xn) = OR(AND(xl, . .,xl),AND(xZH,. . .,le),. . .,AND(x(k_l)l+1,. . .,xkl)).

(a) Compute the influence of each of its variables.

(b) Show that for any I, there is a way to choose k such that the tribes function is
more-or-less balanced (or more precisely, that the limit of Exp|[f] is 0 as I goes
to infinity).

(c) Compare the maximum influence of the balanced tribes function with that of

the majority function.

2. Quasirandomness implies low correlation with juntas:
(a) For f,¢:{0,1}" — Rdefine Cov|f, g] := Exp,[f(x)g(x)] — Exp,[f(x)] Exp,[g(x)].
Find an expression for Cov|f, g| in term of the Fourier coefficients of f and g.

(b) Show that for any (¢, §)-quasirandom function & : {0,1}" — [—1,1] and any r-

junta f : {0,1}" — {—1,1}, Cov[h, f] < \/er/(1 — J)". Notice that this result is
trivial for » > In(1/¢) /6. Hint: recall the Cauchy-Schwarz inequality )" a;b; <

3. The Nisan-Szegedy bound [2]: Let f : {0,1}" — R be a nonzero function of degree
atmost d (i.e., f(S) = 0 for all S of size at least d + 1).

(a) Show that Pr[f(x) # 0] > 27 (this is known as the Schwartz-Zippel lemma).
Hint: induction on n.

(b) Show that if in addition f maps into [—1,1] then I(f) < d.
(c) Show that if in addition f maps into {—1,1} then f is a d2¢-junta.
(d) Consider the address function Addry : {0, 1}¥+2" — {—1,1} defined by

Addri(xq,..., X y1,- - Yx) = (—1)%*

where we think of x here as an element of [2¢]. Show that deg(Addr;) = k + 1.
Conclude that the bound in (c) must be at least 2471 +d — 1.

4. Unbalanced functions have a low Fourier coefficient: Let f : {0,1}" — {—1,1} be
such that f(®) ¢ {—1,0,1} (i.e., f is neither constant nor balanced).

(a) Show that there must exist a nonempty S of size at most 211/3 such that f(S) #
0. Hint: 2

(b) Optional: show that the 212/3 bound above is tight.

(¢) Does a similar statement hold for balanced functions?
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5. Bent functions: Show an upper bound on ||f|; := ¥ |f(S)| among all functions
f:{0,1}" — {—1,1}. For infinitely many #n, show a function achieving this bound.

6. Deterministically estimating Fourier coefficients: A set A C {0,1}" is called e-
biased if for x chosen uniformly from A and for allnonempty S C [n], | Exp, [xs(x)|| <
e. There is a known algorithm that on inputs ¢, 1, outputs an e-biased set of size
(n/¢)? in time poly(n,1/¢). Use this to show how to deterministically estimate f(S)
to within +¢ for any given S in time poly(||f||1,7,1/¢) using query access to f :
{0,1}" — R. You can assume the algorithm knows || f]|1.

7. The Goemans-Williamson MAX-CUT 0.87856-approximation algorithm [1]: (no
need to hand in) The input to the algorithm is an undirected graph G = (V,E) on
n vertices. The first step is to solve the following optimization problem over vector
variables vy, ..., v, € R": maximize ) ¢; 1 (1 — (0, vj)) /2 subject to all vectors be-
ing unit vectors. It is known that this optimization problem can be solved efficiently
(because it is a convex optimization problem, and in fact a semidefinite program). Notice
that the value of the optimum is at least the number of edges in the optimal MAX-
CUT. The second step in the algorithm is to take the optimal solution vy, ...,v, and
to construct from it a good solution to MAX-CUT (this step is known as rounding).
This is done as follows: choose a random unit vector w € IR uniformly and parti-
tion the vertices according to the sign of (w, v;). Notice that each edge {i,j} is cut
with probability %arccos (v;,vj). Hence the expected size of the cut given by the
algorithm is %ZU arccos (v;,v;). To complete the proof, notice that this is at least

- Y qiivep(1— (vi,v)) /2 where o = %minﬁe[_m] arccos(B)/(1 — B) ~ 0.87856.
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