
Temporary Tasks Assignment Resolved �Amitai Armon y Yossi Azar z Leah Epstein x Oded Regev {AbstractAmong all basic on-line load balancing problems, the only unresolved problem wasload balancing of temporary tasks on unrelated machines. This open problem existsfor almost a decade, see [Borodin El-Yaniv]. We resolve this problem by providing aninapproximability result. In addition, a newer open question is to identify the depen-dency of the competitive ratio on the durations of jobs in the case where durationsare known. We resolve this problem by characterizing this dependency. Finally, weprovide a PTAS for the o�-line problem with a �xed number of machines and show a2 inapproximability for the general case.1 IntroductionOn-line load balancing was extensively studied in the last decade (e.g., [1, 2, 3, 5, 10, 11, 13,16, 18, 20, 23]). The basic problem contains the identical, related, restricted and unrelatedmodels for permanent and temporary tasks. Tight bounds were given to all these problemsexcept one: the assignment of temporary tasks to unrelated machines remained open. Wepresent an inapproximability result by employing a cyclic load transfer method. Anothermore recent open question posed in [12] is whether the case where job durations are knownat their arrival is provably harder than that of permanent jobs. We answer this question inthe aÆrmative. We �rst summarize the results presented in this paper. Let m denote thenumber of machines and T the duration of the longest job.� For on-line unrelated assignment of temporary tasks with unknown durations, weshow an
(m= logm) lower bound which almost matches a trivial O(m) upper bound.For randomized algorithms we show an
(m=(logm)2) lower bound.� For on-line restricted assignment of temporary tasks with known durations, we presenta lower bound of
(pm) and of
(q log Tlog log T) on the competitive ratio of any on-linealgorithm (deterministic or randomized). These lower bounds also hold for assignmenton unrelated machines.�A preliminary version of this paper appears in the proceedings of SODA'02.yDepartment of Computer Science, Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail: armon@tau.ac.il.zDepartment of Computer Science, Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail: azar@tau.ac.il.Research supported in part by the Israel Science Foundation and by a grant of the European Commission.xSchool of Computer and Media Sciences, The Interdisciplinary Center, Herzliya, Israel. E-Mail:lea@idc.ac.il.{Institute for Advanced Study, Princeton, NJ. E-Mail: odedr@ias.edu. Research supported in part byNSF grant CCR-9987845 1

� For o�ine assignment of temporary tasks on unrelated machines, we present a PTASfor the case where the number of machines is �xed. For the case where the numberof machines is not �xed, we present a lower bound of 2 (provided that P 6= NP).We also provide an additional result for interesting special cases of temporary tasks assign-ment in the unrelated machines model with unknown durations. Speci�cally, we show tightresults for certain cases of the related-restricted model.De�nitions and previous results: We consider the problem of non-preemptive loadbalancing of temporary tasks on m unrelated machines. Each job (task) has an arrivaltime and a departure time, and should be assigned to one machine immediately upon itsarrival. Each job j is associated with a loads vector (wj(1); :::; wj (m)). If job j is assignedto machine i, it increases the load of machine i by its weight on that machine, wj(i), for theduration of the job. The load on a machine at a certain time is the sum of the loads causedby the jobs assigned to it at that time. The goal is to minimize the maximum load overmachines and time. Note that the load and the time are two separate axes of the problem.In the known durations setting we assume that when a job arrives its duration is given tothe on-line algorithm and in the unknown durations setting we assume that the departuretime is known only when the job actually departs.An important special case of the unrelated machines model is the special case called therestricted assignment model. In this case, a job j can only be assigned to a subset of themachines that depends on the job. On each of these machines it causes the same load wj .This is equivalent to a loads vector that contains only the values wj or1. The results in [4](and later in [21]) show a lower bound of
(pm) on the competitive ratio that any on-linealgorithm (deterministic or randomized) may have for restricted assignment of temporarytasks with unknown durations. An on-line algorithm for this problem with a competitiveratio of O(pm), was later presented in [6] (the \Robin-Hood" algorithm) thereby provingthat the lower bound of
(pm) is tight.Unknown durations: Apart from a trivial upper bound, no on-line algorithm forthe unrelated assignment model exists. The
(pm) lower bound for restricted assignmentmentioned above ([4]) dates back to 1992 but was still the best lower bound for unrelatedassignment. Our results show that a trivial O(m) competitive algorithm is almost optimalhence proving the inapproximability of this model. Speci�cally, by using a cyclic loadtransfer method we achieve an
(m= logm) lower bound. The open problem mentioned in[12] regarding the existence of a better approximation algorithm is thus answered negatively.We extend the inapproximability result to randomized algorithms as well.Known durations: The competitive ratio of �(pm) for the restricted assignmentmodel is usually regarded as a high competitive ratio, so in [6] it was suggested to considerthis problem in the known-durations case, hoping to beat the
(pm) bound, and get apolylogarithmic competitive ratio. This seemed plausible since the best known lower boundfor the known durations case was only
(logm) [7] (proven for the special case of permanenttasks). Indeed, the work of [6] made a step in this direction by showing an O(logmT) -competitive algorithm, where T is the duration of the longest job (in discrete time units).The competitive ratio of this algorithm is lower than �(pm) for a large range of T . Theobvious intriguing question, also presented in the survey of [3], was whether we can indeedimprove on the
(pm) lower bound and achieve a O(polylog(m))-competitive algorithm.2

Surprisingly, we answer this question negatively, by extending the lower bound of [21] toa lower bound of
(pm) that holds for the known durations case. This bound is tightby the upper bound for unknown durations. Our
(pm) lower bound holds for unrelatedmachines as well (since restricted assignment is a special case). This result also answers anopen question presented by Borodin and El-Yaniv in [12]. They asked whether there is anymachine model in which one can prove a lower bound for temporary tasks assignment withknown durations which is higher than the competitive ratio of permanent tasks assignmentin that model. Our
(pm) lower bound for restricted assignment of temporary taskswith known durations is strictly higher than the O(logm) competitive ratio for the case ofpermanent tasks. We note that as a function of T our lower bound is
(q log Tlog log T) whichcan be compared to the O(log T) upper bound of [6] (assuming T � m�).O�ine results: Next we consider the assignment of temporary tasks on unrelatedmachines in the o�ine setting. In the special case of permanent tasks, the tasks do notdepart (all the departure times equal 1). Horowitz and Sahni presented an FPTAS forpermanent tasks assignment on a �xed number of unrelated machines (i.e., the number ofmachines is not a part of the input) [17]. A PTAS for this problem was also presented byLenstra et al. [19]. For permanent tasks assignment on an arbitrary number of unrelatedmachines, Lenstra et al. [19] and Shmoys and Tardos [22] presented algorithms with anapproximation ratio of 2. In addition, Lenstra et al. proved that no algorithm can reachan approximation-ratio better than 32 for the arbitrary number of machines case, unlessP = NP [19].Unlike the permanent case, solving the problem of temporary tasks assignment on unre-lated machines cannot be done by standard rounding techniques. The problem arises fromthe two separate axes of the problem and this extra dimension is known to turn problemsinto intractable ones or very hard to approximate [15, 14, 9]. In order to obtain a PTASafter all, we had to use a two-dimensional rounding technique. While the above applies tothe case of �xed number of machines, we also prove that when the number of machines isnot �xed (i.e. is part of the input), no algorithm can achieve an approximation ratio lowerthan 2 unless P = NP . This lower bound is higher than the 32 lower bound for permanenttasks and almost separates the two settings.The problem of temporary tasks assignment on identical machines is another special caseof our problem which was considered in [8] and provides the foundation for our algorithm.In this special case, the load that a job causes depends only on the job and it is identicalfor all the machines (i.e. wj(i) = wj for 1 � i � m). A PTAS for this problem in the casewhere the number of machines is �xed was presented in [8]. They also proved a lower boundof 32 for the case of an arbitrary number of machines, provided that P 6= NP . Again, thelower bound that we present for our problem is higher than the lower bound for this specialcase.2 Tasks of Unknown Duration2.1 Inapproximability of the Unrelated Machines Model
3

In this section we present the inapproximability result for online load balancing of tem-porary tasks on unrelated machines. Namely, we show a lower bound of
(m= logm) almostmatching an upper bound of O(m). It can be seen that the simple algorithm assigning eachjob to its fastest machine is an O(m) competitive algorithm.We proceed with the inapproximability result:Theorem 2.1 Any online algorithm for the load balancing of temporary tasks on unrelatedmachines is
(m= logm) competitive.Proof: Let k be the largest integer power of 2 such that k � m=logm. Assume by contra-diction that there is an online algorithm whose competitive ratio is below k=2. We describea sequence of jobs given by an adversary such that there exists an optimal assignment whosemaximum load is at most 1. The sequence ends as soon as there is a machine whose loadin the online assignment is at least k=2.The lower bound uses l = log k sets of k machines each. The sets are denoted byM1;M2; :::;Ml. In addition, a machine denoted by m10 is used. Also, denote by mji the j'thmachine in the set Mi, 1 � i � l, 1 � j � k. Note that the total number of machines used,l � k + 1, does not exceed m (when m > 2).The adversary proceeds in phases. Before the start of phase t, we de�ne a set of l + 1machines which we call active. One machine in each Mi is active and we denote its indexby ai(t). The machine m10 is always active and we use the notation a0(t) = 1. The loadof mai(t)i , i = 0; :::; l, in the online assignment is denoted by bi(t). We begin with settingai(0) = 1 for i = 1; :::; l.A phase is composed of an arrival of one job and the departure of a set of jobs. The jobpresented by the adversary has in�nite weight on non-active machines. Its weight on mai(t)iis 2i=k for i = 0; :::; l. Assume the online algorithm assigns it to machine mai(t)i . In case thenew load, bi(t + 1), is k=2 or more the sequence stops. Otherwise, the phase is completedwith the departure of the jobs assigned by the online algorithm to mai+1(t)i+1 ; :::;mal(t)l (nojob leaves when i = l). The set of active machines for the next phase is set as follows:aj(t+ 1) = 1 for any i + 2 � j � l and unless i = l we also set ai+1(t + 1) = 1 + b2bi(t)c.All other active machines stay the same. Note that since bi(t) < k=2 the above de�nition ofai(t+1) is valid, that is, ai(t+1) � k. Also note that by the above construction, non-activemachines are always empty.If we consider the vector of loads of the online assignment, (b0(t); b1(t); :::; bl(t)), wenote that the vector increases lexicographically after each phase. That is, at least one ofthe coordinates increases while all previous coordinates do not change. The increase isby at least 1=k. Since the adversary sequence is completed once one of the coordinatesexceeds k=2, the sequence is completed after a �nite number of phases, or speci�cally, atmost O(k2l) = O(m2 logm) phases.In what follows we complete the proof by showing an optimal assignment where themaximum load does not exceed 1 during the whole sequence. In case the job arriving atphase t is assigned by the online algorithm to mai(t)i , i = 0; :::; l � 1, then the optimalalgorithm assigns it to machine mai+1(t)i+1 . Otherwise, the job arriving at phase t is assignedby the online algorithm to mal(t)l and the optimal algorithm assigns it to machine m10.First, jobs assigned by the optimal assignment tom10 are assigned by the online algorithmto an active machine in Ml. Since that machine's load is not more than k=2 and all other4

machines in Ml are empty, the incurred load on m10 is at most 1=2. Now consider jobsassigned to mji+1, i = 0; :::; l � 1, by the optimal assignment. These are assigned by theonline algorithm to the active machine in Mi. Moreover, when they were assigned, the loadon the active machine in Mi was at least (j � 1)=2 and less than j=2 because ai+1, whichwas equal to j, is de�ned as twice this load plus one rounded down. Therefore, their totalload on a machine in Mi is at most 1=2 and their total load on a machine in Mi+1 is atmost 1.Concluding, the above sequence was shown to have an optimal assignment of maximumload 1. Moreover, as long as the online maximum load is below k=2 the online load vectorwas shown to increase lexicographically. This contradicts our assumption that an onlinealgorithm with competitive ratio below k=2 exists and completes the proof.The following lemmas demonstrate a general technique for converting deterministic lowerbounds into randomized ones.Lemma 2.2 Let R be a randomized on-line algorithm for load balancing of temporary taskson unrelated machines which achieves a competitive ratio of c. Then there exists a determin-istic on-line algorithm D, allowed to split jobs between di�erent machines, which achievesa competitive ratio � c against an optimal algorithm which is not allowed to split jobs.Proof: Algorithm R determines the probability pj(i) that a job j is assigned to machinemi, Pi pj(i) = 1. We denote the expectation of the maximum load of R by lR. For anyinput sequence, lR � c � lOPT .We de�ne D as follows. For an arriving job j, D splits the job between the machinesaccording to the probabilities set by R. So D assigns a load of pj(i) � wj to each machinemi. We denote the maximum load of D by lD.We now prove that for any input sequence lD � lR. Note that at any given timet, the load of D on machine mi is lDi (t) = E(lRi (t)). Hence, lD(t) = maxi(lDi (t)) =maxi(E(lRi (t))). Using the fact that the maximum of expectations is at most the expecta-tion of maxima, lD(t) � E(maxi(lRi (t))) = lR(t). The proof is completed by noting thatlD = maxt(lD(t)) � maxt(lR(t)) = lR � c � lOPT .Lemma 2.3 Let c be a lower bound on the competitive ratio of any deterministic algorithmfor unrelated assignment of temporary tasks. If c can be proven with an adversarial strategyof jobs in which each job has an admissible set of at most k machines, then there is alower bound of ck on the competitive ratio of any randomized on-line algorithm for the sameproblem.Proof: We will prove that there is a lower bound of ck on the competitive ratio of anydeterministic on-line algorithm D which is allowed to split jobs (compared to an optimumwhich is not allowed to split them). According to the previous lemma, this implies a lowerbound of ck for randomized on-line algorithms as well. Consider the sequence used for thedeterministic lower bound. Since each job in that sequence can only be assigned to at mostk machines, D must assign at least 1k of the job's weight to one machine. Now, considera deterministic online algorithm D0 which simulates D and assigns each job to just onemachine: the machine to which D assigned the largest part of the job. This is an onlinealgorithm that does not split jobs and therefore our adversarial strategy creates a load of atleast lD0 � c � lOPT . Since D assigns at least a 1k -fraction of each job to the same machineas D0, its load at the end of the same sequence must be at least lD � 1k � c � lOPT which gives5

the required competitive ratio.Theorem 2.4 Any online randomized algorithm for the load balancing of temporary taskson unrelated machines is
(m=(logm)2) competitive.Proof: The construction in Theorem 2.1 uses admissible sets of at most logm machines.The theorem then follows as a corollary of Lemma 2.3.2.2 Tight Results for the Related-Restricted Machines ModelThe result in the previous section shows that approximating the unrelated machinesmodel is almost infeasible. As an alternative to the unrelated machines model we considerthe so called related-restricted machines model. Here, each machine has its own speed andeach job has a weight and a set of admissible machines. However, note that the lowerbound presented in the last section still applies here so approximating is still infeasible. Weshow that by limiting the number of di�erent machine speeds to a constant number, we canapproximate the problem better. Speci�cally, in the case where only two di�erent machinespeeds are involved we obtain the following lower bound. Later, we will present a matchingupper bound.Theorem 2.5 Any online algorithm for the load balancing of temporary tasks in the related-restricted machines model with speeds f1; sg is
(minfmaxfm=s;pmg;pmsg) competitive.The same holds for randomized algorithms as well.Proof: A lower bound of
(pm) already exists for the special case of the restricted assign-ment model and therefore we can limit ourselves to showing a lower bound of
(minfm=s;pmsg)for s � pm. Let m0 = m=3 and b = minfm0=s;pm0sg. Assume by contradiction that thereis an online algorithm whose competitive ratio is below b. We describe a sequence of jobsgiven by an adversary such that there exists an optimal assignment whose maximum loadis at most 1. The sequence ends as soon as there is a machine whose load in the onlineassignment is at least b.The lower bound uses three sets of machines, M0, M1 andM2. BothM1 andM2 containm0 machines whereas M0 contains m0=b machines. The j'th machine in Mi is denoted mji .The idea behind the lower bound is to force the online algorithm to assign jobs to machinesin M0 while an optimal algorithm can assign them to machines in M1.The lower bound proceeds in phases and stops as soon as the load on a machine reaches b.At the beginning of a phase t we choose three active machines, one in eachMi. Their indicesare denoted by a0(t), a1(t) and a2(t). They are initially set to a0(0) = a1(0) = a2(0) = 1.One job is presented in each phase. Its weight on ma0(t)0 or on ma1(t)1 is 1=s where the weightonma2(t)2 is 1. In case the online algorithm assigned the job toma0(t)0 , all jobs assigned by theonline algorithm to M1 or M2 leave. If the job is assigned to ma1(t)1 all jobs assigned to M2leave. Otherwise, the job was assigned toma2(t)2 and no jobs leave. For the next phase, we seta0(t+1) = 1+bb2(t)=sc, a1(t+1) = 1+bb0(t)c and a2(t+1) = 1+bsb1(t)c where bi(t) denotesthe total on-line load on machines inMi. This is possible �rst because inM0 there are m0=bmachines each of which has a load of less than b so that a1(t+1) = 1+bb0(t)c � b�m0=b = m0.In addition, note that at any given time only one machine in M1 and one machine in M26

are not empty in the online assignment. Therefore, a2(t+1) = 1+ bsb1(t)c � s � b � m0 anda0(t+ 1) = 1 + bb2(t)=sc � b=s � m0=b.Note that the vector (b0(t); b1(t); b2(t)) lexicographically increases after each phase byat least 1=s. Moreover, the adversary described above proceeds as long as the maximumload is below b. Therefore, after a �nite number of phases the load on one of the machinesis going to reach b.The proof is completed by showing an optimal assignment where the maximum loaddoes not exceed 1. In case the job arriving at phase t is assigned by the online algorithm tomachinemai(t)i , then the optimal algorithm assigns it to machinemaj(t)j where j = i+1mod3.Now consider jobs assigned to mj1 by the optimal assignment. These are assigned by theonline algorithm to a machine in M0. Moreover, when they were assigned, the total onlineload on machines inM0 was at least j�1 and less than j. Since jobs assigned by the onlinealgorithm to M0 never leave, the load on mj1 is at most 1. Similarly, consider jobs assignedto mj2 by the optimal assignment. These are assigned by the online algorithm to an activemachine in M1. When they were assigned, the total online load on the active machine inM1 was at least (j � 1)=s and less than j=s. Since jobs assigned by the online algorithm toM1 leave all together and never leave individually, the load on mj2 is at most s � 1=s = 1. Asimilar argument holds for jobs assigned to M0 by the optimal assignment.Concluding, the above adversarial sequence was shown to have an optimal assignmentof maximum load 1 and as long as the online maximum load is below b, an online loadvector was shown to increase lexicographically. This contradicts our assumption that ab-competitive online algorithm exists and completes the proof. By Lemma 2.3, the resultalso holds for the randomized case since there are exactly three machines in any admissibleset.In the rest of this section, we describe two online algorithms whose combination achievesa competitive ratio matching the lower bound stated above. In both algorithms we assumethat OPT = 1. Nevertheless, by using standard doubling techniques we can overcome thatassumption while increasing the competitive ratio by a factor of at most 4. Both algorithmsare based on a modi�ed Robin Hood algorithm [6] with some threshold b. A machine issaid to be poor at a certain time if its load is less than b and is said to be rich otherwise.For a machine rich at time t we de�ne its windfall time as t0 if it is rich from time t0 to tbut is poor at time t0 � 1. As its name implies, the Robin Hood algorithm tries to assignjobs to the poor machines or in case none exists, to the a rich machine with the most recentwindfall time.Algorithm 1 In case an incoming job has at least one admissible fast machine, removeall slow machines from its admissible machines. Then use the Robin Hood algorithm witha threshold b = maxfpm;m=sg.Claim 2.6 The above algorithm is O(maxfpm;m=sg) competitive.Proof: First notice that jobs assigned to slow machines are not allowed to be assigned toany fast machine. Therefore, the contribution of a job to the total load of an optimalassignment is at least its contribution to the total load of the online assignment. Hence,the total load on all machines at any given time is at most that of an optimal assignmentwhich is at most m. This implies that the number of rich machines at any given time is atmost m=b. 7

By the de�nition of the algorithm, any job assigned to a slow rich machine i has onlyslow rich machines in its admissible set. Moreover, the windfall time of these machinesis before the windfall time of i, that is, they are all already rich at the windfall time of i.Therefore, in an optimal assignment, all jobs assigned to i after its windfall time are assignedto at most m=b slow machines. Their total load on i is at most m=b. Adding the job madei rich, we get that the total load on i at any given time is at most b+ 1 +m=b = O(b).Now consider a fast rich machine. Unlike slow machines, some of the jobs assigned tofast machines might result from the algorithm's removal of slow admissible machines. Thusjobs assigned to a fast rich machine i after its windfall time are assigned in an optimalassignment to one of at most m=b fast machines or to any one of the slow machines. Thetotal load on machine i is therefore at most b + 1 +m=b +m=s = O(b) and the requiredcompetitive ratio is achieved.Algorithm 2 Use the Robin Hood algorithm with a threshold b = pms.Claim 2.7 The above algorithm is O(pms) competitive.Proof: The total load on the fast machines at any given time is at most that of an optimalassignment which is at most m. The total load on the slow machines at any given time isat most sm since these jobs might be assigned to fast machines by an optimal assignment.This implies that the number of fast rich machines at any given time is at most m=b andthat the number of slow rich machines is at most sm=b.Consider a job assigned to a rich machine i. All other machines in its admissible setare rich and their windfall time is before the windfall time of i, that is, they are all alreadyrich at the windfall time of i. Therefore, all jobs assigned to i after its windfall time areassigned in an optimal assignment to at most sm=b slow machines and to at most m=b fastmachines. Therefore, if i is slow, their total load on i is at most 2sm=b and if i is fast, theirtotal load on i is at most 2m=b. Adding the job that made i rich, we get that the total loadon i at any given time is at most b+ s+ 2sm=b = O(pms).Algorithm 3 If s > m1=3 use the �rst algorithm; otherwise, use the second algorithm.Theorem 2.8 The above algorithm is O(minfmaxfm=s;pmg;pmsg)-competitive for loadbalancing of temporary tasks in the related-restricted machines model with speeds f1; sg.3 Tasks of Known DurationTheorem 3.1 Any deterministic on-line algorithm for load-balancing of temporary taskswith known durations in the restricted assignment model has a competitive ratio of at leastpm.Proof: Let ON be an on-line algorithm for the problem, and let OFF be an optimal o�inealgorithm for solving it. We will show a sequence of jobs for which ON reaches a load of atleast pm, whereas OFF maintains a load of one. First we describe the sequence, and thenwe prove the lower bound.We denote the set of the �rst pm machines by A, and the set of the remaining machinesby B. The i'th machine in A (respectively B) will be denoted by Ai (respectively, Bi), for1 � i � pm (respectively, for 1 � i � m�pm).We force ON to assign pm jobs to a single machine in B, or to assign m jobs to A(which consists of only pm machines). 8

Our input sequence only includes unit jobs and consists of at most m � pm phases.Each phase p (p � 1) consists of at most pm jobs. The j'th job in phase p (j � 1) isadmissible to two machines: Aj and Bp. The exact arrival and departure time of each jobwill be described later. The number of jobs arriving in each phase is determined by thebehavior of ON . Jobs keep arriving in phase p as long as ON assigns them to Bp (up tothe maximum of pm jobs). When ON assigns a job to a machine in A, the phase ends (i.e.no more jobs arrive in this phase). Let Np be the number of jobs which arrived in phase p.By de�nition, 1 � Np � pm. The number of phases is also determined by the behavior ofON . If Np = pm for a certain phase p (i.e., ON assigns all the jobs of that phase to Bp),then the sequence stops. If phase m�pm has less than pm jobs, then we bring one moreunit job (\extra job"), which is restricted to the most loaded machine that ON has in A.We now describe the arrival and departure times of the jobs in each phase. We �rstdescribe these times for the �rst phase, and then we inductively de�ne them for the otherphases. The length of the time interval that our sequence will use is T = pm(m�pm+1).Let S1 = 0 and let T1 = T . The �rst phase starts at time S1 = 0. The jth job of phase 1arrives at time j � 1 (1 � j � N1). Its departure time is j�T1pm .For each phase p > 1, we inductively de�ne the arrival and departure times of the jobsto be between the departure times of the last two jobs of the previous phase. For p � 1, wede�ne Tp+1 as the departure time of the last (i.e. Np'th) job of phase p. We also de�ne Sp+1as the departure time of the Np � 1'st job of phase p. If Np = 1 then Sp+1 is equal to Sp.Each phase p starts at time Sp, and only uses the time interval [Sp; Tp]. The arrival time ofthe j'th job in phase p is Sp+ j � 1, and its departure time is Sp+ j�(Tp�Sp)pm . Recall that incase Nm�pm < pm we add one more unit job, restricted to the most loaded machine thatON has in A. This \extra job" lasts just one time unit and arrives at time Sm�pm+1. Thiscompletes the description of our sequence.We �rst prove that ON achieves a load of at least pm for the above sequence. Notethat the last arrival in phase p occurs before time Sp + pm and that the �rst departureoccurs at time Sp + (Tp � Sp)=pm. Also, the duration of phase p can be seen to beTp � Sp = pmm�pm+2�p. Hence, in every phase p, the �rst departure occurs after the lastarrival. Therefore, when a job arrives all the previous jobs in the same phase are still active.This means that if there exists a phase p in which ON assigns all the jobs to machine Bp,then it reaches a load of at least pm (which occurs at time Sp+pm� 1), and we are done.Otherwise, ON must assign a job to A at a certain stage of each phase. By de�nition,the phase ends as soon as this happens. Recall that phase p+ 1 starts when the Np � 1'stjob of phase p leaves, and ends before the departure of the Np'th job of phase p. So thelast job of phase p is active throughout phase p+1 and no other job from phase p is activeduring phase p + 1. Since [Sp+1; Tp+1] � [Sp; Tp] we conlude that the last job of each ofthe phases 1; :::; p is active throughout phase p+ 1, and no other job from phases 1; :::; p isactive during phase p + 1. Recall that the last job in each phase is assigned to A by ON .So at time Sp, the active jobs are exactly all the jobs that ON assigned to A in phases1; : : : ; (p�1). At time Sm�pm+1, ON has m�pm jobs in A. There are only pm machinesin this set, so the most loaded machine in A, machine Ai, has a load of at least pm � 1.As we explained before, the \extra job" now arrives, and can only be assigned to machineAi. This makes the load of ON on that machine at least pm.9

Now we describe a possible assignment of algorithm OFF . When the j'th job of phasep arrives, it can be assigned either to Aj or to Bp. If ON assigns the job to the machine inB, then OFF assigns it to the machine in A. If ON assigns it to the machine in A, thenOFF assigns it to the machine in B. If the \extra job" arrives, then OFF assigns it to itsadmissible machine.Let us consider now the load of OFF . At the beginning of phase p, OFF has no activejobs in A, since we saw that ON has no active jobs in B. OFF has one active job on eachof the machines B1; :::; Bp�1, since ON has one active job from each phase in A. Duringphase p, as long as ON assigns jobs to Bp, OFF assigns each of them to a di�erent machinein A (which was empty at the beginning of the phase). When ON assigns a job to A, OFFassigns it to Bp (which is empty), and the phase ends (so no other job will be assigned toBp). Therefore, OFF maintains a load of 1 throughout the phases. At time Sm�pm+1,OFF has one active job on each machine in B (one job from each phase), and no jobs inA. So it can assign the \extra job" to Ai without exceeding the maximum load of 1. Thuswe have reached the required competitive ratio.Let us denote the total length of the time interval used by the input sequence by T . Theresult above also applies when we limit the length T of the sequence and when we allowrandomization to be used. The results are summarized in the next two theorems:Theorem 3.2 Any deterministic on-line algorithm for load-balancing of temporary taskswith known durations in the restricted assignment model has a competitive ratio of at least
(q log Tlog log T), for any T < pm(m�pm+1).Note that this lower bound is at most pm for this range of T .Proof: For any T = pxx�px+1 where x � m, we can clearly apply the exact steps of theprevious proof, limiting ourselves to the �rst x machines instead of using all the machines.We will have a sequence with at most x � px phases, each of them having at most pxjobs, and we will obtain a lower bound of px. We can easily see that in this case: px =
(q log Tlog log T). This means that for any T < pm(m�pm+1)), we have a lower bound of
(q log Tlog log T), as required.Theorem 3.3 A randomized on-line algorithm for solving the problem of restricted assign-ment of temporary tasks with known durations cannot achieve a competitive ratio smallerthan 12pm. Moreover, for any T < pm(m�pm+1) no algorithm can be better than
(q log Tlog log T)-competitive.Proof: Note that in Theorems 3.1 and 3.2 admissible sets contain at most two machines.The results follow by using Lemma 2.3.
10

4 O�-line Temporary Assignment4.1 Fixed Number of Machines - A PTAS for temporary assignment ofunrelated tasks4.1.1 OverviewWe start with an overview of the polynomial-time approximation scheme and give the detailslater. We begin with scaling the weights of the jobs, in order to limit the possible range ofthe optimal maximum load. It is well-known that we can achieve an approximation ratio ofm simply by assigning each job to its fastest machine. We will refer to this simple algorithmas \Fastest-Assign". We apply this algorithm to our input, and denote the maximum loadreached by l. Now we multiply each of our jobs' weights by ml . This assures us that theoptimal maximum load is in the range [1;m]. Note that this scaling requires only lineartime.The algorithm then follows with �ve phases: the weight-rounding and grouping phase,the time- rounding phase, the combining phase, the solving phase and the converting phase.In the �rst phase, the weights of the jobs are rounded upwards, and then they are dividedinto a large number of subsets based on their rounded weights, as will be explained later.Next the time-rounding phase is applied to each of these subsets. This phase actuallyconsists of two subphases. In the �rst subphase the jobs' active time is extended: somejobs will arrive earlier, others will depart later. In the second subphase, the active time isagain extended but each job is extended in the opposite direction to which it was extendedin the �rst subphase. The combining phase is also applied to each subset separately. Inthis phase the algorithm combines several jobs from the same subset into jobs with higherload vector coordinates. In the solving phase, we �nd an optimal solution for the modi�edproblem (the solving is performed for all the jobs together). The solution we found can beconverted into a solution for the original problem in the converting phase, which is againapplied separately to each subset.4.1.2 Description of the PTASWe denote the sequence of events by � = �1; :::; �2n, where each event is an arrival or adeparture of a job; we assume that at each time only one job arrives or departs. Sinceall the events are known at the beginning, we view � as a sequence of times, the time �iis the moment after the i'th event happened. In addition, �0 denotes the moment at thebeginning, before the arrival of the �rst job. We assume without loss of generality thatm � 2 (otherwise the approximation ratio is always 1).Let �0 > 0 be the precision required by the PTAS. We assume that �0 < 1. We choose� = �0=7, and �x the following 3 constants:� = �2mdlog ne � (dlog1+�(m�)e+ 1)m� = ��2m2 = �4m3dlog ne � (dlog1+�(m�)e+ 1)m11

 = ��2m2 = �6m5dlog ne � (dlog1+�(m�)e+ 1)mPhase 1: The weight-rounding and grouping phase. We start by describing theweight-rounding and grouping phase. For each job j, we denote by Wj the load that jcauses on its fastest machine: Wj = mini(�wj(i)). We will refer to Wj as the \min-weight"of the job j. We de�ne the \relative speed" vector of job j, �vj by: �vj(i) = �wj(i)=Wj , for1 � i � m. Note that �vj(i) � 1. We now perform a rounding of the vector �vj and obtainthe rounded \relative speed" vector �v0j . For each 1 � i � m, if �vj(i) � m=�, then �v0j(i) =1,and we will refer to machine i as an \illegal machine" for job j. Otherwise, we obtain�v0j(i) by rounding �vj(i) upwards to the nearest power of 1 + �, and we will refer to machinei as a \legal machine" for job j. Note that each coordinate of the vector �v0j may havedlog(1+�)(m�)e + 1 possible values, since its value is either 1 or a power of (1 + �) between1 and m=�. Now we de�ne a new loads vector for the job j, �w0j, by: �w0j(i) = Wj � �v0j(i), for1 � i � m. In this we completed the rounding of the weights.Next we divide the jobs into subsets according to their �v0 vector. This division splitsthe jobs into at most (dlog1+�(m�)e + 1)m subsets, since each of the m coordinates of thatvector may have (dlog1+�(m�)e+ 1) possible values, as we noted before. This completes thedescription of the �rst phase.Phase 2: The time-rounding phase. This phase is similar to the time-roundingphase described by [8]. We will apply this phase separately to each subset of jobs J�v0(having the same \relative speeds" vector �v0).In order to describe the time-rounding phase with its two subphases, we start withde�ning partitions of each subset J�v0 , based on which the rounding will be performed. Theset R�v0 contains all jobs with Wj � out of the jobs in J�v0 .From now on, we �x �v0 in the description of this phase, and refer to J�v0 as J and to R�v0as R. All the following de�nitions are made for these �xed J and R.We begin by de�ning a partition fJig of the set of jobs J � R. We set M1 = J � Rand de�ne sets Ji and Mi iteratively as follows. Let Mi be a set of jobs and consider thesequence of times in � in which jobs of Mi arrive and depart. The number of such times is2r for some r, let ci be any time between the r'th and the r+1-st elements in that set. Theset Ji contains the jobs in Mi that are active at time ci. The set M2i contains the jobs inMi that depart before or at ci and the set M2i+1 contains the jobs inMi that arrive after ci.We stop when all unprocessed Mi's are empty. The important property of that partition isthat the set of jobs from J �R that are active at a certain time is partitioned into at mostdlog ne di�erent sets Ji.We continue by further partitioning the set Ji. We order the jobs according to theirarrival time. We denote the smallest pre�x of the jobs whose total min-weight is at least� by S1i . We order the same jobs according to their departure time. We take the smallestsuÆx whose min-weight is at least � and denote that set by T 1i . Note that there mightbe jobs that are both in S1i and T 1i . We remove the jobs in S1i [T 1i from Ji, repeat theprocess with the jobs left in Ji and similarly de�ne S2i , T 2i , . . . , Skii ; T kii . Each set Si and Tihas total min-weight between � and �+ , except for the last pair which may have smallermin-weight than �. However, if the last pair has smaller min-weight than �, then it satis�esSkii = T kii . We denote by sji the arrival time of the �rst job in Sji and by tji the departuretime of the last job in T ji . Note that s1i � s2i � ::: � skii � ci � tkii � ::: � t2i � t1i .12

The �rst subphase of the time-rounding phase creates a new set of jobs J 0 which containsthe same jobs as in J with slightly longer active times. We change the arrival time of all thejobs in Sji for j = 1; :::; ki to sji . Also, we change the departure time of all the jobs in T ji totji . The jobs in R are left unchanged. We denote the sets resulting from the �rst subphaseby J 0, J 0i , S0ji , T 0ji .The second subphase of the time-rounding phase further extends the active time of thejobs resulting from the �rst subphase. We take one of the sets J 0i and the partition wede�ned earlier to S01i [T 01i , S02i [T 02i , . . . , S0kii [T 0kii . For every j � ki, we order the jobs inS0ji according to an increasing order of departure times. We take the smallest pre�x of thisordering whose total min-weight is at least �. We extend the departure time of all the jobsin that pre�x to the departure time of the last job in that pre�x. The process is repeateduntil there are no more jobs in S0ji . The last pre�x may have a min-weight of less than �.Similarly, we extend the arrival times of jobs in T 0ji . Note that if the total min-weight ofeither S0kii or T 0kii is smaller than � then S0kii = T 0kii and these jobs are left unchanged sincethey already have identical arrival and departure times from the �rst phase. We denote thesets resulting from the second subphase by J 00, J 00i , S00ji , T 00ji .Phase 3: The combining phase. This phase involves the load vectors of the jobs.It is also applied to each subset J 00�v0 separately, so we again �x �v0 in the description of thisphase and refer to J 00�v0 as J 00. Let J 00st be the set of jobs in J 00 that arrive at s and depart att. Assume the total min-weight of jobs in J 00st is x. The combining phase replaces these jobsby dx=e jobs, which have a load-vector of � �v0. Note that the maximum �nite weight intheir loads vector may be m� � . We denote the resulting sets by J 000st . The set J 000 is createdby replacing every J 00st with its corresponding J 000st , that is, J 000 = Ss;t J 000st .Phase 4: The solving phase. This phase solves the modi�ed decision problem,i.e. it solves the problem after each subset J�v0 has been replaced by a modi�ed subsetJ 000�v0 . The solving phase is performed once for all the jobs together (not for each J 000�v0 subsetseparately). We solve the modi�ed decision problem by building a layered graph. Every time�i, i = 0; : : : ; 2n, in which jobs arrive or depart (including the initial state with no job) hasits own set of vertices called a layer. Each layer holds a vertex for every possible assignmentof the current active jobs to machines (except assignments of weight 1); furthermore, welabel each node by the maximum load of a machine in that con�guration.Two vertices of adjacent layers �i�1 and �i, i = 1; : : : ; 2n, are connected by an edge ifthe transition from one assignment of the active jobs to the other is consistent with thearrival and departure of jobs at time �i. More precisely, the vertices are connected if andonly if every job active both before and after �i is assigned to the same machine in theassignments of both vertices. At each event, jobs either arrive or depart but not both (dueto the assumption at the beginning that all the original events are distinct; during roundingwe do not mix arrival and departure events). If �i is an arrival, the indegree of all verticesin the layer �i is 1, since the new con�guration determines the old one. Similarly if �i is adeparture, the outdegree of all vertices in the layer �i�1 is 1. In both cases, the number ofedges between two layers is linear in the number of vertices on these layers. It follows thatthe total number of edges is linear in the number of vertices.We de�ne a value of a path as the maximal value of its nodes. Now we can simply �nd apath with smallest value from the �rst layer to the last one by any shortest path algorithm13

in linear time (since the graph is layered).Phase 5: The converting phase. In this phase the algorithm converts the assignmentfound for the modi�ed problem into an assignment for the original problem. This phase isperformed separately for the jobs in each of the subsets J 000�v0 . Each assignment of the jobsof a modi�ed subset J 000�v0 is converted into an assignment for the jobs of subset J�v0 , which isalso an assignment for the original problem. Again we �x �v0 throughout the description ofthis phase, and refer to J 000�v0 as J 000. Assume the number of jobs having Wj = in J 000st thatare assigned to a certain machine i is ri. Remove these jobs and assign all the jobs havingWj � in J 00st to the machines such that a total weight of at most (ri+1) � �v0(i) is assignedto machine i.Note that all the jobs will be assigned that way. The replacement involves jobs whosemin-weight is at most . We know that the total min-weight of these jobs is at most �Pmi=1 ri.If they made a load of (ri + 1)�v0(i) on each of the machines, then it would mean thattheir total min-weight was at least � (m +Pmi=1 ri). So it is possible to assign all thesejobs so that they will make a load of at most (ri + 1) � �v0(i) on each machine i.The assignment for J 00 is also an assignment for J 0 and J . An assignment for J is alsoan assignment for the original problem.4.1.3 Analysis of PTASWe now perform an analysis of our algorithm. Our steps of proof are similar to those usedby [8], but our lemmas and proofs will have some adjustments. We will denote the problemfor the original input by I, the problem after the �rst phase by I+, the problem after the�rst time-rounding phase by I 0, the problem after the second time-rounding phase by I 00,and the problem after the combining phase by I 000.Lemma 4.1 Given a solution for the problem I whose maximum load is �, we can convertit to a solution for I+ by moving jobs that were assigned to one of their \illegal machines" totheir fastest machine. This solution for I+ will have a maximum load of at most �(1 + �)2.Also, given a solution for I+ whose maximum load is �, the same solution applied to I hasa maximum load of at most �.Proof: The second claim is obvious since the jobs in I have smaller weights than the corre-sponding jobs in I+. As for the �rst claim, we �rst consider the jobs we move from one oftheir \illegal machines" (machines on which �w0j(i) =1 to their fastest machine. Consider amachine i. Jobs might have been moved to this machine from all the other m�1 machines.Each of these machines had a load of at most �. A job j was moved to machine i only if itwas assigned to a machine k s.t. �wj(k) � m� wj(i). So when moving the jobs to machine i,their weights are m� times smaller. This means that the total increase in the load of machinei is at most (m� 1) � �m � � < ��. Hence, the maximum load was increased by at most �� bythe moving of jobs.In the weight-rounding phase we also increase the weight of each job on its \legal ma-chines". At most, we multiply the weight of each job by 1+�. Altogether, these two changesmean that our solution for I has a maximum load of at most �(1 + �)2.Lemma 4.2 Given a solution for the problem I+ whose maximum load is �, the samesolution applied to I 0 has a maximum load of at most �+ �+ �4=16. Also, given a solution14

for I 0 whose maximum load is �, the same solution applied to I+ has a maximum load ofat most �.Proof: The second claim is obvious since the durations of jobs in I+ are contained in thecorresponding durations in I 0. As for the �rst claim, for each subset J(= J�v0), every time �is contained in at most dlog ne sets Ji. Consider the added load at � from jobs in a certainset Ji. If � < s1i or � � t1i then the same load is caused by J 0i and Ji. Assume � < ci andde�ne ski+1i = ci, the other case is symmetrical. Then for some (single) j, sji � � < sj+1i andthe added load at � is at most the total load of Sji which has a min-weight of at most �+,so its total load is at most m� (�+) on any machine. Summing on all sets Ji, we concludethat the maximal load of the jobs in the subset J has increased by at most m� (�+)dlog ne.We have at most (dlog1+�(m�)e+1)m such subsets, so the overall increase in load is at most(dlog1+�(m�)e+ 1)m � m� (�+)dlog ne = �+ �4m4 � �+ �416.Lemma 4.3 Given a solution for I 0 whose maximum load is �, the same solution appliedto I 00 has a maximum load of at most �(1+�). Also, given a solution for I 00 whose maximumload is �, the same solution applied to I 0 has a maximum load of at most �.Proof: The second claim is obvious since the durations of jobs in I 0 are contained in thecorresponding durations in I 00. As for the �rst claim, given a time � and a pair of setsS0ji , T 0ji from J 0i from a certain subset J 0(= J 0�v0), we examine the increase in load at � . If� < sji or � � tji it is not a�ected by the transformation because no job in T 0ji [S0ji arrivesbefore sji or departs after tji . Assume that � < ci, the other case is symmetrical. So � isa�ected by the decrease in arrival time of jobs in T 0ji . It is clear that the way we extendthe jobs in T 0ji increases the the min-weight at � by at most �, and hence the load at � isincreased by at most m� �. Also, since � � sji , we know that the total min-weight of S0ji isat least � if j < ki. Thus, an extra load of at most m� � is created by every pair S0ji , T 0ji for1 � j < ki only if the pair contributes at least � to the load. If the last pair Skii , T kii hastotal min-weight smaller than �, it does not contribute, as it is not changed from J 0 to J 00;otherwise the analysis is the same as for j < ki. Since the total load on each machine atany time is at most �, the increase in maximum load is at most m� � � �m� = ��.Lemma 4.4 Given a solution for I 00 whose maximum load is �, the modi�ed problem I 000has a solution with a maximum load of �(1 + � + �2). Also, given a solution for I 000 whosemaximum load is �, the solution given by the converting phase for the problem I 00 has amaximum load of at most �(1 + �+ �2).Proof: Consider a solution for I 00 whose maximum load is �. We consider the jobs havingmin-weight smaller than . Let x be the total min-weight of such jobs in a certain J 00st(=J 00�v0 st) that were assigned to machine i. We replace them by dx=e jobs with a loads vector of � �v0, so that this is an assignment to I 000. The increase in load on every machine is at mostm� times the number of sets J 00st that contain jobs which are scheduled on that machine. Asfor the other direction, consider a solution whose maximum load is � to I 000. The increasein load on every machine by the replacement described in the algorithm is also at most m� times the number of sets J 00st that contain jobs which are scheduled on that machine.15

It remains to estimate the number of sets J 00st that can coexist at a certain time. Mostof these sets have a min-weight of at least �; their number is at most �m=�, since the totalload at any time is at most � on each machine. For each set Sji and T ji , j < ki, we have atmost one set J 00st with total min-weight less than �. Since the total min-weight of Sji and T jiis at least �, there are at most �m=� such sets (if Sji and T ji are not disjoint, the small setsJ 00st in both of them have the same s and t, thus we do not need to multiply by 2). Last,there may be one set J 00st with a min-weight smaller than � in each Skii = T kii ; there are onlydlog ne such sets in each subset, so their total number is at most (dlog1+�(m�)e+1)m � dlog neTherefore, the increase in maximum load is at most:m� (�m� + �m� + (dlog1+�(m�)e+ 1)m � dlog ne) = ��+ �3�m2 + �5m4� �(�+ �2)Theorem 4.5 The algorithm described in the last section is a PTAS running in timeO(n1+��6m7(dlog1+�(m�)e+1)m logm).Proof: First we estimate the approximation ratio of the algorithm. We are given some�0 > 0, and we want to �nd a solution with a maximum load of at most �(1 + �0). We usethe algorithm described above for � = �0=7. By the above lemmas, for an instance withoptimal solution with maximum load �, the algorithm yields a solution with maximum loadat most: �(1 + �)2(1 + �+ �416)(1 + �)(1 + �+ �2)2 < �(1 + �0). Now we estimate the running time of the algorithm. All the phases except the solvingphase are easily performed in time O(n2). The running time of the solving phase takes themajor part of the overall running time. It is linear in the number of edges in the layers graphthat we built for the modi�ed problem I"'. The number of edges is linear in the numberof vertices (as was explained in our construction). We therefore estimate the number ofvertices. Every layer in the graph stores all the possible assignments of jobs to machines.We have 2n layers, one for each departure or arrival. Since the minimal load that a job maycause in the modi�ed problem is , the maximum number of active jobs at a certain timeis �m=. Recall that the scaling we performed at the beginning of our algorithm assures usthat � � m. So the maximum number of vertices in the graph and the running time of thealgorithm is: 2nm�m= � 2nm��6m7(dlog1+�(m�)e+1)mdlog ne= O(n1+��6m7(dlog1+�(m�)e+1)m logm)This yields the result.4.2 Non-Fixed Number of Machines16

In this section we consider o�ine load-balancing of temporary tasks on a non-�xednumber of unrelated machines. We show that no polynomial approximation algorithm canachieve an approximation ratio smaller than 2, unless P = NP . We prove this lower boundfor the special case of restricted assignment (so it obviously holds for the general case ofany unrelated machines as well).Theorem 4.6 For every � < 2, there does not exist a polynomial �-approximation algo-rithm for restricted assignment of temporary tasks unless P = NP .Proof: We use a reduction from the 3-dimensional-matching problem (3DM), which isknown to be NP-complete. In that problem, we are given three sets of elements, B, G, andH, each of them of size n (B = b1; :::; bn, G = g1; :::; gn, H = h1; :::; hn). We are also givena set S = T1; :::; Tm of m triplets, S � B � G � H. These are the possible matchings of 3elements from B,G, and H. The goal is to decide whether there exists a matching for all theelements of B,G, and H, i.e. a subset of S, S0, such that jS0j = n and STi2S0 Ti = B[G[H.Given an instance to the 3DM problem we construct an instance for our problem. For eachtriplet Ti, we have a machine mi. All our jobs are of weight 1, and our total time intervalwill be of length 3 (from time 0 until time 3). Our �rst type of jobs will be \element jobs"(one job for each element), as described hereafter. For each element bi 2 B, we will havea job which arrives at time 0, departs at time 1, and is admissible to a machine mk if andonly if bi 2 Tk. For each element gi 2 G, we will have a job which arrives at time 1, departsat time 2, and is admissible to a machine mk if and only if gi 2 Tk. Finally, for each elementhi 2 H, we will have a job which arrives at time 2, departs at time 3, and is admissible to amachine mk if and only if hi 2 Tk. Our second type of jobs will constitute of m�n \dummyjobs", which arrive at time 0, depart at time 3, and are admissible to all the machines.We prove that there is an assignment with a maximum load of 1, if and only if thereis a solution to the 3DM problem. Suppose there is a 3DM , S0 = fTi1 ; :::; Ting. Then foreach Tik 2 S0, we assign to the machine mik the 3 \element jobs" which correspond to the 3elements of Tik . They are admissible to mik , because this is how we de�ned our assignmentrestrictions. Also notice that they are active in di�erent times, so the machine maintainsa load of 1. This way we assign the 3n \element jobs" to n of the machines. We assignthe m � n \dummy jobs" to the other m � n machines, one job on each machine. Theyare admissible on any machine, and have a weight of 1 each. Therefore, this assignmentmaintains a maximum load of 1 as required.Now, assume that there is an assignment having a maximum load of 1. The m � n\dummy jobs" must have been assigned to m� n di�erent machines (if there is more thanone \dummy job" on a machine, then its load is bigger than 1). A \dummy job" is activeduring our entire time interval, so a machine which has a \dummy job" on it cannot haveany other job assigned to it. Therefore, the 3n \element jobs" must have been assignedto the remaining n machines. Each of these machines mi1 ; :::;min must have one active\element job" on it at each moment (since the total volume of the \element jobs" is 3n).This means that each of these machines, mik , has a job which corresponds to an elementof B assigned to it, a job which corresponds to an element of G assigned to it, and a jobwhich corresponds to an element of H assigned to it (this is the only possibility to have anactive \element job" at each moment). According to our assignment restrictions, these 3elements from B,G, and H must be included in the triplet Tik . All of the \element jobs"were assigned, so STik Ti = B [G [H, and therefore Ti1 ; :::; Tin is a 3DM .17

The above reduction shows that any approximation algorithm for our problem with anapproximation ratio strictly less than 2 solves the 3DM problem. Hence, we have proventhe theorem.References[1] S. Albers. Better bounds for on-line scheduling. In Proc. 29th ACM Symp. on Theoryof Computing, pages 130{139, 1997.[2] Jim Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts. On-line loadbalancing with applications to machine scheduling and virtual circuit routing. In Proc.25th ACM Symp. on Theory of Computing, pages 623{631, May 1993.[3] Y. Azar. On-line load balancing. In A. Fiat and G. Woeginger, editors, Online Algo-rithms - The State of the Art, chapter 8, pages 178{195. Springer, 1998.[4] Y. Azar, A. Z. Broder, and A. R. Karlin. On-line load balancing. Theoretical ComputerScience, 130(1):73{84, 1994. Also in Proc. 33rd IEEE FOCS, 1992, pp. 218-225.[5] Y. Azar and L. Epstein. On-line load balancing of temporary tasks on identical ma-chines. In 5th Israeli Symp. on Theory of Computing and Systems, pages 119{125,1997.[6] Y. Azar, B. Kalyanasundaram, S. Plotkin, Kirk R. Pruhs, and Orli Waarts. On-lineload balancing of temporary tasks. Journal of Algorithms, 22(1):93{110, 1997. Also inProc. WADS'93, pp. 119-130.[7] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assignments. Journalof Algorithms, 18(2):221{237, 1995. Also in Proc. 3rd ACM-SIAM SODA, 1992, pp.203-210.[8] Y. Azar, O. Regev, J. Sgall, and G. Woeginger. O�-line temporary tasks assignment.Theoretical Computer Science. To appear. Also in Proc. 7th Annual European Sympo-sium on Algorithms 1999, pp. 163-171.[9] B. S. Baker, D. J. Brown, and H. P. Katse�. A 5/4 algorithm for two-dimensionalpacking. J. Algorithms, 2:348{368, 1981.[10] Y. Bartal, A. Fiat, H. Karlo�, and R. Vohra. New algorithms for an ancient schedulingproblem. In Proc. 24th ACM Symposium on Theory of Algorithms, pages 51{58, 1992.Also in Journal of Computer and System Sciences (1995) 359-366.[11] P. Berman, M. Charikar, and M. Karpinski. A note on on-line load balancing forrelated machines. In 5th annual Workshop on Algorithms and Data Structures, 1997.[12] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-bridge University Press, 1998. 18

[13] B. Chen, A. van Vliet, and G. J. Woeginger. New lower and upper bounds for on-linescheduling. Operations Research Letters, 16:221{230, 1994.[14] W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1 + � inlinear time. Combinatorica, 1:349{355, 1981.[15] M. R. Garey, R. L. Graham, D. S. Johnson, and A. C. C. Yao. Resource constrainedscheduling as generalized bin packing. J. Comb. Th. Ser. A., 21:257{298, 1976.[16] R.L. Graham. Bounds for certain multiprocessor anomalies. Bell System TechnicalJournal, 45:1563{1581, 1966.[17] E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling non-identical processors. Journal of the Association for Computing Machinery, 23:317{327,1976.[18] D. Karger, S. Phillips, and E. Torng. A better algorithm for an ancient schedulingproblem. In Proc. 5th ACM-SIAM Symp. on Discrete Algorithms, pages 132{140,1994.[19] J.K. Lenstra, D.B. Shmoys, and E. Tardos. Approximation algorithms for schedulingunrelated parallel machines. Math. Prog., 46:259{271, 1990.[20] S. Phillips and J. Westbrook. On-line load balancing and network ow. In Proc. 25thACM Symposium on Theory of Computing, pages 402{411, 1993.[21] S. Plotkin and Y. Ma. An improved lower bound for load balancing of tasks withunknown duration. Inform. Process. Lett., 62:301{303, 1997.[22] D. Shmoys and E. Tardos. An approximation algorithm for the generalized assignmentproblem. Mathematical Programming A, 62:461{474, 1993. Also in the proceeding ofthe 4th Annual ACM-SIAM Symposium on Discrete Algorithms, 1993.[23] J. Westbrook. Load balancing for response time. In 3rd Annual European Symposiumon Algorithms, 1995.

19

