1. **Poincaré inequality:** Let $f: \{0,1\}^n \to \{-1,1\}$. Show that

$$Var(f) = 4 \Pr[f(x) = 1] \Pr[f(x) = -1],$$

where Var(f) is as defined in Homework 1. Define the *total influence* of f to be

$$\mathbb{I}(f) = \underset{x}{\operatorname{Exp}}[\#\{i \in [n] : f(x) \neq f(x \oplus e_i)\}].$$

Show that

$$\mathbb{I}(f) \geq \operatorname{Var}(f)$$
.

Interpret this result as a statement about the Hamming graph $G = (V = \{0,1\}^n, E)$ with edges connecting any two vertices that differ in exactly one coordinate.

- 2. **Dictatorship test with perfect completeness:** Prove that there is no 3-query dictatorship test that only looks at products f(x)f(y)f(z) and has perfect completeness (i.e., accepts dictatorships with probability 1) and reject functions ε -far from dictatorships with some nonzero probability.
- 3. **Testing resiliency:** Call a function $f: \{0,1\}^n \to \{-1,1\}$ 1-resilient if $\widehat{f}(S) = 0$ for all $|S| \le 1$.
 - (a) Give a combinatorial definition of 1-resiliency.
 - (b) Give a $poly(1/\epsilon)$ -query test that accepts 1-resilient functions with probability at least 2/3, and rejects functions with $|\widehat{f}(S)| \ge \epsilon$ for some $|S| \le 1$ with probability at least 2/3. (Notice that this is not quite the same thing as a tester for the property of being 1-resilient.) Do this by amplifying a 2-query test.
- 4. Enflo's distortion lower bound on embedding ℓ_1 into ℓ_2 [2]: The hypercube $\{0,1\}^n$ with the Hamming distance is an ℓ_1 metric space (because we can map $\{0,1\}^n$ to \mathbb{R}^n in such a way that the Hamming distance is mapped exactly to the ℓ_1 distance). We say that the hypercube can be embedded into ℓ_2 with distortion D if there exists a mapping $F:\{0,1\}^n \to \mathbb{R}^m$ for some m such that for all $x,y \in \{0,1\}^n$,

$$\Delta(x,y) \le \|F(x) - F(y)\|_2 \le D \cdot \Delta(x,y).$$

This means that the ℓ_2 distance between F(x) and F(y) is the same as the Hamming distance between x and y up to a factor of D. It is easy to see that there exists an embedding with distortion \sqrt{n} (think why). Here we show that this is optimal, and hence this gives an example of an ℓ_1 metric with N points whose distortion when embedded into ℓ_2 is $\sqrt{\log N}$. It was recently shown that any ℓ_1 metric with N points can be embedded into ℓ_2 with distortion $O(\sqrt{\log N}\log\log N)$ [1] (see also [3]).

(a) Show that for any $f: \{0,1\}^n \to \mathbb{R}$,

$$\operatorname{Exp}_{x}[(f(x) - f(x \oplus (1, ..., 1)))^{2}] = 4\|f^{odd}\|_{2}^{2} \le 4\operatorname{Var}[f] \le 4\mathbb{I}(f) = \sum_{i=1}^{n} \operatorname{Exp}_{x}[(f(x) - f(x \oplus e_{i}))^{2}].$$

(b) Deduce that for any $F : \{0,1\}^n \to \mathbb{R}^m$,

$$\operatorname{Exp}_{x}[\|F(x) - F(x \oplus (1, \dots, 1))\|_{2}^{2}] \leq \sum_{i=1}^{n} \operatorname{Exp}_{x}[\|F(x) - F(x \oplus e_{i})\|_{2}^{2}].$$

- (c) Use this to conclude that the distortion of any $F : \{0,1\}^n \to \mathbb{R}^m$ must be at least \sqrt{n} .
- 5. **Compactly storing a function:** Let $f: \{0,1\}^n \to \mathbb{R}$ be some function, and assume we want to store some information about f that would allow us to compute f(x) for any given $x \in \{0,1\}^n$ to within some accuracy, say, ± 0.01 . Without any further restrictions on f we would have to store $\Omega(2^n)$ bits of information (even for a Boolean f).
 - (a) Show how to reduce the storage to poly(n) for functions f with the property that for all S, $\widehat{f}(S) \geq 0$ (such functions are called *positive definite*) and moreover, $\sum_S \widehat{f}(S) = 1$. Notice that if $f = g \star g$ for some Boolean g then it satisfies these two requirements.
 - (b) Extend this to functions f satisfying $\sum_{S} |\widehat{f}(S)| \leq \text{poly}(n)$.

References

- [1] S. Arora, J. R. Lee, and A. Naor. Euclidean distortion and the sparsest cut. *J. Amer. Math. Soc.*, 21(1):1–21, 2008. Preliminary version in STOC'05.
- [2] P. Enflo. On the nonexistence of uniform homeomorphisms between L_p -spaces. *Ark. Mat.*, 8:103–105 (1969), 1969.
- [3] J. Matoušek. Open problems on embeddings of finite metric spaces. http://kam.mff.cuni.cz/~matousek/metrop.ps.gz.