Temporary Tasks Assignment Resolved *

Amitai Armon ' Yossi Azar ! Leah Epstein * Oded Regev 1

Abstract

Among all basic on-line load balancing problems, the only unresolved problem was
load balancing of temporary tasks on unrelated machines. This open problem exists
for almost a decade, see [Borodin El-Yaniv]. We resolve this problem by providing an
inapproximability result. In addition, a newer open question is to identify the depen-
dency of the competitive ratio on the durations of jobs in the case where durations
are known. We resolve this problem by characterizing this dependency. Finally, we
provide a PT AS for the off-line problem with a fixed number of machines and show a
2 inapproximability for the general case.

1 Introduction

On-line load balancing was extensively studied in the last decade (e.g., [1, 2, 3, 5, 10, 11, 13,
16, 18, 20, 23]). The basic problem contains the identical, related, restricted and unrelated
models for permanent and temporary tasks. Tight bounds were given to all these problems
except one: the assignment of temporary tasks to unrelated machines remained open. We
present an inapproximability result by employing a cyclic load transfer method. Another
more recent open question posed in [12] is whether the case where job durations are known
at their arrival is provably harder than that of permanent jobs. We answer this question in
the affirmative. We first summarize the results presented in this paper. Let m denote the
number of machines and T' the duration of the longest job.

e For on-line unrelated assignment of temporary tasks with unknown durations, we
show an Q(m/logm) lower bound which almost matches a trivial O(m) upper bound.
For randomized algorithms we show an Q(m/(logm)?) lower bound.

e For on-line restricted assignment of temporary tasks with known durations, we present

a lower bound of Q(y/m) and of Q(log)ﬁ;)gT) on the competitive ratio of any on-line
algorithm (deterministic or randomized). These lower bounds also hold for assignment

on unrelated machines.

*A preliminary version of this paper appears in the proceedings of SODA’02.

"Department of Computer Science, Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail: armon@tau.ac.il.

!Department of Computer Science, Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail: azar@tau.ac.il.
Research supported in part by the Israel Science Foundation and by a grant of the European Commission.

§School of Computer and Media Sciences, The Interdisciplinary Center, Herzliya, Israel. E-Mail:
lea@idc.ac.il.

IInstitute for Advanced Study, Princeton, NJ. E-Mail: odedr@ias.edu. Research supported in part by
NSF grant CCR-9987845

e For offline assignment of temporary tasks on unrelated machines, we present a PTAS
for the case where the number of machines is fixed. For the case where the number
of machines is not fixed, we present a lower bound of 2 (provided that P # NP).

We also provide an additional result for interesting special cases of temporary tasks assign-
ment in the unrelated machines model with unknown durations. Specifically, we show tight
results for certain cases of the related-restricted model.

Definitions and previous results: We consider the problem of non-preemptive load
balancing of temporary tasks on m unrelated machines. Each job (task) has an arrival
time and a departure time, and should be assigned to one machine immediately upon its
arrival. Each job j is associated with a loads vector (w;(1),...,w;(m)). If job j is assigned
to machine i, it increases the load of machine 7 by its weight on that machine, w;(i), for the
duration of the job. The load on a machine at a certain time is the sum of the loads caused
by the jobs assigned to it at that time. The goal is to minimize the maximum load over
machines and time. Note that the load and the time are two separate axes of the problem.
In the known durations setting we assume that when a job arrives its duration is given to
the on-line algorithm and in the unknown durations setting we assume that the departure
time is known only when the job actually departs.

An important special case of the unrelated machines model is the special case called the
restricted assignment model. In this case, a job j can only be assigned to a subset of the
machines that depends on the job. On each of these machines it causes the same load w;.
This is equivalent to a loads vector that contains only the values w; or co. The results in [4]
(and later in [21]) show a lower bound of ©(y/m) on the competitive ratio that any on-line
algorithm (deterministic or randomized) may have for restricted assignment of temporary
tasks with unknown durations. An on-line algorithm for this problem with a competitive
ratio of O(y/m), was later presented in [6] (the “Robin-Hood” algorithm) thereby proving
that the lower bound of Q(y/m) is tight.

Unknown durations: Apart from a trivial upper bound, no on-line algorithm for
the unrelated assignment model exists. The Q(y/m) lower bound for restricted assignment
mentioned above ([4]) dates back to 1992 but was still the best lower bound for unrelated
assignment. Our results show that a trivial O(m) competitive algorithm is almost optimal
hence proving the inapproximability of this model. Specifically, by using a cyclic load
transfer method we achieve an Q(m/log m) lower bound. The open problem mentioned in
[12] regarding the existence of a better approximation algorithm is thus answered negatively.
We extend the inapproximability result to randomized algorithms as well.

Known durations: The competitive ratio of ©(y/m) for the restricted assignment
model is usually regarded as a high competitive ratio, so in [6] it was suggested to consider
this problem in the known-durations case, hoping to beat the (y/m) bound, and get a
polylogarithmic competitive ratio. This seemed plausible since the best known lower bound
for the known durations case was only Q(log m) [7] (proven for the special case of permanent
tasks). Indeed, the work of [6] made a step in this direction by showing an O(logmT) -
competitive algorithm, where T is the duration of the longest job (in discrete time units).
The competitive ratio of this algorithm is lower than ©(y/m) for a large range of T". The
obvious intriguing question, also presented in the survey of [3], was whether we can indeed
improve on the Q(y/m) lower bound and achieve a O(polylog(m))-competitive algorithm.

Surprisingly, we answer this question negatively, by extending the lower bound of [21] to
a lower bound of Q(y/m) that holds for the known durations case. This bound is tight
by the upper bound for unknown durations. Our Q(y/m) lower bound holds for unrelated
machines as well (since restricted assignment is a special case). This result also answers an
open question presented by Borodin and El-Yaniv in [12]. They asked whether there is any
machine model in which one can prove a lower bound for temporary tasks assignment with
known durations which is higher than the competitive ratio of permanent tasks assignment
in that model. Our Q(y/m) lower bound for restricted assignment of temporary tasks
with known durations is strictly higher than the O(log m) competitive ratio for the case of
permanent tasks. We note that as a function of 7' our lower bound is Q(\/%golgog—T) which
can be compared to the O(log T') upper bound of [6] (assuming T' > m®).

Offline results: Next we consider the assignment of temporary tasks on unrelated
machines in the offline setting. In the special case of permanent tasks, the tasks do not
depart (all the departure times equal oo). Horowitz and Sahni presented an FPTAS for
permanent tasks assignment on a fixed number of unrelated machines (i.e., the number of
machines is not a part of the input) [17]. A PTAS for this problem was also presented by
Lenstra et al. [19]. For permanent tasks assignment on an arbitrary number of unrelated
machines, Lenstra et al. [19] and Shmoys and Tardos [22] presented algorithms with an
approximation ratio of 2. In addition, Lenstra et al. proved that no algorithm can reach
an approximation-ratio better than % for the arbitrary number of machines case, unless
P = NP [19].

Unlike the permanent case, solving the problem of temporary tasks assignment on unre-
lated machines cannot be done by standard rounding techniques. The problem arises from
the two separate axes of the problem and this extra dimension is known to turn problems
into intractable ones or very hard to approximate [15, 14, 9]. In order to obtain a PTAS
after all, we had to use a two-dimensional rounding technique. While the above applies to
the case of fixed number of machines, we also prove that when the number of machines is
not fixed (i.e. is part of the input), no algorithm can achieve an approximation ratio lower
than 2 unless P = N P. This lower bound is higher than the % lower bound for permanent
tasks and almost separates the two settings.

The problem of temporary tasks assignment on identical machines is another special case
of our problem which was considered in [8] and provides the foundation for our algorithm.
In this special case, the load that a job causes depends only on the job and it is identical
for all the machines (i.e. w;(i) = w; for 1 <4 <m). A PTAS for this problem in the case
where the number of machines is fixed was presented in [8]. They also proved a lower bound
of % for the case of an arbitrary number of machines, provided that P # NP. Again, the
lower bound that we present for our problem is higher than the lower bound for this special
case.

2 Tasks of Unknown Duration

2.1 Inapproximability of the Unrelated Machines Model

In this section we present the inapproximability result for online load balancing of tem-
porary tasks on unrelated machines. Namely, we show a lower bound of Q(m/log m) almost
matching an upper bound of O(m). It can be seen that the simple algorithm assigning each
job to its fastest machine is an O(m) competitive algorithm.

We proceed with the inapproximability result:

Theorem 2.1 Any online algorithm for the load balancing of temporary tasks on unrelated
machines is Q(m/logm) competitive.

Proof: Let k be the largest integer power of 2 such that k¥ < m/logm. Assume by contra-
diction that there is an online algorithm whose competitive ratio is below £/2. We describe
a sequence of jobs given by an adversary such that there exists an optimal assignment whose
maximum load is at most 1. The sequence ends as soon as there is a machine whose load
in the online assignment is at least k/2.

The lower bound uses | = logk sets of £ machines each. The sets are denoted by
My, My, ..., M;. In addition, a machine denoted by mj} is used. Also, denote by m! the j'th
machine in the set M;, 1 <i <[, 1< 7 < k. Note that the total number of machines used,
-k + 1, does not exceed m (when m > 2).

The adversary proceeds in phases. Before the start of phase ¢, we define a set of [+ 1
machines which we call active. One machine in each M; is active and we denote its index
by a;(t). The machine m} is always active and we use the notation ag(t) = 1. The load
of m?i(t), i =0,...,1, in the online assignment is denoted by b;(t). We begin with setting
a;(0)=1fori=1,...1.

A phase is composed of an arrival of one job and the departure of a set of jobs. The job

presented by the adversary has infinite weight on non-active machines. Its weight on m?i(t)

is 2! /k for i = 0,...,1. Assume the online algorithm assigns it to machine m?i(t). In case the
new load, b;(t + 1), is k/2 or more the sequence stops. Otherwise, the phase is completed
with the departure of the jobs assigned by the online algorithm to m?fll(t), ...,m;”(t) (
job leaves when 7 = [). The set of active machines for the next phase is set as follows:
aj(t+1) =1 for any i + 2 < j <[and unless i =1 we also set a;1(t +1) = 1+ [2b;(¢)].
All other active machines stay the same. Note that since b;(t) < k/2 the above definition of
a;(t+1) is valid, that is, a;(t+1) < k. Also note that by the above construction, non-active
machines are always empty.

If we consider the vector of loads of the online assignment, (bo(t), b (%), ...,b;(t)), we
note that the vector increases lexicographically after each phase. That is, at least one of
the coordinates increases while all previous coordinates do not change. The increase is
by at least 1/k. Since the adversary sequence is completed once one of the coordinates
exceeds k/2, the sequence is completed after a finite number of phases, or specifically, at
most O(k%) = O(m?!°8™) phases.

In what follows we complete the proof by showing an optimal assignment where the
maximum load does not exceed 1 during the whole sequence. In case the job arriving at

no

phase ¢ is assigned by the online algorithm to m?i(t), 1 = 0,...,0 — 1, then the optimal

algorithm assigns it to machine m?fll(t). Otherwise, the job arriving at phase ¢ is assigned

by the online algorithm to mlal(t) and the optimal algorithm assigns it to machine mj.
First, jobs assigned by the optimal assignment to m{ are assigned by the online algorithm

to an active machine in M;. Since that machine’s load is not more than k/2 and all other

machines in M, are empty, the incurred load on m{ is at most 1/2. Now consider jobs
assigned to m{_l_l, 1 = 0,....,0 —1, by the optimal assignment. These are assigned by the
online algorithm to the active machine in M;. Moreover, when they were assigned, the load
on the active machine in M; was at least (j — 1)/2 and less than j/2 because a;y1, which
was equal to j, is defined as twice this load plus one rounded down. Therefore, their total
load on a machine in M; is at most 1/2 and their total load on a machine in M;; is at
most 1.

Concluding, the above sequence was shown to have an optimal assignment of maximum
load 1. Moreover, as long as the online maximum load is below k/2 the online load vector
was shown to increase lexicographically. This contradicts our assumption that an online
algorithm with competitive ratio below k/2 exists and completes the proof. [|

The following lemmas demonstrate a general technique for converting deterministic lower
bounds into randomized ones.

Lemma 2.2 Let R be a randomized on-line algorithm for load balancing of temporary tasks
on unrelated machines which achieves a competitive ratio of c. Then there exists a determin-
istic on-line algorithm D, allowed to split jobs between different machines, which achieves
a competitive ratio < ¢ against an optimal algorithm which is not allowed to split jobs.

Proof: Algorithm R determines the probability p;(i) that a job j is assigned to machine
m;, 3;pi(i) = 1. We denote the expectation of the maximum load of R by I®. For any
input sequence, I < ¢ . 19FT,

We define D as follows. For an arriving job j, D splits the job between the machines
according to the probabilities set by R. So D assigns a load of p;(i) - w; to each machine
m;. We denote the maximum load of D by 7.

We now prove that for any input sequence [P < [®. Note that at any given time
t, the load of D on machine m; is [P (t) = E(£(t)). Hence, I”(t) = maz;(I°(t)) =
maz;(E(1F(t))). Using the fact that the maximum of expectations is at most the expecta-
tion of maxima, [”(t) < E(maw;(1%(t))) = I%(t). The proof is completed by noting that
1P = max,(1°(t)) < maz,(1%(t)) =17 < c- 1977, n
Lemma 2.3 Let ¢ be a lower bound on the competitive ratio of any deterministic algorithm
for unrelated assignment of temporary tasks. If ¢ can be proven with an adversarial strateqy
of jobs in which each job has an admissible set of at most k machines, then there is a
lower bound of ¢ on the competitive ratio of any randomized on-line algorithm for the same
problem.

Proof: We will prove that there is a lower bound of 7 on the competitive ratio of any
deterministic on-line algorithm D which is allowed to split jobs (compared to an optimum
which is not allowed to split them). According to the previous lemma, this implies a lower
bound of ¢ for randomized on-line algorithms as well. Consider the sequence used for the
deterministic lower bound. Since each job in that sequence can only be assigned to at most
k machines, D must assign at least % of the job’s weight to one machine. Now, consider
a deterministic online algorithm D’ which simulates D and assigns each job to just one
machine: the machine to which D assigned the largest part of the job. This is an online
algorithm that does not split jobs and therefore our adversarial strategy creates a load of at
least [P" > ¢ 19PT, Since D assigns at least a %—fraction of each job to the same machine
as D', its load at the end of the same sequence must be at least [P > % -¢-19PT which gives

the required competitive ratio. [|

Theorem 2.4 Any online randomized algorithm for the load balancing of temporary tasks
on unrelated machines is Q(m/(logm)?) competitive.

Proof: The construction in Theorem 2.1 uses admissible sets of at most logm machines.
The theorem then follows as a corollary of Lemma 2.3. [|

2.2 Tight Results for the Related-Restricted Machines Model

The result in the previous section shows that approximating the unrelated machines
model is almost infeasible. As an alternative to the unrelated machines model we consider
the so called related-restricted machines model. Here, each machine has its own speed and
each job has a weight and a set of admissible machines. However, note that the lower
bound presented in the last section still applies here so approximating is still infeasible. We
show that by limiting the number of different machine speeds to a constant number, we can
approximate the problem better. Specifically, in the case where only two different machine
speeds are involved we obtain the following lower bound. Later, we will present a matching
upper bound.

Theorem 2.5 Any online algorithm for the load balancing of temporary tasks in the related-
restricted machines model with speeds {1, s} is Q(min{max{m/s, /m},/ms}) competitive.
The same holds for randomized algorithms as well.

Proof: A lower bound of Q(y/m) already exists for the special case of the restricted assign-
ment model and therefore we can limit ourselves to showing a lower bound of Q(min{m/s, \/ms})
for s < y/m. Let m' = m/3 and b = min{m//s, v/m's}. Assume by contradiction that there
is an online algorithm whose competitive ratio is below b. We describe a sequence of jobs
given by an adversary such that there exists an optimal assignment whose maximum load
is at most 1. The sequence ends as soon as there is a machine whose load in the online
assignment is at least b.

The lower bound uses three sets of machines, My, My and Ms. Both M; and M3 contain
m' machines whereas M contains m'/b machines. The j’th machine in M; is denoted m.
The idea behind the lower bound is to force the online algorithm to assign jobs to machines
in My while an optimal algorithm can assign them to machines in M;.

The lower bound proceeds in phases and stops as soon as the load on a machine reaches b.
At the beginning of a phase ¢ we choose three active machines, one in each M;. Their indices
are denoted by ag(t), ai(t) and ag(t). They are initially set to ag(0) = a1(0) = a2(0) = 1.

®) ai(t)
)

One job is presented in each phase. Tts weight on mg”""” or on m{'""” is 1/s where the weight
o(t)

2(t) , all jobs assigned by the
(t

on mgz is 1. In case the online algorithm assigned the job to mg

online algorithm to M or M; leave. If the job is assigned to mi""" all jobs assigned to M
leave. Otherwise, the job was assigned to m;2(t) and no jobs leave. For the next phase, we set
ag(t+1) = 14+ |ba(t)/s], a1(t+1) = 1+|bo(t)| and ag(t+1) = 14 |sby () | where b;(¢) denotes
the total on-line load on machines in M;. This is possible first because in My there are m’/b
machines each of which has a load of less than b so that a; (t4+1) = 14 |bo(t)| < b-m'/b=m/.

In addition, note that at any given time only one machine in M; and one machine in M,

are not empty in the online assignment. Therefore, ag(t+1) =14 [sbi(¢)] < s-b < m' and
ag(t +1) =1+ |ba(t)/s] <b/s <m'/b.

Note that the vector (by(t),b1(t),b2(t)) lexicographically increases after each phase by
at least 1/s. Moreover, the adversary described above proceeds as long as the maximum
load is below b. Therefore, after a finite number of phases the load on one of the machines
is going to reach b.

The proof is completed by showing an optimal assignment where the maximum load

does not exceed 1. In case the job arriving at phase ¢ is assigned by the online algorithm to
(t) a;(t)
i J

Now consider jobs assigned to m} by the optimal assignment. These are assigned by the

online algorithm to a machine in M. Moreover, when they were assigned, the total online
load on machines in My was at least j —1 and less than j. Since jobs assigned by the online
algorithm to My never leave, the load on m? is at most 1. Similarly, consider jobs assigned
to m? by the optimal assignment. These are assigned by the online algorithm to an active
machine in M;. When they were assigned, the total online load on the active machine in
M, was at least (j —1)/s and less than j/s. Since jobs assigned by the online algorithm to
M leave all together and never leave individually, the load on m} is at most s-1/s =1. A
similar argument holds for jobs assigned to My by the optimal assignment.

Concluding, the above adversarial sequence was shown to have an optimal assignment
of maximum load 1 and as long as the online maximum load is below b, an online load
vector was shown to increase lexicographically. This contradicts our assumption that a
b-competitive online algorithm exists and completes the proof. By Lemma 2.3, the result
also holds for the randomized case since there are exactly three machines in any admissible
set.]

machine mza’ , then the optimal algorithm assigns it to machine m where j = i+1mod3.

In the rest of this section, we describe two online algorithms whose combination achieves
a competitive ratio matching the lower bound stated above. In both algorithms we assume
that OPT = 1. Nevertheless, by using standard doubling techniques we can overcome that
assumption while increasing the competitive ratio by a factor of at most 4. Both algorithms
are based on a modified Robin Hood algorithm [6] with some threshold b. A machine is
said to be poor at a certain time if its load is less than b and is said to be rich otherwise.
For a machine rich at time ¢ we define its windfall time as tgy if it is rich from time ¢g to ¢
but is poor at time tg — 1. As its name implies, the Robin Hood algorithm tries to assign
jobs to the poor machines or in case none exists, to the a rich machine with the most recent
windfall time.

Algorithm 1 In case an incoming job has at least one admissible fast machine, remove
all slow machines from its admissible machines. Then use the Robin Hood algorithm with

a threshold b = max{y/m,m/s}.
Claim 2.6 The above algorithm is O(max{\/m,m/s}) competitive.

Proof: First notice that jobs assigned to slow machines are not allowed to be assigned to
any fast machine. Therefore, the contribution of a job to the total load of an optimal
assignment is at least its contribution to the total load of the online assignment. Hence,
the total load on all machines at any given time is at most that of an optimal assignment
which is at most m. This implies that the number of rich machines at any given time is at
most m/b.

By the definition of the algorithm, any job assigned to a slow rich machine 7 has only
slow rich machines in its admissible set. Moreover, the windfall time of these machines
is before the windfall time of 4, that is, they are all already rich at the windfall time of .
Therefore, in an optimal assignment, all jobs assigned to 7 after its windfall time are assigned
to at most m/b slow machines. Their total load on i is at most m/b. Adding the job made
i rich, we get that the total load on 7 at any given time is at most b+ 1 + m/b = O(b).

Now consider a fast rich machine. Unlike slow machines, some of the jobs assigned to
fast machines might result from the algorithm’s removal of slow admissible machines. Thus
jobs assigned to a fast rich machine i after its windfall time are assigned in an optimal
assignment to one of at most m/b fast machines or to any one of the slow machines. The
total load on machine i is therefore at most b + 1 +m/b+ m/s = O(b) and the required
competitive ratio is achieved. [|

Algorithm 2 Use the Robin Hood algorithm with a threshold b = \/ms.
Claim 2.7 The above algorithm is O(\/ms) competitive.

Proof: The total load on the fast machines at any given time is at most that of an optimal
assignment which is at most m. The total load on the slow machines at any given time is
at most sm since these jobs might be assigned to fast machines by an optimal assignment.
This implies that the number of fast rich machines at any given time is at most m/b and
that the number of slow rich machines is at most sm/b.

Consider a job assigned to a rich machine 7. All other machines in its admissible set
are rich and their windfall time is before the windfall time of 7, that is, they are all already
rich at the windfall time of 4. Therefore, all jobs assigned to ¢ after its windfall time are
assigned in an optimal assignment to at most sm/b slow machines and to at most m/b fast
machines. Therefore, if 7 is slow, their total load on 7 is at most 2sm /b and if 7 is fast, their
total load on i is at most 2m/b. Adding the job that made i rich, we get that the total load
on 7 at any given time is at most b + s+ 2sm/b = O(y/ms). [|

Algorithm 3 If s > m'/3 use the first algorithm; otherwise, use the second algorithm.

Theorem 2.8 The above algorithm is O(min{max{m/s, /m},/ms})-competitive for load
balancing of temporary tasks in the related-restricted machines model with speeds {1, s}.

3 Tasks of Known Duration

Theorem 3.1 Any deterministic on-line algorithm for load-balancing of temporary tasks
with known durations in the restricted assignment model has a competitive ratio of at least
Vm.

Proof: Let ON be an on-line algorithm for the problem, and let OF F' be an optimal offline
algorithm for solving it. We will show a sequence of jobs for which ON reaches a load of at
least \/m, whereas OF F maintains a load of one. First we describe the sequence, and then
we prove the lower bound.

We denote the set of the first y/m machines by A, and the set of the remaining machines
by B. The i’th machine in A (respectively B) will be denoted by A; (respectively, B;), for
1 <i < /m (respectively, for 1 <i < m — /m).

We force ON to assign /m jobs to a single machine in B, or to assign m jobs to A
(which consists of only y/m machines).

Our input sequence only includes unit jobs and consists of at most m — y/m phases.
Each phase p (p > 1) consists of at most \/m jobs. The j'th job in phase p (j > 1) is
admissible to two machines: A; and B,,. The exact arrival and departure time of each job
will be described later. The number of jobs arriving in each phase is determined by the
behavior of ON. Jobs keep arriving in phase p as long as ON assigns them to B, (up to
the maximum of y/m jobs). When ON assigns a job to a machine in A, the phase ends (i.e.
no more jobs arrive in this phase). Let N, be the number of jobs which arrived in phase p.
By definition, 1 < N, < y/m. The number of phases is also determined by the behavior of
ON. If N, = \/m for a certain phase p (i.e., ON assigns all the jobs of that phase to Bp),
then the sequence stops. If phase m — \/m has less than /m jobs, then we bring one more
unit job (“extra job”), which is restricted to the most loaded machine that ON has in A.

We now describe the arrival and departure times of the jobs in each phase. We first
describe these times for the first phase, and then we inductively define them for the other
phases. The length of the time interval that our sequence will use is T' = \/M(m_‘/m-l'l).
Let S; = 0 and let Ty = T'. The first phase starts at time S; = 0. The jth job of phase 1
arrives at time 5 — 1 (1 < 7 < Ny). Its departure time is %

For each phase p > 1, we inductively define the arrival and departure times of the jobs
to be between the departure times of the last two jobs of the previous phase. For p > 1, we
define T} as the departure time of the last (i.e. N,’th) job of phase p. We also define S,
as the departure time of the N, — 1’st job of phase p. If N, = 1 then Sy is equal to S).
Each phase p starts at time S, and only uses the time interval [Sy, T},]. The arrival time of
the j'th job in phase p is S, + j — 1, and its departure time is S, + % Recall that in
case Np,_ m < v/m we add one more unit job, restricted to the most loaded machine that
ON has in A. This “extra job” lasts just one time unit and arrives at time S, .. This
completes the description of our sequence.

We first prove that ON achieves a load of at least \/m for the above sequence. Note
that the last arrival in phase p occurs before time S, 4+ /m and that the first departure
occurs at time S, + (T, — Sp)/v/m. Also, the duration of phase p can be seen to be

T,— Sy = \/ﬁmf‘/mﬁfp. Hence, in every phase p, the first departure occurs after the last
arrival. Therefore, when a job arrives all the previous jobs in the same phase are still active.
This means that if there exists a phase p in which ON assigns all the jobs to machine B,
then it reaches a load of at least \/m (which occurs at time S, ++/m —1), and we are done.

Otherwise, ON must assign a job to A at a certain stage of each phase. By definition,
the phase ends as soon as this happens. Recall that phase p + 1 starts when the N, — 1'st
job of phase p leaves, and ends before the departure of the N,’th job of phase p. So the
last job of phase p is active throughout phase p+ 1 and no other job from phase p is active
during phase p + 1. Since [Sp41,Tp+1] C [Sp,Tp] we conlude that the last job of each of
the phases 1, ...,p is active throughout phase p + 1, and no other job from phases 1, ...,p is
active during phase p + 1. Recall that the last job in each phase is assigned to A by ON.
So at time Sy, the active jobs are exactly all the jobs that ON assigned to A in phases
L...,(p—1). At time S,,_ ., ON has m—/m jobs in A. There are only \/m machines
in this set, so the most loaded machine in A, machine A;, has a load of at least /m — 1.
As we explained before, the “extra job” now arrives, and can only be assigned to machine
A;. This makes the load of ON on that machine at least /m.

Now we describe a possible assignment of algorithm OF F. When the j’'th job of phase
p arrives, it can be assigned either to A; or to By. If ON assigns the job to the machine in
B, then OFF assigns it to the machine in A. If ON assigns it to the machine in A, then
OF'F assigns it to the machine in B. If the “extra job” arrives, then OFF assigns it to its
admissible machine.

Let us consider now the load of OF F. At the beginning of phase p, OF F has no active
jobs in A, since we saw that ON has no active jobs in B. OFF has one active job on each
of the machines By, ..., B,_1, since ON has one active job from each phase in A. During
phase p, as long as ON assigns jobs to By, OF F assigns each of them to a different machine
in A (which was empty at the beginning of the phase). When ON assigns a job to A, OFF
assigns it to B, (which is empty), and the phase ends (so no other job will be assigned to
By). Therefore, OF F maintains a load of 1 throughout the phases. At time Sm—/m+1s
OFF has one active job on each machine in B (one job from each phase), and no jobs in
A. So it can assign the “extra job” to A; without exceeding the maximum load of 1. Thus
we have reached the required competitive ratio. [|

Let us denote the total length of the time interval used by the input sequence by T'. The
result above also applies when we limit the length T' of the sequence and when we allow
randomization to be used. The results are summarized in the next two theorems:

Theorem 3.2 Any deterministic on-line algorithm for load-balancing of temporary tasks
with known durations in the restricted assignment model has a competitive ratio of at least

Q J—lolgOlOgT), for any T < ﬁmﬁﬁﬂ),

Note that this lower bound is at most /m for this range of T

Proof: For any T = \/Ex_ﬁ-l'l where x < m, we can clearly apply the exact steps of the
previous proof, limiting ourselves to the first machines instead of using all the machines.
We will have a sequence with at most z — y/z phases, each of them having at most /z
jobs, and we will obtain a lower bound of y/z. We can easily see that in this case: /z =

Q(’/ilog)lgogT)' This means that for any T < \/ﬁ(m_‘/ﬁ+l)), we have a lower bound of

_logT .
0 log 10gT)7 as required. _

Theorem 3.3 A randomized on-line algorithm for solving the problem of restricted assign-
ment of temporary tasks with known durations cannot achieve a competitive ratio smaller
than %\/’m. Moreover, for any T < \/m(m7ﬁ+l) no algorithm can be better than Q(y/ Flgolgog—T)—
competitive.

Proof: Note that in Theorems 3.1 and 3.2 admissible sets contain at most two machines.
The results follow by using Lemma 2.3.]

10

4 Off-line Temporary Assignment

4.1 Fixed Number of Machines - A PTAS for temporary assignment of
unrelated tasks

4.1.1 Overview

We start with an overview of the polynomial-time approximation scheme and give the details
later. We begin with scaling the weights of the jobs, in order to limit the possible range of
the optimal maximum load. It is well-known that we can achieve an approximation ratio of
m simply by assigning each job to its fastest machine. We will refer to this simple algorithm
as “Fastest-Assign”. We apply this algorithm to our input, and denote the maximum load
reached by I. Now we multiply each of our jobs’ weights by . This assures us that the
optimal maximum load is in the range [1,m]. Note that this scaling requires only linear
time.

The algorithm then follows with five phases: the weight-rounding and grouping phase,
the time- rounding phase, the combining phase, the solving phase and the converting phase.
In the first phase, the weights of the jobs are rounded upwards, and then they are divided
into a large number of subsets based on their rounded weights, as will be explained later.
Next the time-rounding phase is applied to each of these subsets. This phase actually
consists of two subphases. In the first subphase the jobs’ active time is extended: some
jobs will arrive earlier, others will depart later. In the second subphase, the active time is
again extended but each job is extended in the opposite direction to which it was extended
in the first subphase. The combining phase is also applied to each subset separately. In
this phase the algorithm combines several jobs from the same subset into jobs with higher
load vector coordinates. In the solving phase, we find an optimal solution for the modified
problem (the solving is performed for all the jobs together). The solution we found can be
converted into a solution for the original problem in the converting phase, which is again
applied separately to each subset.

4.1.2 Description of the PTAS

We denote the sequence of events by o = o1, ..., 09,, where each event is an arrival or a
departure of a job; we assume that at each time only one job arrives or departs. Since
all the events are known at the beginning, we view o as a sequence of times, the time o;
is the moment after the i’th event happened. In addition, og denotes the moment at the
beginning, before the arrival of the first job. We assume without loss of generality that
m > 2 (otherwise the approximation ratio is always 1).

Let ¢ > 0 be the precision required by the PTAS. We assume that ¢ < 1. We choose
e = €'/7, and fix the following 3 constants:

62

“ 7 mflogn] - (Tlogy (Z)] +)™
0462 64
P T T wTlognl - (Mogre (B)] + D7

11

_pe eb
7T T mP[logn] - ([log, ()] 4+ 1)™

Phase 1: The weight-rounding and grouping phase. We start by describing the
weight-rounding and grouping phase. For each job j, we denote by W; the load that j
causes on its fastest machine: W; = min;(w;(i)). We will refer to W; as the “min-weight”
of the job j. We define the “relative speed” vector of job j, v; by: v;(i) = w;(i)/Wj, for
1 <37 < m. Note that ﬁj(i) > 1. We now perform a rounding of the vector #; and obtain
the rounded “relative speed” vector v;. For each 1 <i <m, if 9;(i) > m/e, then ¥} (i) = oo,
and we will refer to machine 7 as an “illegal machine” for job j. Otherwise, we obtain
v (i) by rounding 7;(7) upwards to the nearest power of 1+ ¢, and we will refer to machine
1 as a “legal machine” for job j. Note that each coordinate of the vector 17; may have
[log(14¢) ()] + 1 possible values, since its value is either oo or a power of (1 + €) between
1 and m/e. Now we define a new loads vector for the job j, w’, by: w’ (i) = W; - v/(i), for
1 <4 < m. In this we completed the rounding of the weights.

Next we divide the jobs into subsets according to their ' vector. This division splits
the jobs into at most ([log; ()] + 1)™ subsets, since each of the m coordinates of that
vector may have ([log;.(**)] + 1) possible values, as we noted before. This completes the
description of the first phase.

Phase 2: The time-rounding phase. This phase is similar to the time-rounding
phase described by [8]. We will apply this phase separately to each subset of jobs Jy
(having the same “relative speeds” vector ¥').

In order to describe the time-rounding phase with its two subphases, we start with
defining partitions of each subset Jz, based on which the rounding will be performed. The
set Ry contains all jobs with W; > v out of the jobs in Jy .

From now on, we fix ¥’ in the description of this phase, and refer to .J as J and to Ry
as R. All the following definitions are made for these fixed J and R.

We begin by defining a partition {.J;} of the set of jobs J — R. We set M1 = J — R
and define sets J; and M; iteratively as follows. Let M; be a set of jobs and consider the
sequence of times in o in which jobs of M; arrive and depart. The number of such times is
2r for some r, let ¢; be any time between the r’th and the r 4 1-st elements in that set. The
set J; contains the jobs in M; that are active at time ¢;. The set Msy; contains the jobs in
M; that depart before or at ¢; and the set Ms; 1 contains the jobs in M; that arrive after ¢;.
We stop when all unprocessed M;’s are empty. The important property of that partition is
that the set of jobs from J — R that are active at a certain time is partitioned into at most
[logn] different sets J;.

We continue by further partitioning the set .J;. We order the jobs according to their
arrival time. We denote the smallest prefix of the jobs whose total min-weight is at least
a by S}. We order the same jobs according to their departure time. We take the smallest
suffix whose min-weight is at least a and denote that set by T'. Note that there might
be jobs that are both in S} and T!. We remove the jobs in S} UT}! from J;, repeat the
process with the jobs left in J; and similarly define S?, T2, .. Sk % . Fach set S; and T;
has total min-weight between « and a + 7y, except for the last palr Wthh may have smaller
min- welght than a. However if the last pair has smaller min-weight than «, then it satisfies
Sk =Tk We denote by s] the arrival time of the ﬁrst job in S] and by tj the departure

time of the last job in Ti]. Note that s} < s? < ... < 3 < < t ! . < tl2 <tl.

12

The first subphase of the time-rounding phase creates a new set of jobs J' which contains
the same jobs as in .J with slightly longer active times. We change the arrival time of all the
jobs in S7 for j = 1,...,k; to s]. Also, we change the departure time of all the jobs in T} to
tg . The jobs in R are left unchanged. We denote the sets resulting from the first subphase
by J', JI, S, T,

The second subphase of the time-rounding phase further extends the active time of the
jobs resulting from the first subphase. We take one of the sets J/ and the partition we
defined earlier to S'il UT'}, S’? UT'?, cey S’fi UT’fi. For every j < k;, we order the jobs in
5" according to an increasing order of departure times. We take the smallest prefix of this
ordering whose total min-weight is at least 5. We extend the departure time of all the jobs
in that prefix to the departure time of the last job in that prefix. The process is repeated
until there are no more jobs in S"J. The last prefix may have a min-weight of less than 3.
Similarly, we extend the arrival times of jobs in T’g. Note that if the total min-weight of
either S"% or T'¥ is smaller than a then §'¥ = T"% and these jobs are left unchanged since
they already have identical arrival and departure times from the first phase. We denote the
sets resulting from the second subphase by J”, J/', S", T".

Phase 3: The combining phase. This phase involves the load vectors of the jobs.
It is also applied to each subset .J}; separately, so we again fix v’ in the description of this
phase and refer to J!, as J”. Let J., be the set of jobs in J” that arrive at s and depart at
t. Assume the total min-weight of jobs in J7, is . The combining phase replaces these jobs
by [z/7] jobs, which have a load-vector of y - #'. Note that the maximum finite weight in
their loads vector may be 2 - y. We denote the resulting sets by .J;/. The set J" is created
by replacing every Jg with its corresponding Jgj, that is, J" = U, Jg -

Phase 4: The solving phase. This phase solves the modified decision problem,
i.e. it solves the problem after each subset Jy has been replaced by a modified subset
JI/. The solving phase is performed once for all the jobs together (not for each J./ subset
separately). We solve the modified decision problem by building a layered graph. Every time
oi, i =0,...,2n, in which jobs arrive or depart (including the initial state with no job) has
its own set of vertices called a layer. Each layer holds a vertex for every possible assignment
of the current active jobs to machines (except assignments of weight oc); furthermore, we
label each node by the maximum load of a machine in that configuration.

Two vertices of adjacent layers o;_1 and o;, ¢ = 1,...,2n, are connected by an edge if
the transition from one assignment of the active jobs to the other is consistent with the
arrival and departure of jobs at time o;. More precisely, the vertices are connected if and
only if every job active both before and after o; is assigned to the same machine in the
assignments of both vertices. At each event, jobs either arrive or depart but not both (due
to the assumption at the beginning that all the original events are distinct; during rounding
we do not mix arrival and departure events). If o; is an arrival, the indegree of all vertices
in the layer o; is 1, since the new configuration determines the old one. Similarly if o; is a
departure, the outdegree of all vertices in the layer o; 1 is 1. In both cases, the number of
edges between two layers is linear in the number of vertices on these layers. It follows that
the total number of edges is linear in the number of vertices.

We define a value of a path as the maximal value of its nodes. Now we can simply find a
path with smallest value from the first layer to the last one by any shortest path algorithm

13

in linear time (since the graph is layered).

Phase 5: The converting phase. In this phase the algorithm converts the assignment
found for the modified problem into an assignment for the original problem. This phase is
performed separately for the jobs in each of the subsets J/. Each assignment of the jobs
of a modified subset J./ is converted into an assignment for the jobs of subset J;, which is
also an assignment for the original problem. Again we fix ¥’ throughout the description of
this phase, and refer to J/ as J”. Assume the number of jobs having W; = + in J] that
are assigned to a certain machine ¢ is r;. Remove these jobs and assign all the jobs having
W; < in J, to the machines such that a total weight of at most (r; +1)y-9'(4) is assigned
to machine 1.

Note that all the jobs will be assigned that way. The replacement involves jobs whose
min-weight is at most . We know that the total min-weight of these jobs is at most
Y Y in T

If they made a load of (r; + 1)9'(i)y on each of the machines, then it would mean that
their total min-weight was at least v - (m + Y./, r;). So it is possible to assign all these
jobs so that they will make a load of at most (r; + 1)y - 9'(i) on each machine 3.

The assignment for J” is also an assignment for J' and J. An assignment for J is also
an assignment for the original problem.

4.1.3 Analysis of PTAS

We now perform an analysis of our algorithm. Our steps of proof are similar to those used
by [8], but our lemmas and proofs will have some adjustments. We will denote the problem
for the original input by I, the problem after the first phase by I, the problem after the
first time-rounding phase by I’, the problem after the second time-rounding phase by I”,
and the problem after the combining phase by I".

Lemma 4.1 Given a solution for the problem I whose mazimum load is A, we can convert
it to a solution for I by moving jobs that were assigned to one of their “illegal machines” to
their fastest machine. This solution for It will have a mazimum load of at most A\(1 + €)?.
Also, given a solution for I™ whose mazimum load is)\, the same solution applied to I has
a mazximum load of at most \.

Proof: The second claim is obvious since the jobs in I have smaller weights than the corre-
sponding jobs in I". As for the first claim, we first consider the jobs we move from one of
their “illegal machines” (machines on which w/(i) = oo to their fastest machine. Consider a
machine . Jobs might have been moved to this machine from all the other m — 1 machines.
Each of these machines had a load of at most A. A job j was moved to machine 4 only if it
was assigned to a machine & s.t. w;(k) > Zw;(i). So when moving the jobs to machine i,
their weights are * times smaller. This means that the total increase in the load of machine
i is at most (m —1)- = - A < e)l. Hence, the maximum load was increased by at most e by
the moving of jobs.

In the weight-rounding phase we also increase the weight of each job on its “legal ma-
chines”. At most, we multiply the weight of each job by 1+4¢. Altogether, these two changes
mean that our solution for I has a maximum load of at most A(1 + €)2. |

Lemma 4.2 Given a solution for the problem IT whose mazimum load is X\, the same
solution applied to I' has a mazimum load of at most X\ + € + 64/16. Also, given a solution

14

for I' whose mazimum load is X\, the same solution applied to I has a mazimum load of
at most A.

Proof: The second claim is obvious since the durations of jobs in I are contained in the
corresponding durations in I'. As for the first claim, for each subset J(= Jy), every time 7
is contained in at most [logn]| sets J;. Consider the added load at 7 from jobs in a certain
set J;. If 7 < sl or 7 > t! then the same load is caused by J! and J;. Assume 7 < ¢; and
define sk = = ¢;, the other case is symmetrical. Then for some (single) 7, s; J <7< sJJrl and
the added load at 7 is at most the total load of Sg which has a min-weight of at most a+7,
so its total load is at most "*(a +) on any machine. Summing on all sets .J;, we conclude
that the maximal load of the jobs in the subset J has increased by at most = (a+y)[logn].
We have at most ([log;,("2)] 4+ 1)™ such subsets, so the overall increase in load is at most

4

m et
(HogH-e(+1n)™ E(a-l—v)[logn}:e-kmg(ﬂ_ﬁ

Lemma 4.3 Given a solution for I' whose mazimum load is A, the same solution applied
to I" has a mazimum load of at most AN(1+¢). Also, given a solution for I'" whose mazimum
load is X, the same solution applied to I' has a mazimum load of at most \.

Proof: The second claim is obvious since the durations of jobs in I’ are contained in the
corresponding durations in I”. As for the first claim, given a time 7 and a pair of sets
S'j T’j from J; from a certain subset J'(= JJ,), we examine the increase in load at 7. If
T<sjorT> tj it is not affected by the transformation because no job in T’J U S’J arrives
before s! or departs after t] Assume that 7 < ¢;, the other case is symmetrical. So 7 is
affected by the decrease in arrival time of jobs in T’j It is clear that the way we extend
the jobs in T’J increases the the min- welght at 7 by at most B, and hence the load at 7 is

increased by at most ©*3. Also, since 7 > 5!, we know that the total min-weight of S'J i

79
at least o if j < k;. Thus, an extra load of at most “*f3 is created by every pair S’?, T’g for
1 < j < k; only if the pair contributes at least o to the load. If the last pair Sfi, Tiki has
total min-weight smaller than «, it does not contribute, as it is not changed from J' to J";
otherwise the analysis is the same as for 5 < k;. Since the total load on each machine at

any time is at most A, the increase in maximum load is at most =*/3 - /\Tm = €. [

Lemma 4.4 Given a solution for I" whose mazimum load is X\, the modified problem I"
has a solution with a mazimum load of M\(1 4 € + €2). Also, given a solution for I"" whose
mazimum load is A, the solution given by the converting phase for the problem I" has a
mazimum load of at most \(1 + € + €2).

Proof: Consider a solution for I” whose maximum load is A. We consider the jobs having
min-weight smaller than 7. Let x be the total min-weight of such jobs in a certain J.}(=
J st) that were assigned to machine ;. We replace them by [z/v] jobs with a loads vector of
-2, so that this is an assignment to I"”". The increase in load on every machine is at most
2y times the number of sets .J!, that contain jobs which are scheduled on that machine. As
for the other direction, consider a solution whose maximum load is A to I". The increase
in load on every machine by the replacement described in the algorithm is also at most "y

times the number of sets J!; that contain jobs which are scheduled on that machine.

15

It remains to estimate the number of sets J!, that can coexist at a certain time. Most
of these sets have a min-weight of at least 3; their number is at most Am/f3, since the total
load at any time is at most A on each machine. For each set S7 and T/, j < k;, we have at
most one set J!}, with total min-weight less than /. Since the total min-weight of Sij and Tij
is at least a, there are at most Am/a such sets (if Sij and Tij are not disjoint, the small sets
J! in both of them have the same s and ¢, thus we do not need to multiply by 2). Last,
there may be one set J!, with a min-weight smaller than 8 in each Sfi = TZkl, there are only
[log n] such sets in each subset, so their total number is at most ([log;, (2)]+1)™-[logn]
Therefore, the increase in maximum load is at most:

my dm | Am My gy, Y i, i
J G+ (o (] 4)™ Tlogn]) = At To 4
< Me+é€)

Theorem 4.5 The algorithm described in the last section is a PTAS running in time
O(n1+6’6m7(ﬂogue(%ﬂ-l-l)m1Ogm)_

Proof: First we estimate the approximation ratio of the algorithm. We are given some
¢ > 0, and we want to find a solution with a maximum load of at most A\(1 + ¢'). We use
the algorithm described above for € = €’/7. By the above lemmas, for an instance with
optimal solution with maximum load A, the algorithm yields a solution with maximum load

at most:
4

AL+ €)2(1 4 e+ ;—6)(1 te)(l+et)2 <A1+

Now we estimate the running time of the algorithm. All the phases except the solving
phase are easily performed in time O(n?). The running time of the solving phase takes the
major part of the overall running time. It is linear in the number of edges in the layers graph
that we built for the modified problem I”’. The number of edges is linear in the number
of vertices (as was explained in our construction). We therefore estimate the number of
vertices. Every layer in the graph stores all the possible assignments of jobs to machines.
We have 2n layers, one for each departure or arrival. Since the minimal load that a job may
cause in the modified problem is -, the maximum number of active jobs at a certain time
is Am/~v. Recall that the scaling we performed at the beginning of our algorithm assures us
that A < m. So the maximum number of vertices in the graph and the running time of the
algorithm is:

o Y < Yy m (Nlogy 4. ()] +1)™ [log n]

- O(n1+6’6m7(f10g1+6(%ﬂ+1)mlogm)
This yields the result. L

4.2 Non-Fixed Number of Machines

16

In this section we consider offline load-balancing of temporary tasks on a non-fixed
number of unrelated machines. We show that no polynomial approximation algorithm can
achieve an approximation ratio smaller than 2, unless P = N P. We prove this lower bound
for the special case of restricted assignment (so it obviously holds for the general case of
any unrelated machines as well).

Theorem 4.6 For every p < 2, there does not exist a polynomial p-approzimation algo-
rithm for restricted assignment of temporary tasks unless P = NP.

Proof: We use a reduction from the 3-dimensional-matching problem (3DM), which is
known to be NP-complete. In that problem, we are given three sets of elements, B, G, and
H, each of them of size n (B = by,....,b,, G = g1,....9n, H = hy,...,hy,). We are also given
aset S =1T,...,T, of m triplets, S C B * G x H. These are the possible matchings of 3
elements from B,G, and H. The goal is to decide whether there exists a matching for all the
elements of B,G, and H, i.e. a subset of S, S, such that [S'| = n and Ur,ce Ti = BUGUH.
Given an instance to the 3D M problem we construct an instance for our problem. For each
triplet T;, we have a machine m;. All our jobs are of weight 1, and our total time interval
will be of length 3 (from time 0 until time 3). Our first type of jobs will be “element jobs”
(one job for each element), as described hereafter. For each element b; € B, we will have
a job which arrives at time 0, departs at time 1, and is admissible to a machine my, if and
only if b; € T,. For each element g; € G, we will have a job which arrives at time 1, departs
at time 2, and is admissible to a machine my, if and only if g; € T}. Finally, for each element
h; € H, we will have a job which arrives at time 2, departs at time 3, and is admissible to a
machine my if and only if h; € T. Our second type of jobs will constitute of m —n “dummy
jobs”, which arrive at time 0, depart at time 3, and are admissible to all the machines.

We prove that there is an assignment with a maximum load of 1, if and only if there
is a solution to the 3DM problem. Suppose there is a 3DM, S' = {T;,,...,T;, }. Then for
each T;, € S’, we assign to the machine m;, the 3 “element jobs” which correspond to the 3
elements of T;, . They are admissible to m;,, because this is how we defined our assignment
restrictions. Also notice that they are active in different times, so the machine maintains
a load of 1. This way we assign the 3n “element jobs” to n of the machines. We assign
the m — n “dummy jobs” to the other m — n machines, one job on each machine. They
are admissible on any machine, and have a weight of 1 each. Therefore, this assignment
maintains a maximum load of 1 as required.

Now, assume that there is an assignment having a maximum load of 1. The m — n
“dummy jobs” must have been assigned to m — n different machines (if there is more than
one “dummy job” on a machine, then its load is bigger than 1). A “dummy job” is active
during our entire time interval, so a machine which has a “dummy job” on it cannot have
any other job assigned to it. Therefore, the 3n “element jobs” must have been assigned
to the remaining n machines. Each of these machines m;,,...,m;, must have one active
“element job” on it at each moment (since the total volume of the “element jobs” is 3n).
This means that each of these machines, m;,, has a job which corresponds to an element
of B assigned to it, a job which corresponds to an element of G assigned to it, and a job
which corresponds to an element of H assigned to it (this is the only possibility to have an
active “element job” at each moment). According to our assignment restrictions, these 3
elements from B,G, and H must be included in the triplet 7;,. All of the “element jobs”
were assigned, so UTik T; = BUGU H, and therefore T;,,...,T;, isa 3DM.

in

17

The above reduction shows that any approximation algorithm for our problem with an

approximation ratio strictly less than 2 solves the 3DM problem. Hence, we have proven

the theorem. [
References
[1] S. Albers. Better bounds for on-line scheduling. In Proc. 29th ACM Symp. on Theory

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

of Computing, pages 130-139, 1997.

Jim Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts. On-line load
balancing with applications to machine scheduling and virtual circuit routing. In Proc.
25th ACM Symp. on Theory of Computing, pages 623—631, May 1993.

Y. Azar. On-line load balancing. In A. Fiat and G. Woeginger, editors, Online Algo-
rithms - The State of the Art, chapter 8, pages 178-195. Springer, 1998.

Y. Azar, A. Z. Broder, and A. R. Karlin. On-line load balancing. Theoretical Computer
Science, 130(1):73-84, 1994. Also in Proc. 38rd IEEE FOCS, 1992, pp. 218-225.

Y. Azar and L. Epstein. On-line load balancing of temporary tasks on identical ma-
chines. In 5th Israeli Symp. on Theory of Computing and Systems, pages 119-125,
1997.

Y. Azar, B. Kalyanasundaram, S. Plotkin, Kirk R. Pruhs, and Orli Waarts. On-line
load balancing of temporary tasks. Journal of Algorithms, 22(1):93-110, 1997. Also in
Proc. WADS’93, pp. 119-130.

Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assignments. Journal
of Algorithms, 18(2):221-237, 1995. Also in Proc. 3rd ACM-SIAM SODA, 1992, pp.
203-210.

Y. Azar, O. Regev, J. Sgall, and G. Woeginger. Off-line temporary tasks assignment.
Theoretical Computer Science. To appear. Also in Proc. 7th Annual European Sympo-
sium on Algorithms 1999, pp. 163-171.

B. S. Baker, D. J. Brown, and H. P. Katseff. A 5/4 algorithm for two-dimensional
packing. J. Algorithms, 2:348-368, 1981.

Y. Bartal, A. Fiat, H. Karloff, and R. Vohra. New algorithms for an ancient scheduling
problem. In Proc. 24th ACM Symposium on Theory of Algorithms, pages 51-58, 1992.
Also in Journal of Computer and System Sciences (1995) 359-366.

P. Berman, M. Charikar, and M. Karpinski. A note on on-line load balancing for
related machines. In 5th annual Workshop on Algorithms and Data Structures, 1997.

A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

18

[13]

[14]

[15]

[16]

[17]

[18]

B. Chen, A. van Vliet, and G. J. Woeginger. New lower and upper bounds for on-line
scheduling. Operations Research Letters, 16:221-230, 1994.

W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1 4 € in
linear time. Combinatorica, 1:349-355, 1981.

M. R. Garey, R. L. Graham, D. S. Johnson, and A. C. C. Yao. Resource constrained
scheduling as generalized bin packing. J. Comb. Th. Ser. A., 21:257-298, 1976.

R.L. Graham. Bounds for certain multiprocessor anomalies. Bell System Technical
Journal, 45:1563-1581, 1966.

E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling non-
identical processors. Journal of the Association for Computing Machinery, 23:317-327,
1976.

D. Karger, S. Phillips, and E. Torng. A better algorithm for an ancient scheduling
problem. In Proc. 5th ACM-SIAM Symp. on Discrete Algorithms, pages 132-140,
1994.

J.K. Lenstra, D.B. Shmoys, and E. Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Math. Prog., 46:259-271, 1990.

S. Phillips and J. Westbrook. On-line load balancing and network flow. In Proc. 25th
ACM Symposium on Theory of Computing, pages 402—411, 1993.

S. Plotkin and Y. Ma. An improved lower bound for load balancing of tasks with
unknown duration. Inform. Process. Lett., 62:301-303, 1997.

D. Shmoys and E. Tardos. An approximation algorithm for the generalized assignment
problem. Mathematical Programming A, 62:461-474, 1993. Also in the proceeding of
the 4th Annual ACM-STAM Symposium on Discrete Algorithms, 1993.

J. Westbrook. Load balancing for response time. In 3rd Annual European Symposium
on Algorithms, 1995.

19

