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Abstract

We consider the approximate nearest neighbour search problem on the Hamming cube {0, 1}
d . We

show that a randomised cell probe algorithm that uses polynomial storage and word size d O(1) requires
a worst case query time of �(log log d/ log log log d). The approximation factor may be as loose as
2log1−η d for any fixed η > 0. Our result fills a major gap in the study of this problem since all earlier
lower bounds either did not allow randomisation [7, 21] or did not allow approximation [6, 3, 19]. We
also give a cell probe algorithm that proves that our lower bound is optimal.

Our proof uses a lower bound on the round complexity of the related communication problem. We
show, additionally, that considerations of bit complexity alone cannot prove any nontrivial cell probe
lower bound for the problem. This shows that the “richness technique” [23] used in a lot of recent
research around this problem would not have helped here.

Our proof is based on information theoretic techniques for communication complexity, a theme that
has been prominent in recent research [9, 2, 28, 18].

1 Introduction

Nearest neighbour searching is one of those basic and fascinating theoretical problems in computer science
that has a host of applications in problems from very diverse fields. To give a sense of this diversity we
note that the literature includes applications in molecular biology [31, 26], information retrieval [12, 27],
and pattern recognition [10, 13], and that this is far from an exhaustive list of fields. Typically, in these
applications, the objects of interest are represented as points in Euclidean space by abstracting their features.
The problem of nearest neighbour searching is that of finding, in a database of points, the closest one to a
given query point.

When the ambient space that the database and query points come from is the Euclidean plane, the
nearest neighbour search problem has well known efficient solutions using classical computational geometry
techniques of space decomposition such as Voronoi diagrams (see, e.g., [11]). However, in most applications
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the dimension of the ambient space is high: anywhere from tens to thousands. The classical techniques still
work in such spaces, but the resulting algorithms require storage and/or running time exponential or worse
in the dimension: a phenomenon that is sometimes called the “curse of dimensionality.”

It is by now well established that the way to avoid this curse is to not insist on the absolute nearest
neighbour but to allow some approximation; this is certainly acceptable in the aforementioned applications,
since the abstraction of objects into points in Euclidean space already involves heuristics and approxima-
tions. Efficient algorithms for approximate nearest neighbour searching (henceforth, ANN) that scale well
with dimension were obtained independently by Indyk and Motwani [17] and Kushilevitz, Ostrovsky, and
Rabani [20]; some improvements were then made by Har-Peled [15].

Soon after the discovery of these algorithms, lower bounds on nearest neighbour searching were obtained
by Chakrabarti, Chazelle, Gum, and Lvov [7] and simultaneously by Borodin, Ostrovsky, and Rabani [6].
These results had a serious shortcoming: the former applied only to deterministic algorithms and the latter
applied only to the exact nearest neighbour (henceforth, ENN) problem. Since all the aforementioned
algorithms were randomised and approximate, there was no direct comparison possible between the upper
and lower bounds obtained in recent research. Subsequent work by Liu [21] and Barkol and Rabani [3]
improved the respective lower bounds quantitatively but did not address this shortcoming.

In this work, for the first time, we obtain a randomised lower bound for ANN, thus addressing this
shortcoming. Moreover, we design a nontrivial algorithm showing that our lower bound is optimal.

1.1 Our Results

Data Structure Query Problems: The approximate nearest neighbour search problem is an instance of
what may be called data structure query problems, i.e., problems in which we are required to build a data
structure out of some given data and then efficiently query this data structure. Formally, a data structure
query problem involves three spaces: a space of queries A , a space of databases B, and a space of answers
C . The problem itself is a relation ρ ⊆ A ×B×C to be interpreted as follows. We will be a given a y ∈ B
to preprocess and will then be given a query x ∈ A and must produce any z ∈ C such that (x, y, z) ∈ ρ.
We shall assume, without loss of generality, that at least one such z exists.

The Cell Probe Model: The standard framework for analysing the complexity of such problems is the
cell probe model first defined by Yao [30]. This is a rather strong model designed to capture all conceivable
algorithms for data structure problems, which makes lower bounds proven in this model quite powerful. The
model assumes that the preprocessing phase deterministically constructs from y a data structure represented
as a table consisting of s cells each of which holds w bits. The query phase gets x as input and then accesses
t cells of the table; the choice of cells may, in general, be randomised as well as adaptive. Based on the
information gathered from these cells, the algorithm must then compute an answer z which is required to
be correct — i.e., to satisfy (x, y, z) ∈ ρ — with probability at least 1 − ε, for some small non-negative ε.
Such an algorithm is called an ε-error t-probe algorithm with table size s and word size w. When ε is not
specified we assume that it is 1

4 . Note that the model is unconcerned with computation time.
Like all earlier lower bounds for ANN, our bound is shown with the ambient space being the d-

dimensional Hamming cube equipped with the Hamming (i.e., `1) metric. Note that this immediately implies
the same lower bound for Rd equipped with the `1 metric and a similar lower bound for Euclidean space
(i.e., Rd with the `2 metric) up to a square in the approximation ratio. We now precisely define our problem
and state our main result.

Definition 1.1 (Approximate Nearest Neighbour). For integers d, n ≥ 1 and a real number β ≥ 1, we
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define the Approximate Nearest Neighbour search problem ANNβ
d,n as the data structure query problem

given by

A = {0, 1}
d, B =

(
{0, 1}

d

n

)
, C = {0, 1}

d

ρ =
{
(x, y, z) ∈ A × B × C : z ∈ y ∧ (∀z′

∈ y (dist(x, z) ≤ β ·dist(x, z′)))
}

,

where “dist” denotes Hamming distance in {0, 1}
d .

We shall allow a rather loose approximation ratio β. We set

β := 2log1−η d , (1)

where η is an arbitrarily small positive constant which we fix for the remainder of the paper.1 Notice that
obtaining approximation factor d is a trivial problem, since we could return any database point as an answer
to any query.2 Our main result is the following lower bound on the randomised cell probe complexity of the
problem.

Theorem 1.2 (Main Lower Bound). For all c1, c2 > 0 there exists a c3 > 0 such that the following holds.
Let n, d ≥ 1 be large enough integers, and suppose that 2log1.01 d

≤ n ≤ 2d0.99
(alternatively, suppose that

log1.01 n ≤ d ≤ 2log0.99 n). If ANNβ
d,n has a randomised t-probe algorithm with table size s ≤ nc1 and word

size w ≤ dc2 , then t ≥ c3 log log d/ log log log d.

Chakrabarti, Chazelle, Gum, and Lvov [7] had obtained the same bound on t as above but only for de-
terministic algorithms. Liu [21] greatly improved their bound to d1−o(1), still for deterministic algorithms.
On the flip side, Borodin, Ostrovsky, and Rabani [6] gave a lower bound of �(log d) for randomised algo-
rithms that did not allow approximation. This was subsequently strengthened to �(d/ log n) by Barkol and
Rabani [3]. Thus, our result is the first lower bound that allows both randomisation and approximation.

The range of values for n in our lower bound cannot be extended significantly, because of a trivial query
time upper bound of t = 1 at either extreme. At n = 2O(log d)

= d O(1), we can pack the entire database into
one cell of the table. At n = 2�(d), a table of size nO(1) is large enough to store a correct answer to each of
the 2d possible queries.

Since the conference presentation of our results [8], Pǎtraşcu and Thorup [25] have considered cell
probe lower bounds for the case of data structures that use near-linear space. Because of the near-linear
space assumption, the lower bounds they obtain are rather strong. However, they do not allow both ran-
domisation and approximation. For instance, they prove bounds of the form t = �(d/ lg d) for table size
s = n logO(1) n, for deterministic algorithms for ANN as well as randomised algorithms for ENN.

We also prove two upper bounds on ANN: the first is a cell probe upper bound that matches our lower
bound, showing that it is tight.3

Theorem 1.3 (Main Upper Bound). Let α > 1 be any constant. Then, for n ≥ d, ANNα
d,n has a cell probe

algorithm with O(log log d/ log log log d) probes, table size nO(1) and word size O(d).

1Throughout the paper, the default base of logarithms is 2.
2There is a small catch. If the database contains the query point, the only valid answer is the query itself. But this degenerate

case can be handled by, say, perfect hashing [14] which has O(1) cell probe complexity.
3A similar upper bound was independently discovered and communicated to us by Beame and Guruswami [5].
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The best previous cell probe upper bound on ANN under the same conditions was O(log log d). This
bound is implicit in the work of Kushilevitz, Ostrovsky, and Rabani [20], Indyk and Motwani [17], and
Har-Peled [15]. Our algorithm beats these earlier ones in the cell probe model but, unlike in earlier work,
we do not dwell on issues of real running time.

It is worth mentioning that the key technical innovations in the previous upper bounds were focussed
on getting an O(1)-probe algorithm for a decision version of ANN: we are given a threshold λ and must
distinguish between the case when the distance from the query to a nearest neighbour is at most λ versus the
case when it is above αλ, for some approximation factor α > 1. This is sometimes called the approximate
“near neighbour” problem. Of the ANN lower bounds mentioned above, all except for [7] in fact apply to
this decision version. The O(1) upper bound for the decision version forces us to work with the search
version in order to prove a nontrivial lower bound. While on this issue of decision-vs.-search, we note
that the recent work of Andoni, Indyk and Pǎtraşcu [1] (postdating our conference paper [8]) provides a
tight space lower bound of nO(1/ε2) for (1 + ε)-approximate near neighbour with O(1) queries, even under
randomisation. The tightness follows from the upper bounds [20, 17, 15] above.

Our second upper bound is more technical but it proves that a certain simple technique — the so-called
“richness technique” — that yields a number of interesting cell probe lower bounds must fail in the case of
ANN. We state this result in Section 1.4.

1.2 Our Techniques

The Main Lower Bound: The proof of Theorem 1.2 distills ideas from a host of recent papers on a
variety of research problems. We now give an intuitive overview of our techniques, which should make
the technical exposition easier to follow and should also highlight the new ideas that we developed in the
course of this work. We begin with a pair of reductions. The first is a reduction to ANN from an auxiliary
problem that we define here and that we call longest prefix match (henceforth, LPM). In LPM we must
preprocess a database of m-letter words over a large alphabet so as to quickly find, given a query m-letter
word, a word in the database which has the longest prefix that matches a prefix of the query. This reduction
is inspired by the work of Chakrabarti et al. [7] who used similar ideas but did not explicitly define the LPM
problem. The second is a (natural) reduction to cell probe algorithms from communication protocols and
was first made explicit by Miltersen [22]. As a result of these two reductions it suffices to consider LPM
as a communication problem — with Alice holding the query and Bob the database — and prove a lower
bound on the number of rounds required to solve the problem.

To this end, we use the round elimination technique, pioneered by Miltersen, Nisan, Safra, and Wigder-
son [23], and refined by Sen [28]. In fact, we shall need a further strengthening of Sen’s round elimination
lemma in order to handle LPM. Loosely speaking, a round elimination lemma lets us “remove” the first
round of communication in a protocol for a certain problem, leaving us with a protocol one round shorter
that solves a somewhat smaller instance of the same problem. To perform such a round elimination, recall
that Alice’s input is a length-m string and Bob’s input is a set of length-m strings. Imagine chopping up all
of these strings into k equal-length substrings, called “pieces.” Suppose that Alice’s first message to Bob is
a bits long. Then it conveys at most a bits of information about Alice’s input, and so, there must be an i such
that it conveys at most a/k bits of information about the i th piece. Suppose we choose k � a. If we could
somehow “embed” a smaller instance of our problem in the i th pieces of Alice’s and Bob’s strings, ensuring
that the remaining pieces become irrelevant, we could then say that Alice’s first message to Bob conveys
almost no information about her input. This would let us eliminate the message with only a small change in
the protocol’s behaviour; the technical tool for doing so is what we call the Uninformative Message Lemma,
due to Sen [28].
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The above outline of round elimination was recently used by Sen [28] in his work on another data
structure query problem called the predecessor problem. For our problem, ANN, the “embedding” step
above does not work directly. Fortunately, it does work for LPM and this is why we focus on LPM instead.
However, LPM is problematic in another way: to be of use in our study of ANN, the LPM problem we must
consider has to use very short strings over a very large alphabet. Our round elimination argument above
required chopping up the strings into k pieces for a large k, but now our strings end up so short that we
cannot do this. New ideas are needed.

Our first new idea is what we call the Message Switching Lemma. It says that the order of the first
two messages in a protocol can be switched at the cost of blowing up the sizes of the messages. In the
communication problems arising from the cell probe model, Bob’s message bits are considerably “cheaper”
than Alice’s, so it is not too bad if Bob’s message size blows up. Our exploitation of this asymmetry is
crucial and was missing in previous work.

The Message Switching Lemma does serve to eliminate one round in a communication protocol, but
the blowup in the message sizes prevents us from using it repeatedly. This is where our second new idea,
called the Message Compression Lemma, comes into play. It says that if the first message in a protocol is
long in terms of number of bits but conveys a much smaller amount of information about the input, then we
may compress this message so that its length is linear in the amount of information conveyed. We note that
although this lemma does not follow from earlier work, it is strongly inspired by Jain, Radhakrishnan, and
Sen [18] who also compressed messages, but in a different way, in their work on direct sum theorems. Sub-
sequent to the conference presentation of our results [8], Harsha, Jain, McAllester and Radhakrishnan [16]
have proven an elegant information theoretic lemma (given as Lemma 3.6 in this work) that can be used in
plug-in form to prove our message compression lemma.

Finally, the communication lower bound for LPM follows thus: we first embed a smaller instance of
LPM in a larger one, as indicated above. We then apply our Message Compression Lemma to a given
protocol, and then the Message Switching Lemma, eliminating Alice’s first message. Because we took
care to apply compression first, the blowup in message sizes is under control. We can then apply Sen’s
Uninformative Message Lemma to eliminate Bob’s first message. We have now arrived at a protocol that
is two rounds shorter and solves somewhat smaller instances of LPM. If we start out with too short a
protocol, repeated application of this Compression-Switching-Uninformative loop would eliminate all the
rounds while still leaving us with a nontrivial communication problem. This contradiction would prove that
such a short protocol cannot exist.

Our exposition uses a version of the information cost paradigm introduced by Chakrabarti, Shi, Wirth,
and Yao [9] and refined by Bar-Yossef, Jayram, Kumar, and Sivakumar [2].

The Main Upper Bound: We now give an intuitive overview of the proof of Theorem 1.3. We first show
that Miltersen’s observation of a natural reduction from communication protocols to cell probe algorithms
has a partial converse: if we can design a short memoryless communication protocol for a problem, then
we also have an efficient cell probe algorithm for the problem. We call a protocol memoryless if any
particular message of Bob depends only on the last message received from Alice, i.e., Bob is not allowed to
“remember” the entire communication history.

We then describe a memoryless communication protocol for ANNα
d,n . Let γ =

√
α. For any given λ,

using “dimension reduction” techniques we can use two rounds of communication to distinguish between the
case where there exists a database point within distance λ of the query point and the case where all database
points are at least γ λ away from the query. Since our metric space is the Hamming cube, it suffices to try
out logγ d values for λ: 1, γ, γ 2, . . ., to obtain an γ 2-approximation. Using binary search on these special
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values of λ gives a memoryless protocol with O(log log d) rounds. This is the essence of all previously
known ANN algorithms.

In order to improve the round complexity to O(log log d/ log log log d), we replace the binary search
with a t-ary search, i.e., in each phase we partition the current search range into t equal-sized sub-ranges
where t = 2(log log d/ log log log d). The main technical difficulty is to zoom in to one of the t sub-ranges
spending only a constant number of rounds of communication. A naı̈ve approach would have Alice asking
Bob t “questions,” one for each sub-range, and thus using t rounds. Our new idea is to perform “coarse”
queries: such queries are shorter and hence t of them can fit in one message. On the other hand, they are not
perfect: database points that are far can be labelled as close and vice versa. Hence, our t-ary search might
sometimes fail to shrink the current search range by a factor of t . We show that in such cases we can still
modify the current range in such a way that the number of database points whose distance to the target point
is within the current range decreases by a factor of n−1/t .

To summarise, each phase takes only a constant number of rounds and either shrinks the search range by
a factor of t or decreases the size of the database by a factor of n−1/t ; hence, there are at most O(t) rounds
to the protocol.

1.3 The Connection With Communication Complexity

We shall prove a cell probe lower bound for LPM via a lower bound on the corresponding communication
problem. We shall consider only two-party communication problems in this paper. A communication prob-
lem is defined by a relation ρ ⊆ A × B × C , just like a data structure query problem. The input is split
between two players called Alice and Bob: Alice is given x ∈ A and Bob is given y ∈ B. The players
then take turns exchanging messages according to a possibly randomised protocol, at the end of which Alice
outputs a z such that (x, y, z) ∈ ρ with probability at least 1 − ε. Each message transfer is called a round of
the protocol.

Definition 1.4 (Notation for Protocols). An 〈a1, a2, . . . , at〉
A-protocol is one with exactly t rounds, with

the message in the i th round being exactly baic bits long.4 The superscript “A” indicates that Alice sends
the first message in the protocol; we use a “B” superscript if Bob starts. An [a, b, t]A-protocol is one with
t rounds and Alice starting, in which each of Alice’s messages is bac bits long and each of Bob’s messages
is bbc bits long. An [a, b, t]B-protocol is the same thing except that Bob starts. An [a, b, t; a0]A-protocol
is a t-round protocol where Alice starts, each of Bob’s messages is bbc bits long, and as for Alice, her first
message is ba0c bits long and all subsequent messages are bac bits long. Similarly, an [a, b, t; b0]B-protocol
is a t-round protocol where Bob starts, each of Alice’s messages is bac bits long, Bob’s first message is bb0c

bits long and all his subsequent messages are bbc bits long.

The following simple observation links the cell probe and communication models.

Fact 1.5 (Miltersen [22]). If a data structure query problem has a t-probe algorithm with table size s and
word size w, then it has a private coin randomised [dlog se, w, 2t]A-protocol.

1.4 Is There a Simpler Proof?

We make an additional interesting observation about ANN. Thus far there have been two main techniques
used in almost all of the research on cell probe lower bounds: the so-called “richness technique” and the
aforementioned round elimination technique. Of these, the richness technique, which establishes a lower

4We allow the a’s to be non-integral for notational convenience.
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bound on the bit complexity of a communication problem, is considerably simpler. Lower bounds given by
the richness technique have the following form: “either Alice sends a bits or Bob sends b bits;” notice that
round complexity is not a consideration.

Jayram, Khot, Kumar, and Rabani [19] recently used the richness technique to obtain a randomised cell
probe lower bound for the so-called exact partial match problem, which reduces to the exact nearest neigh-
bour (ENN) problem. Even more recently, Liu [21] gave a strong cell probe lower bound for deterministic
ANN using the richness technique; his proof is considerably simpler than that of Chakrabarti et al. [7] who
implicitly used round elimination ideas. In view of this history it is natural to ask whether there is a much
simpler proof of the Main Lower Bound using the richness technique.

Suppose that ANNα
d,n has a randomised t-probe algorithm with table size s = nO(1) and word size

w = d O(1). Fact 1.5 tells us that it has a randomised [O(log n), d O(1), 2t]A-protocol. In this protocol Alice
sends O(t log n) bits and Bob sends td O(1) bits. For the richness technique to yield an interesting result we
would have to show that this is impossible for small t , i.e., that there is no protocol in which Alice sends
only O(t log n) bits and Bob sends td O(1).

However, the following theorem shows that such a protocol is possible even with t a constant! Thus
the richness technique, which can handle randomised ENN and deterministic ANN, is provably too weak to
handle randomised ANN.

Theorem 1.6 (Failure of the Richness Technique). For any n ∈ 2�(log2 d) and any α > 1 there is a private
coin randomised communication protocol for ANNα

d,n in which Alice sends O(log n) bits and Bob sends
d O(1) bits.

1.5 Organisation of the Paper

The rest of the paper is organised as follows. Section 2 formally defines LPM and gives the reduction from
LPM to ANN. Section 3 prepares a toolkit of three lemmas for manipulating communication protocols.
Section 4 is the heart of our lower bound proof and contains our improved round elimination lemma; it uses
the toolkit developed in Section 3. The brief Section 5 puts everything together to prove the Main Theorem.
Section 6 contains the proofs of our two upper bounds, one in each subsection.

2 The Longest Prefix Match Problem and a Reduction to ANN

Let 6 be a finite alphabet. For strings x1, x2 ∈ 6m , we let match(x1, x2) denote the length of the longest
prefix of x1 which is also a prefix of x2; thus 0 ≤ match(x1, x2) ≤ m. We will prove that the following
auxiliary problem can be reduced to ANN:

Definition 2.1 (Longest Prefix Match). For integers m, n ≥ 1 and a finite set 6 we define the Longest
Prefix Match problem LPM6

m,n as the data structure query problem given by

A = 6m, B =

(
6m

n

)
, C = 6m

ρ =
{
(x, y, z) ∈ A × B × C : z ∈ y ∧ (∀z′

∈ y (match(x, z) ≥ match(x, z′)))
}

.

For a ∈ {0, 1}
d and r ≥ 0, we shall refer to a subset {x ∈ {0, 1}

d : dist(x, a) ≤ r} of the Hamming cube
as the Hamming ball of radius r centred at a.
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Definition 2.2. For α > 0, a family of balls is said to be α-separated if the distance between any two points
belonging to distinct balls in the family is more than α times the diameter (i.e., twice the radius) of any ball
in the family.

Lemma 2.3. Let d ≥ 1 be a large enough integer, and let β = 2log1−η d , as defined in Equation (1).
There exists a rooted tree T whose vertices are Hamming balls in {0, 1}

d and which satisfies the following
properties:
(i) If v is a child of u in T , then v ⊆ u.
(ii) Each non-leaf vertex of T has exactly d2d0.99

e children.
(iii) Each depth-i vertex (the root being a depth-0 vertex) has radius d/(8β)i .
(iv) The depth-i vertices form a β-separated family.
(v) The leaves of T are at depth blogη/2 dc, where η is the constant from (1).

Proof. The proof uses a construction by Chakrabarti et al. [7, Lemmas 3.2–3.4]. We first note that to
construct a suitable tree T , we need only construct balls of radius at least d/(8β)blogη/2 dc

≥ d0.995, by (1).
We claim that inside a Hamming ball of radius r (where d0.995

≤ r ≤ d) in {0, 1}
d there exists a β-separated

family of d2d0.99
e balls, each of radius r/(8β). The lemma then follows from this claim by a natural recursive

construction.
To prove the claim, we use a volume argument. Let B be a Hamming ball of radius r within which we

wish to find our β-separated family and let B ′ be a Hamming ball concentric with B and of radius r/2. It
suffices to find a set S of at least 2d0.99

points inside B ′ such that any two distinct points in S are at distance
more than r/3. The family of radius-r/(8β) balls with centers at points in S will then be β-separated,
because

r
3

−
2r
8β

≥
r
4

= β ·
2r
8β

.

A suitable set S can be constructed greedily. Start with all points in B ′ unmarked and S = ∅. Repeatedly
pick an unmarked point in B ′, add it to S, and mark all points within distance r/3 of it. This can be done
at least Vd(r/2)/Vd(r/3) times, where Vd(ρ) denotes the volume of a radius-ρ Hamming ball in {0, 1}

d .
Clearly, the distance between two distinct points in S is more than r/3, and

|S| ≥
Vd(r/2)

Vd(r/3)
≥

( d
br/2c

)
r
( d
br/3c

) =
1
r

·

br/2c−br/3c−1∏
i=0

d − br/3c − i
br/2c − i

≥
1
r

(
4
3

)br/2c−br/3c

≥ 2d0.99
,

where the final inequality holds because r ≥ d0.995.

Lemma 2.4 (Reduction from LPM to ANN). Let d ≥ 1 be a large enough integer, let β be as defined
in (1), and set m := blogη/2 dc. Let 6 be an alphabet of size d2d0.99

e. If ANNβ
d,n has a t-probe algorithm

using table size s and word size b, then so does LPM6
m,n .

Proof. Fix a tree T whose existence is guaranteed by Lemma 2.3 and a numbering of its vertices so that we
can refer to “the i th child” of a vertex. Let L ⊆ {0, 1}

d be the set of centres of the leaves of T .
Identify the letters in 6 with the integers in {1, 2, . . . , d2d0.99

e} in some arbitrary manner. We can now
define a mapping ϕ : 6m

→ L as follows. Given a string σ = a1a2 . . . am ∈ 6m we consider the root-to-
leaf path in T obtained by starting from the root, going to its a1th child, then going to the a2th child of that
vertex, and so on (notice that the leaves are at depth m); we define ϕ(σ) to be the centre of the leaf reached
by this path. By the properties of T enumerated in Lemma 2.3, ϕ is clearly a bijection.
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Now, based on a cell probe algorithm A for ANNβ
d,n , we get a cell probe algorithm for LPM6

m,n as
follows. Given a database y ⊆ 6m , we preprocess the set ϕ(y) := {ϕ(w) : w ∈ y} ⊆ {0, 1}

d as A would.
Then, given a query x ∈ 6m , we use the query scheme ofA to find a point z̃ that is a β-approximate nearest
neighbour of ϕ(x) in the set ϕ(y). We return z := ϕ−1(̃z) as the answer to the LPM query. Clearly this
algorithm uses the same number of probes, table size, and word size as A.

Let k := match(x, z) and let z′ be an arbitrary string in y. To prove that this algorithm is correct, it
suffices to show that match(x, z′) ≤ k. Suppose k < m, for otherwise there is nothing to prove. Then the
(k + 1)th symbols of x and z are different, whence ϕ(x) and ϕ(z) lie in distinct balls each of which is a
depth-(k + 1) vertex of T . Now

dist(ϕ(x), ϕ(z′)) ≥
dist(ϕ(x), ϕ(z))

β
>

2d
(8β)k+1

,

where the first inequality holds because ϕ(z) is a β-approximate nearest neighbour and the second follows
from Parts (iii) and (iv) of Lemma 2.3. Thus, ϕ(x) and ϕ(z′) cannot both lie inside the same depth-(k + 1)

vertex of T , whence match(x, z′) ≤ k.

3 Protocol Manipulations

As mentioned in Section 1.2, our strategy is to prove a certain round elimination lemma for LPM and thus
obtain a communication lower bound. For this we first develop a toolkit of three lemmas that allow us to
manipulate protocols in certain ways.

The first of these, which we call the Message Switching Lemma, says that the order of the first two
messages in a protocol can be switched at the cost of blowing up the sizes of the messages. In the commu-
nication problems arising from the cell probe model, Bob’s message bits are considerably “cheaper” than
Alice’s, so it is not too bad if Bob’s message size blows up. Our exploitation of this asymmetry is crucial; it
was not required in Sen’s work on the predecessor problem [28].

The second lemma in the toolkit, which we call the Uninformative Message Lemma, and is due to
Sen [28], is concerned with protocols where the first message conveys only a fraction of a bit of information
about the input and is thus essentially uninformative; the lemma says that we may modify the protocol so
that this first message is never sent. Finally, the third of our toolkit lemmas, called the Message Compression
Lemma, says that if the first message in a protocol is long in terms of number of bits but conveys a much
smaller amount of information about the input, then we may compress this message so that its length is
linear in the amount of information conveyed. The last two lemmas increase the error of the protocol but
only by a small additive amount, a fact that will be crucial in our applications.

Lemma 3.1 (Message Switching Lemma). Let P be a deterministic [a, b, t; a0]A-protocol with t ≥ 2.
Then there exists a deterministic [a + a0, b, t − 1; 2a0b]B-protocol that computes the exact same function as
P.

Proof. There are at most 2a0 different messages that Alice may send as her first message. We design a new
protocol Q in which Bob starts by sending his responses, as in P , to every one of these. If t = 2, we stop
here. Otherwise, we let Alice’s first message in Q be the concatenation of her first two messages in P; we
can do this since Bob’s first message gives Alice all the information she needs. At this point Alice and Bob
both have all the information that they would have had after three rounds of P . So from now on they just
follow P and clearly this results in their computing the exact same function as P . It is also clear that Q is
an [a + a0, b, t − 1; 2a0b]B-protocol. In fact only the first of Alice’s messages in Q needs the extra a0 bits
but we will be happy with the weaker conclusion.
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For the other two lemmas in the toolkit, we need some more notation and a definition. Let P be a
communication protocol andD a distribution on the possible inputs to P . We remark thatD has two “parts”
— one for Alice, one for Bob — but need not be a product distribution; for such distributions D, we denote
Alice’s part (i.e., its marginal distribution) by DA and Bob’s part by DB . We let err(P,D) denote the
distributional error probability of P under this input distribution. When P is a protocol with Alice starting,
we let msg(P, x) denote Alice’s first message in P when her input is x . Note that this may be a random
variable if P is a randomised protocol. Slightly abusing notation, we use msg(Q, y) to denote Bob’s first
message when his input is y for protocols Q in which Bob starts.

Definition 3.2 (Information Cost). The information cost of a private coin protocol P with respect to input
distributionD, denoted icost(P,D), is defined to be the mutual information I(X : msg(P, X)), where X is a
random input distributed according to DA (if Alice starts P) or DB (if Bob starts). We stress that our notion
of information cost deals only with the first message of a protocol.

Lemma 3.3 (Uninformative Message Lemma [28]). Let P be a private coin 〈a1, a2, . . . , at〉
A-protocol

for a communication problem ρ. Then, for any input distribution D, there is a deterministic 〈a2, . . . , at〉
B-

protocol P ′ for ρ such that err(P ′,D) ≤ err(P,D) +
√

icost(P,D).

Remark. Notice that this lemma says something nontrivial only when icost(P,D) is a small fraction. Sen’s

proof of this lemma gave a tighter bound of
√

( 1
2 ln 2)icost(P,D) on the additional error of P ′. We drop the

constant in order to simplify our calculations later.

Lemma 3.4 (Message Compression Lemma). Let P be a private coin 〈a1, a2, . . . , at〉
A-protocol for a

communication problem ρ. Then, for any input distribution D and any a > 0, there is a deterministic
〈a, a2, . . . , at〉

A-protocol P ′ for ρ such that err(P ′,D) ≤ err(P,D)+ (2 · icost(P,D)+C)/a, where C > 0
is a universal constant.

We give a new proof of this lemma, different from the one in our original work [8], using a recent
result of Harsha, Jain, McAllester and Radhakrishnan [16] on the one-way communication complexity of
generating a correlated pair of random variables. We comment on our original proof at the end of this
section. The result of Harsha et al. concerns a two-player game that we now formalise.

Definition 3.5 (Correlator). Let (X, Y ) be a pair of discrete random variables with joint distribution 5. A
correlator for (X, Y ) is a one-way communication protocol with the following behaviour. Alice and Bob
both know 5 and share a public coin. Alice gets, as input, a random value X distributed according to the
first marginal of 5. She must send a message to Bob who must then output a random value Y ′ with the
property that (X, Y ′) is distributed according to 5.

The cost of a correlator is the expected length of Alice’s message, with the expectation taken over the
public random string as well as the randomness in Alice’s input. The correlation complexity T (X : Y ) is
defined to be the minimum cost of a correlator for (X, Y ).

It is easy to see that a correlator exists for any pair of discrete random variables: Alice can simply send
her input to Bob. The result we need about correlators is the following upper bound.

Lemma 3.6 (Harsha et al. [16]). There is a universal constant C > 0 such that, for all pairs (X, Y ) of
discrete random variables, we have T (X : Y ) ≤ I(X : Y ) + 2 log(I(X : Y ) + 1) + C.

Proof of Lemma 3.4. Assume that protocol P is parametrized by three independent uniform random strings:
RA1, the string that Alice uses to provide the randomness in her first message, RA2, the string she uses for
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her subsequent messages, and RB , the string Bob uses to randomise his messages. This assumption does not
lose generality, because P can always be cast in this form. (To see this, note that one can simulate a general
private coin protocol, in which Alice uses a single random string RA for all her messages, as follows: after
sending her first message, m, based on her input, x , and RA, Alice uses a fresh random string RA2 to generate
a random string R′

A distributed identically to (RA | x, m) and then uses R′

A in place of RA for the rest of the
protocol.)

Let εP be the following error indicator function for P: εP(x, y, m, rA2, rB) is either 0 or 1 according
as P produces a correct or an incorrect answer on input x, y when RA2 = rA2, RB = rB , and Alice sends
m as her first message. Let µP(x, rA1) be the function that Alice computes to produce her first message
in P . Define the function f (x, m) = EY,RA2,RB [εP(x, Y, m, RA2, RB)] where Y is distributed according to
(DB |X = x). Then

err(P,D) = EX,Y,RA1,RA2,RB

[
εP(X, Y, µP(X, RA1), RA2, RB)

]
(with (X, Y ) ∼ D)

= EX,RA1

[
f (X, µP(X, RA1))

]
(with X ∼ DA)

where (RA1, RA2, RB) is distributed uniformly.
Consider the protocol Q that is identical to P except for the first round, which is modified as follows.

Alice and Bob use a correlator for (X, µP(X, RA1)) using a new public random string RP : Alice sends Bob
her correlator message and Bob generates his correlator output M with the property that (X, M) has the
same distribution as (X, µP(X, RA1)). Alice mimics Bob and also generates the same value M . From this
point on, they pretend that Alice had sent M as her first message to Bob in protocol P and follow the rest of
P . By definition of f , we have

err(Q,D) = EX,M [ f (X, M)] = EX,RA1

[
f (X, µP(X, RA1))

]
= err(P,D) .

Notice that I(X : µP(X, RA1)) = icost(P,D). By Lemma 3.6, the expected length of Alice’s first
message in Q can be made at most

T (X : µP(X, RA1)) ≤ icost(P,D) + 2 log(icost(P,D) + 1) + C ≤ 2 · icost(P,D) + C .

Let I denote this upper bound. Let Q′ be a protocol that is identical to Q except for the first round, in which
Alice truncates her first message in Q to at most a bits if necessary. By Markov’s inequality, the probability
that this truncation happens is at most I/a, whence err(Q′,D) ≤ err(Q,D) + I/a = err(P,D) + I/a.
Fixing the random coins in Q′ gives us the desired deterministic 〈a, a2, . . . , at〉

A-protocol P ′.

Remark. The original version of this work [8] contained a different proof of Lemma 3.4, which was based
on the Substate Theorem of Jain, Radhakrishnan, and Sen [18], together with a rejection sampling argument
inspired by the same work. Roughly speaking, what we proved there was a weaker version of Lemma 3.6
in which the correlator is imperfect, and introduces some error in the simulation of the joint distribution
(X, Y ). The recent Lemma 3.6 given by Harsha et al. [16] is based on more sophisticated arguments, and
thereby achieves perfect simulation. This results in a cleaner form of Lemma 3.4, with improved parameters.
We note, however, that the improvements in the lemma do not propagate to the applications here, namely to
communication and cell probe lower bounds for LPM and ANN.

4 Round Elimination for LPM

We now come to the central part of our proof where we show how to eliminate messages one by one from
a protocol for LPM. Fix an alphabet 6 over which to define instances of LPM. We now define a couple of
parametrized predicates.
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Definition 4.1. Let A(m, n, a, b, t, ε) denote the statement “LPM6
m,n has a public coin randomised ε-error

[a, b, t]A-protocol.” Let B(m, n, a, b, t, ε; b0) denote the statement “LPM6
m,n has a public coin randomised

ε-error [a, b, t; b0]B-protocol.”

Lemma 4.2 (Round Elimination Lemmas for LPM). Let m, n, t, k, and ` be positive integers with k
dividing m and ` dividing n. Let a, b, ε, δ be positive reals, and C be the universal constant from Lemma 3.4.
(i) If t ≥ 2 and 2a/k ≥ C, then A(m, n, a, b, t, ε) ⇒ B

(
m/k, n, a

(
1 +

2
δk

)
, b, t − 1, ε + 2δ; 22a/(δk)b

)
.

(ii) If ` ≤ |6|, then B(m, n, a, b, t, ε; b0) ⇒ A
(
m − 1, n/`, a, b, t − 1, ε +

√
b0/`

)
.

Proof of Part (i). Assume A(m, n, a, b, t, ε). We shall demonstrate the existence of a public coin ran-
domised [a(1 +

2
δk ), b, t − 1; 22a/(δk)b]B-protocol for LPM6

m/k, n with error at most ε + 2δ. Let S := 6m/k .
By Yao’s minimax principle [29], it suffices to give, for any input distribution D on S × Sn , a deterministic
protocol for LPM6

m/k, n with the same message lengths and distributional error at most ε + 2δ. So fix some
distribution D, and let us now define several distributions based on D. First, let I denote the distribution
over [k] × S∗ obtained as follows: choose i ∈ [k] uniformly at random and then choose σ ∈ Si−1 from dis-
tribution Di−1

A . Recall that DA is our notation for the marginal distribution of “Alice’s portion” of D. Next,
let s be some fixed element of S. For each pair (i, σ ) in the support of I we define a distribution Di,σ on
Sk

× Skn as follows: draw a sample (x, y) fromD and output (σ x X i+1 . . . Xk, σ ysk−i ) where X i+1, . . . , Xk

are random strings drawn independently from DA.5 Finally, let D̃ be the distribution on Sk
× Skn obtained

by choosing (i, σ ) from I and outputting a sample from Di,σ . By (the easy half of) Yao’s minimax princi-
ple, there is a deterministic [a, b, t]A-protocol P for LPM6

m,n with distributional error at most ε under input
distribution D̃. By definition, we have

Ei,σ [err(P,Di,σ )] = err(P, D̃) ≤ ε , (2)

where the expectation is over (i, σ ) distributed according to I.
Now consider the information cost of P with respect to D̃. On the one hand, icost(P, D̃) ≤ a, since

Alice’s first message is of length a. On the other hand, if X = X1 X2 . . . Xk is distributed according to
D̃A = Dk

A, then

icost(P, D̃) = I(X : msg(P, X))

=

∑
i∈[k]

I(X i : msg(P, X) | X1 . . . X i−1)

=

∑
i∈[k]

Eσ [I(X i : msg(P, X) | X1 . . . X i−1 = σ)]

= k · Ei,σ [I(X i : msg(P, X) | X1 . . . X i−1 = σ)]

where the second equality is by the chain rule for mutual information. Hence we see that

Ei,σ [I(X i : msg(P, X) | X1 . . . X i−1 = σ)] ≤
a
k

. (3)

Combining (2) and (3), and using an averaging argument, we see that there exists an integer i ∈ [k] and a
string σ ∈ Si−1 such that

err(P,Di,σ ) +
2 · I(X i : msg(P, X) | X1 . . . X i−1 = σ)

2a/(δk)
≤ ε + δ . (4)

5If σ is a string and y a set of strings, σ y denotes the set {στ : τ ∈ y} of strings.
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Fix a pair (i, σ ) as above. We shall now define a private coin protocol Q′′ for LPM6
m/k, n that uses P as

a black box. It works as follows: on input (x, y) ∈ S × Sn , Alice constructs the string x̃ := σ x X i+1 . . . Xk

where the X j ’s are random strings she draws independently from DA using her private coins, and Bob
constructs the set ỹ := σ ysk−i of strings; they then run protocol P on input (̃x, ỹ) and output the i th block
of whatever string P outputs. Note that if (x, y) is chosen from D, then (̃x, ỹ) is distributed according to
Di,σ . Moreover, from the description of the LPM problem it is clear that Q′′ works whenever its call to P
works. Therefore, we have

err(Q′′,D) ≤ err(P,Di,σ ) .

Moreover,
icost(Q′′,D) = I(X i : msg(P, X) | X1 . . . X i−1 = σ) .

Applying the Message Compression Lemma 3.4 to Q′′, gives us a deterministic [a, b, t; 2a/(δk)]A-protocol
Q′ for LPM6

m/k, n whose distributional error can be bounded as follows, using (4) and the fact that 2a/k ≥ C .

err(Q′,D) ≤ ε + δ +
C

2a/(δk)
≤ ε + 2δ .

Applying the Message Switching Lemma 3.1 with a0 = 2a/(δk) to Q′ gives us a deterministic [a(1 +

2/(δk)), b, t − 1; 22a/(δk)b]B-protocol Q with the same error probability as Q′. The protocol Q has all the
properties we sought and we are done.

Proof of Part (ii). Assume B(m, n, a, b, t, ε; b0). Let S = 6m−1. As before, for an arbitrary input distribu-
tion D on S × Sn/`, we demonstrate the existence of a deterministic [a, b, t − 1]A-protocol for LPM6

m−1,n/`

with low distributional error. Fix ` distinct strings s1, . . . , s` ∈ 6; we can do this because |6| ≥ `. For
each i ∈ [`], let Di be the distribution on 6S × (6S)n obtained as follows: draw ` independent samples
(x1, y1), . . . , (x`, y`) from D, and output (si xi , s1 y1 ∪ · · · ∪ s`y`). We also construct a distribution D̃ on
6S × (6S)n as follows: choose i ∈ [`] uniformly at random, and output a sample fromDi . By the easy half
of Yao’s minimax principle there is a deterministic [a, b, t; b0]B-protocol P for LPM6

m,n with distributional
error at most ε under input distribution D̃. By definition, we have

Ei [err(P,Di )] = err(P, D̃) ≤ ε . (5)

Now consider icost(P, D̃). On the one hand, it is at most b0 since Bob’s first message is of length b0.
On the other hand, if Y = Y1Y2 . . . Y` is distributed according to D̃B , then

icost(P, D̃) = I(Y : msg(P, Y )) ≥

∑
i∈[`]

I(Yi : msg(P, Y )) ,

where the inequality holds because the Yi ’s are independent. Hence, we obtain that

Ei
[
I(Yi : msg(P, Y ))

]
≤

b0

`
. (6)

Combining (5) and (6), and using the concavity of the square root function and an averaging argument, we
conclude that there exists an i ∈ [`] such that

err(P,Di ) +
√

I(Yi : msg(P, Y )) ≤ ε +
√

b0/` .

Fix such an i ∈ [`], and consider the following private coin protocols Q′ for LPM6
m−1,n/` which uses

P as a black box: on input (x, y) ∈ S × Sn/`, Alice constructs the string x̃ := si x and Bob constructs the
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set ỹ := s1 y1 ∪ · · · ∪ si−1 yi−1 ∪ si y ∪ si+1 yi+1 ∪ · · · ∪ s`y` of strings, where the y j ’s are random sets of
strings drawn independently from DB ; they then run protocol P on input (̃x, ỹ) and output whatever string
P outputs with the first symbol deleted. Note that if (x, y) is chosen from D, then (̃x, ỹ) is distributed
according to Di . Moreover, from the description of the LPM problem it is clear that Q′ works whenever its
call to P works. Thus, we have

err(Q′,D) ≤ err(P,Di ) .

Moreover,
icost(Q′,D) = I(Yi : msg(P, Y )) .

Applying the Uninformative Message Lemma 3.3 to Q′ we see that there exists a deterministic [a, b, t −1]A-
protocol Q with distributional error at most ε+

√
b0/` underD which has all the properties we sought. This

completes the proof.

Combining the two parts of the above round elimination lemma, and weakening the resulting statement
(using m/k − 1 ≥ m/(2k)), gives us the following corollary.

Corollary 4.3. With m, n, a, b, t, k, `, ε, δ and C as above, ` ≤ |6|, 2a/k ≥ C, and t ≥ 2,

A(m, n, a, b, t, ε) H⇒ A
(

m
2k

,
n
`
, a
(

1 +
2
δk

)
, b, t − 2, ε + 2δ +

√
22a/(δk)b

`

)
.

We can now prove the following result about the communication complexity of LPM6
m,n .

Theorem 4.4. For all c1, c2 > 0 there exists a c3 > 0 such that the following holds. Suppose d, n ≥ 1
are sufficiently large integers satisfying 2log1.01 d

≤ n ≤ 2d0.99
. Let m = blogη/2 dc, 6 be a set of cardinality

d2d0.99
e, a = c1 log n and b = dc2 . If A(m, n, a, b, t, 1

4), then t ≥ c3 log log d/ log log log d.

Proof. Assume, without loss of generality, that c1 ≥ 1. Let us define

ξ :=
η log log d

2 log log log d
, (7)

so that ξ ξ
≤ blogη/2 dc = m. We shall start by assuming A(m, n, a, b, ξ

3c1
, 1

4) and derive a contradiction,
which will prove that t > ξ

3c1
, as desired. We ignore divisibility issues to avoid notational clutter. Set

δ = ξ−1, k = ξ 2 (so that δk = ξ ), and ` = n5c1/ξ . We claim that for any non-negative integer i ≤
ξ

6c1
, it is

the case that

A
(

m
(2k)i

,
n
`i

, a
(

1 +
2
ξ

)i

, b,
ξ

3c1
− 2i,

1
4

+ 3iδ

)
. (8)

We prove our claim by induction on i . The base case i = 0 holds by our initial assumption. Suppose (8)
holds for some particular i ≤

ξ
6c1

− 1. We would like to apply Corollary 4.3, so we need to ensure that
` ≤ |6| and that 2a(1 + 2/ξ)i/k ≥ C . Using the upper bound on n, we see that ` ≤ n ≤ |6|, and using the
lower bound on n, we see that 2a(1 + 2/ξ)i/k ≥ a/k = ω(1). Thus, the corollary applies and we conclude
that

A
(

m
(2k)i+1

,
n

`i+1
, a

(
1 +

2
ξ

)i+1

, b,
ξ

3c1
− 2(i + 1),

1
4

+ 3iδ + 2δ + δ′

)
, (9)
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where the term δ′ can be bounded as follows:

a
(

1 +
2
ξ

)i

≤ a
(

1 +
2
ξ

)ξ/6

≤ 2a ,

δ′
≤

√
22(2a)/(δk)b

`
=

√
n4c1/ξ dc2

n5c1/ξ
≤ δ ,

where the final inequality follows from the lower bound on n. Plugging this bound for δ′ into (9), we
conclude that (8) holds for i + 1 as well. This proves the claim.

Now set i =
ξ

6c1
in (8). Some simple algebra shows that

(2k)i
= (2ξ 2)ξ/(6c1) ≤ (ξ 3)ξ/(6c1) ≤ m3/(6c1) ≤ m1/2 ,

`i
= n(5c1/ξ)(ξ/(6c1)) = n5/6 ,

1
4

+ 3iδ =
1
4

+ 3 ·
ξ

6c1
·

1
ξ

=
1
4

+
1

2c1
≤

3
4

,

whence we obtain A(m1/2, n1/6, 2a, b, 0, 3
4). But this is a contradiction, as we are solving a nontrivial

communication problem with non-negligible success probability but with zero communication.

Remarks: We note that our techniques in the proof of Lemma 4.2 in fact yield a new general round
elimination lemma in the style of Sen [28] and not just one for LPM. A precise statement of such a lemma
would introduce too much extra notation, so we refer the interested reader to Sen’s work instead.

5 The Cell Probe Lower Bound for ANN

It is now simple to put together the results from the previous sections to obtain our main theorem.

Theorem 5.1 (Main Theorem restated). For all c1, c2 > 0 there exists a c3 > 0 such that the following
holds. Let n, d ≥ 1 be large enough integers, and suppose that 2log1.01 d

≤ n ≤ 2d0.99
. If ANNβ

d,n has a ran-
domised t-probe algorithm with table size s ≤ nc1 and word size w ≤ dc2 , then t ≥ c3 log log d/ log log log d.

Proof. Let m := blogη/2 dc and let 6 be an arbitrary set of cardinality d2d0.99
e . By Lemma 2.4, LPM6

m,n
has a t-probe algorithm with table size s and word size w. Next, let a := dlog se and b := w. By Fact 1.5,
LPM6

m,n has a private coin randomised [a, b, 2t]A-protocol, i.e., the statement A(m, n, a, b, 2t, 1
4) holds.

Theorem 4.4 gives us the desired lower bound on t .

6 Upper Bounds

Kushilevitz et al. [20] implicitly obtained an O(log log d) cell probe upper bound for ANNα
d,n , for any

constant α > 1, via a “dimension reduction” technique for the Hamming cube. In this section we prove a
couple of upper bounds which use this technique, but in more complex ways than [20]. For our first result,
which shows that the lower bound in the Main Theorem is tight, we need to bring in ideas used by Beame
and Fich [4] in their work on upper bounds for the predecessor problem. Incidentally, [4] actually gives a
cell probe algorithm for LPM; here we show that the harder ANN problem can also be similarly solved.

We need two lemmas which closely follow lemmas from [20]; we include the proofs for completeness.
In this section we shall often treat points in Hamming cubes as column vectors over the field G F(2), so that
we can use linear algebraic notation. We will let n and d have their usual roles.
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Definition 6.1. Let k be a positive integer and r a real number with r ≥ 1. We define Vr to be the distri-
bution of a random d-coordinate row vector in which each coordinate is independently chosen to be 1 with
probability 1/(4r) and 0 otherwise. We define Mk

r to be the distribution of a random k × d matrix where
each row is independently chosen from distribution Vr .

Lemma 6.2. Let r ≥ 1 and γ > 1. Then, there exist two numbers δ1(r, γ ) < δ2(r, γ ), both in [0, 1], such
that δ2(r, γ ) − δ1(r, γ ) is at least some constant that depends only on γ and such that for all d ≥ 1 and for
all x, z ∈ {0, 1}

d ,

dist(x, z) ≤ r ⇒ Pr[Y x 6= Y z] ≤ δ1(r, γ ) , and

dist(x, z) > γ r ⇒ Pr[Y x 6= Y z] > δ2(r, γ ) ,

where Y is a random row vector drawn from distribution Vr .

Proof. Consider the following equivalent way of choosing Y : first choose a set C ⊆ [d] where each integer
in [d] is put in C independently with probability 1/(2r). Then, for each i ∈ C , let the i th coordinate of
Y be chosen uniformly from {0, 1}. For i /∈ C , set the i th coordinate of Y to zero. Let z ∈ {0, 1}

d be
arbitrary and let h = dist(x, z). If C does not contain any of the coordinates on which x and z differ, then
clearly Y x = Y z. This happens with probability (1 − 1/(2r))h . Otherwise, if C contains at least one of the
coordinates on which x and z differ, the probability that Y x 6= Y z is precisely 1/2. Hence,

Pr[Y x 6= Y z] =
1
2

(
1 −

(
1 −

1
2r

)h
)

.

It can be seen that this is a monotonically increasing function of h and that by plugging in r and γ r for h
one obtains two numbers whose difference is as claimed.

Lemma 6.3. Let r ≥ 1 and γ > 1. Define δ(r, γ ) = (δ1(r, γ ) + δ2(r, γ ))/2, where δ1, δ2 are as in Lemma
6.2. Then, for all d ≥ 1, all u, v ∈ {0, 1}

d , and all k ≥ 1,

dist(u, v) ≤ r ⇒ Pr[ dist(Mu, Mv) > δ(r, γ )·k ] = e−�(k) , and

dist(u, v) > γ r ⇒ Pr[ dist(Mu, Mv) ≤ δ(r, γ )·k ] = e−�(k) ,

where M is a random matrix drawn from distribution Mk
r and the constant in the �(k) depends only on γ .

Proof. The lemma follows by combining Lemma 6.2 with the following Chernoff bound: For a sequence
of m independent random variables on {0, 1} such that for all i , Pr[X i = 1] = p for some p, Pr[

∑
X i >

(p + τ)m] ≤ e−2mτ 2
and similarly Pr[

∑
X i < (p − τ)m] ≤ e−2mτ 2

.

6.1 A Tight Cell Probe Upper Bound for ANN

In this section we show that the lower bound given by the main theorem is tight. We assume throughout
that n ≥ d (say), for otherwise upper bounds for the problem are arguably not too interesting. We start by
showing that it is enough to give a special kind of communication protocol for ANN.

Definition 6.4 (Memoryless Protocols). A communication protocol is said to be memoryless if each of
Bob’s messages depends only on the following: Bob’s input, a random string in case the protocol is ran-
domised, and the most recent message received from Alice (in a general protocol a message from Bob would
depend on the entire communication history). Note that there is no restriction on Alice.
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Lemma 6.5. If ANNα
d,n has a memoryless public coin [λ log n, w, 2t]A-protocol, then it has a cell probe

algorithm with t probes, table size at most O(dnλ+1) and word size w.

Proof. Note that the total input to the ANNα
d,n problem is d + dn bits long. Therefore, the private versus

public coin theorem of Newman [24] implies that it is enough to choose the public random string uniformly
from a set of at most s = O(d + dn) special strings. Thus we can modify the protocol so that only Alice is
randomised and Bob is deterministic: Alice starts by choosing at most dlog se random bits to index into the
list of special strings. She includes these dlog se bits in each of her messages to Bob so that Bob has access
to the random coins of the original protocol and can behave deterministically. Notice that by including the
coins in each message (and not just the first one), we ensure that the modified protocol — call it P — is also
memoryless.

We now obtain the desired cell probe algorithm as follows. Number Alice’s messages in P , which are
each at most (λ log n + log s) bits long, from 1 to nλs = O(dnλ+1). The preprocessing phase produces a
table whose i th entry contains Bob’s response, in P , to message i from Alice; this is well-defined since Bob
behaves deterministically and memorylessly in P . Also, the word size needed to fit Bob’s messages remains
w. The query phase simply simulates Alice’s behaviour in P , using table lookups instead of messages from
Bob.

Theorem 6.6 (Cell Probe Algorithm for ANN). Let α > 1 be any constant. Then, for n ≥ d, ANNα
d,n has

a cell probe algorithm with O(log log d/ log log log d) probes, table size nO(1) and word size O(d).

Remark. A similar upper bound has been independently discovered by Beame and Guruswami [5].

Proof. Without loss of generality, assume that α < 4 and let γ =
√

α. Let x ∈ {0, 1}
d denote the query

point and B ⊆ {0, 1}
d denote the database. For i ∈ {0, 1, . . . , logγ d}, let Bi be the set of all database points

within distance γ i of x . We start by checking for the degenerate case in which x ∈ B. This can be done
with a constant number of cell probes using the technique of perfect hashing [14]. If indeed x ∈ B, the
algorithm outputs x and ends. Similarly, in order to avoid certain boundary cases later, let us check if there
exists a point in B within distance 1 of x . This can also be done with O(1) cell probes by perfect hashing
of all the points within distance 1 of B (there are at most dn such points). Again, if such a point is found,
the algorithm outputs it and ends. Hence, since γ < 2, we can assume from now on that both B0 and B1 are
empty.

Set t = c0 log log d/ log log log d, with c0 chosen so that

(t/2)t
≥ logγ d . (10)

By Lemma 6.5, a memoryless public coin [O(log n), O(d), O(t)]A-protocol for ANNα
d,n will suffice.

Our protocol will find an i such that Bi is empty but Bi+2 is not and will output a point in Bi+2; such a
point is clearly an α = γ 2-approximate nearest neighbour of x .

We start the protocol by choosing independent random matrices Mi from distributionMc1 log n
γ i and inde-

pendent random matrices Ni from distributionM(c2 log n)/t
γ i (see Definition 6.1), for each i ∈ {0, . . . , logγ d}.

The constants c1 and c2 will be specified later. Since we are in the public coin model, these matrices are
known to both Alice and Bob. For 0 ≤ j ≤ i ≤ logγ d we define the sets

Ci = {z ∈ B : dist(Mi x, Mi z) ≤ δ(γ i , γ ) · c1 log n} ,

Di, j = {z ∈ Ci : dist(N j x, N j z) ≤ δ(γ j , γ ) · (c2 log n)/t} ,
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where δ is as in Lemma 6.3. Lemma 6.3 says that Ci is an approximation to Bi in the following sense: a
point in Bi may be left out of Ci (and a point not in Bi+1 may get into Ci ) with probability at most n−2,
provided we choose c1 large enough. Similarly, Di, j is an approximation to the set of points in Ci that are
within distance γ j of x . Our protocol will assume that Bi ⊆ Ci ⊆ Bi+1 for all i . Under this assumption,
by Lemma 6.3, a point in B j is left out of Di, j (and a point in Ci \ B j+1 may get into Di, j ) with probability
at most n−2/t provided we choose c2 large enough. Our protocol will additionally assume that at most a
fraction n−1/t of B j is not in Di, j and that at most a fraction n−1/t of Ci \ B j+1 is in Di, j .

Taking the union bound over all i and all n database points, we see that the first assumption is false with
probability at most (logγ d)·n ·n−2

≤
1
8 . For the second assumption, an application of Markov’s inequality

followed by a union bound over all i, j and the two parts of the assumption shows that it is false with
probability at most n−1/t

·(logγ d)2
·2 ≤

1
8 . Thus, an assumption is false with probability at most 1

4 ; this will
bound the error probability of the protocol.

The protocol proceeds as follows. Alice maintains two integers r and s, initialised to 0 and logγ d
respectively. The protocol is composed of at most 3t shrinking phases, each of which consists of at most 4
rounds, followed by a completion phase, which consists of at most 6t rounds. The protocol maintains the
invariant that at the start of each shrinking phase r < s, Cr is empty and Cs is nonempty. Note that this holds
at the very beginning (C0 is empty since it is contained in B1). Moreover, each shrinking phase updates r
and/or s in such a way that either s ′

− r ′
≤ (s − r)/t + 3 or |Cs′ | ≤ 2n−1/t

|Cs |, where r ′ and s ′ denote the
updated values of r and s, respectively. When s − r drops below (say) 3t , the protocol stops the shrinking
phases and moves on to the completion phase. As long as s − r ≥ 3t , (s − r)/t + 3 ≤ 2(s − r)/t . Hence,
in view of (10), there can be at most t shrinking phases in which (s − r) shrinks by a factor of 2/t . On the
other hand, since Cs stays nonempty, there are at most 2t shrinking phases in which |Cs | drops by a factor
of 2n−1/t

≤ n−1/(2t). Thus, overall there are at most 3t shrinking phases, as claimed.
We now describe the completion phase. For i from r + 1 to s, Alice sends Bob the vector Mi x which is

O(log n) bits long and gives Bob complete information about Ci . If Ci is empty, Bob replies “empty,” other-
wise he replies with an arbitrary point in Ci which is d bits long. Notice that Bob can do this memorylessly.
Alice stops as soon as she receives a point, which, by the invariant, she eventually must. Since we enter the
completion phase only when s − r < 3t , there are at most 6t rounds in this phase. Suppose Alice ends up
with a point in Ck+1, so that Ck is empty. By our first assumption, Bk ⊆ Ck is empty and Bk+2 ⊇ Ck+1

contains this point. As observed earlier, this solves ANNα
d,n .

Finally, we describe a shrinking phase. For j ∈ [t − 1] define ρ j = br +
j
t (s − r)c. In the first

round of the phase, Alice sends Bob the vectors Ms x, Nρ1 x, Nρ2 x, . . . , Nρt−1 x . Examining the shapes of
the matrices Ni , we see that this message of Alice is only O(log n) bits long. Alice’s message gives Bob
complete information about Cs as well as Ds,ρ j for all j ∈ [t − 1]. Bob replies (again, memorylessly) with
the smallest j ∈ [t − 1] such that |Ds,ρ j | > n−1/t

|Cs |, or with j = t if no such j exists. If Bob’s response
is j = 1 (CASE 1), we skip the third and fourth rounds of this phase and Alice updates s to ρ1 + 1, leaving
r unchanged. Otherwise, in the third round Alice sends Bob the vector Mρ j−1−1x and Bob replies with a bit
indicating whether or not Cρ j−1−1 is empty. If it is empty (CASE 2), Alice updates r to ρ j−1 −1 and if j < t ,
updates s to ρ j + 1. If it is nonempty (CASE 3), Alice updates s to ρ j−1 − 1, leaving r unchanged.

Let us now verify that all the invariants hold after the phase ends. Clearly, in all three cases, r < s.
Moreover, in CASE 1 and CASE 3, Cr is empty since r was not changed and in CASE 2, Cr is empty
according to Bob’s message. In CASE 3, Cs is nonempty according to Bob’s message and in CASE 2 with
j = t , Cs is nonempty because s was not changed. In order to show that Cs is nonempty in the remaining
cases, recall that by our assumption, Ds,ρ j contains at most n−1/t

|Cs | points from outside Bρ j +1. Therefore,
since |Ds,ρ j | > n−1/t

|Cs |, it must contain at least one point from Bρ j +1. In particular, Bρ j +1 and hence Cρ j +1
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are nonempty.
In order to complete the proof, notice that in CASE 1 and CASE 2 the difference between the updated

values of r and s is at most

(br +
j
t (s − r)c + 1) − (br +

j−1
t (s − r)c − 1) ≤

s−r
t + 3 ,

and that in CASE 3 the size of the new Cs is

|Cρ j−1−1| ≤ |Bρ j−1 | ≤ |Ds,ρ j−1 |/(1 − n−1/t) ≤ 2|Ds,ρ j−1 | ≤ 2n−1/t
|Cs | ,

where we used our assumptions from above. Hence, in all three cases the phase shrinks either s − r or |Cs |

as promised.

6.2 A Protocol for ANN with Low Bit Complexity

Finally, we prove our other upper bound on ANN which shows that the richness technique would have failed
to prove a nontrivial lower bound.

Theorem 6.7 (Bit Complexity Upper Bound for ANN). For n ∈ 2�(log2 d) and α > 1 there is a private
coin randomised communication protocol for ANNα

d,n in which Alice sends O(log n) bits and Bob sends
d O(1) bits.

Proof. We will present a public coin protocol; a private coin protocol follows from the theorem of New-
man [24]. Assume without loss of generality that α < 4 and let γ =

√
α. Let x ∈ {0, 1}

d denote the query
point given to Alice and B ⊆ {0, 1}

d denote the database given to Bob. For i ∈ {0, . . . , logγ d} define Bi

as the set of points in B within distance γ i of x . Moreover, as in the previous upper bound, we can assume
without loss of generality that both B0 and B1 are empty. This is done using perfect hashing, and requires
Alice to send only O(log n) bits and Bob to send only O(d) bits.

Let r0 ≥ 2 be the minimum number such that Br0 is non-empty and fix y to be an arbitrary point in
Br0 . Our protocol outputs a point either in Br0 or in Br0+1; this clearly implies a solution to ANNα

d,n . Bob
maintains a set of points B ′

⊆ B which is initially set to B. Alice keeps a value r which is initially set to
logγ d. In the following description of the protocol, we describe certain bad events and we proceed assuming
that they never happen. Later, we show that with high probability none of these events happens.

Our protocol consists of phases where each phase consists of two rounds. In the first round, Bob sends
d2 randomly chosen points from B ′. If Alice finds a point in Br−1 then she decreases r by one and sends a
message to Bob indicating that the phase is complete. Otherwise, we say that a bad event of the first type
happened if |B ′

∩ Br−1| ≥ |B ′
|/d. Next, Alice uses the shared randomness to choose a matrix M from the

distribution Mc1 log d
γ r−2 where c1 is some constant to be specified later. She sends r and Mx to Bob; this takes

O(log d) bits. Since Bob knows M , he can compute the set

{z ∈ B ′ : dist(Mx, Mz) ≤ δ(γ r−2, γ ) · c1 log d},

where δ is as in Lemma 6.3, and he sets the new B ′ to be this set. This ends the phase. We say that a bad
event of the second type happened if the cardinality of the new B ′ is greater than 2/d times that of the old
B ′. We say that a bad event of the third type happened if r ≥ r0 + 2 and y is no longer in B ′.

The protocol ends when the set B ′ becomes empty and then Alice outputs the point in Br which she
received when she decreased r to its current value.

Assuming none of the bad events happens, each phase either decreases r by one or shrinks the size of
B ′ by 2/d. Hence, the number of phases performed by the protocol is at most logγ d + logd/2 n which is
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O(log n/ log d) by our assumption. Since Alice sends O(log d) bits in each phase, she sends O(log n) bits
overall. Moreover, given that bad events of the third type do not happen, we know that the protocol stops
when r ≤ r0 + 1. Also, since Alice decrements r only after seeing an element in Br−1, we know that she
never decrements r below r0. Thus, the final r is either r0 or r0 +1 and so Alice outputs a point in Br0 ∪ Br0+1

as promised. It remains to bound the probability of the bad events.
Let us consider one phase of the protocol. The probability that a bad event of the first type happens in

this phase is at most (
1 −

1
d

)d2

≤ e−d .

So assume from now on that |B ′
∩ Br−1| < |B ′

|/d and that Alice does not find any point in Br−1. According
to Lemma 6.3, each element of B ′

\ Br−1 is in the new B ′ with probability at most 1/d2 for large enough c1.
By Markov’s inequality, the probability that more than a 1/d fraction of the points in B ′

\ Br−1 remain is at
most 1/d. Hence, with probability at least 1 − 1/d, the number of points in the new B ′ is at most

1
d · |B ′

| +
1
d · |B ′

\ Br−1| ≤
1
d · |B ′

| +
1
d · |B ′

| =
2
d · |B ′

| ,

and therefore a bad event of the second type happens with probability at most 1/d. According to Lemma
6.3, for r ≥ r0 + 2, the probability of y being thrown out of B ′ (the third bad event) is at most 1/d for
large enough c1. Summing up over the three bad events and using the union bound over all the phases, the
probability that a bad event happens during the protocol is at most

O
(

log n
log d

·

(
e−d

+
1
d

+
1
d

))
≤

1
4

,

which bounds the error probability of the protocol.
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