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Abstract. We present the first explicit connection between quantum computation and lattice
problems. Namely, our main result is a solution to the Unique Shortest Vector Problem (SVP)
under the assumption that there exists an algorithm that solves the hidden subgroup problem on
the dihedral group by coset sampling. Additionally, we present an approach to solving the hidden
subgroup problem on the dihedral group by using an average case subset sum routine.
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1. Introduction. Quantum computation is a computation model based on quan-
tum physics. Assuming that the laws of nature as we know them are true, this might
allow us to build computers that are able to perform tasks that classical computers
cannot perform in any reasonable time. One task which quantum algorithms are
known to perform much better than classical algorithm is that of factoring large inte-
gers. The importance of this problem stems from its ubiquitous use in cryptographic
applications. While there are no known polynomial time classical algorithms for this
problem, a groundbreaking result of Shor from 1994 [25] showed a polynomial time
quantum algorithm for factoring integers. In the same paper, Shor showed an algo-
rithm for finding the discrete log. However, despite enormous effort, we have only
a few other problems for which quantum algorithms provide an exponential speedup
(e.g., [12, 5]). Other notable quantum algorithms such as Deutsch and Jozsa’s al-
gorithm [6] and Simon’s algorithm [26] operate in the black box model. Grover’s
algorithm [11] provides a square root speedup over classical algorithms.

The current search for new quantum algorithms concentrates on problems which
are not known to be N P-hard. These include the graph isomorphism problem and
lattice problems. In this paper we are interested in lattice problems or specifically, the
unique shortest vector problem (SVP). A lattice is a set of all integral linear combina-
tions of a set of n linearly independent vectors in R™. This set of n vectors is known
as a basis of the lattice. In the SVP we are interested in finding the shortest nonzero
vector in a lattice. In the f(n)-unique-SVP we are given the additional promise that
the shortest vector is shorter by a factor of at least f(n) from all other non parallel
vectors. This problem also has important applications in cryptography. Namely, Ajtai
and Dwork’s cryptosystem [2] and the recent cryptosystem by Regev [23] are based
on the hardness of this lattice problem.

A central problem in quantum computation is the hidden subgroup problem
(HSP). Here, we are given a black box that computes a function on elements of a
group G. The function is known to be constant and distinct on left cosets of a sub-
group H < G and our goal is to find H. Interestingly, almost all known quantum
algorithms which run super-polynomially faster than classical algorithms solve spe-
cial cases of the HSP on Abelian groups. Also, it is known that solving the HSP
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on the symmetric group leads to a solution to graph isomorphism [15]. This moti-
vated research into possible extensions of the HSP to noncommutative groups (see,
e.g., [9, 13, 24, 8]). However, prior to this paper the HSP on groups other than the
symmetric group and Abelian groups had no known applications.

In this paper we will be interested in the HSP on the dihedral group. The dihedral
group of order 2N, denoted Dy, is the group of symmetries of an N-sided regular
polygon. It is isomorphic to the abstract group generated by the element p of order
n and the element 7 of order 2 subject to the relation pr = 7p~!. Although the
dihedral group has a much simpler structure than the symmetric group, no efficient
solution to the HSP on the dihedral group is known. Ettinger and Hgyer [7] showed
that one can obtain sufficient statistical information about the hidden subgroup with
only a polynomial number of queries. However, there is no efficient algorithm that
solves the HSP using this information. Currently, the best known algorithm is due to
Kuperberg [18] and runs in subexponential time 20(vVIog V),

The following is the main theorem of this paper. The dihedral coset problem is
described in the following paragraph.

THEOREM 1.1. If there exists a solution to the dihedral coset problem with failure
parameter f then there exists a quantum algorithm that solves the @(n%Jrzf)—um'que—
SVP.

The input to the dihedral coset problem (DCP) is a tensor product of a polynomial
number of registers. Each register is in the state

|0, z) + |1, (x + d) mod N)

for some arbitrary x € {0,..., N — 1} and d is the same for all registers. These can
also be thought of as cosets of the subgroup {(0,0), (1,d)} in Dy. Our goal is to find
the value d. In addition, we say that the DCP has a failure parameter f if each of
the registers with probability at most m is in the state |b,x) for arbitrary b, x
instead of a coset state. We note that any algorithm that solves the dihedral HSP by
sampling cosets also solves the DCP for some failure parameter f. The reason is that
since the algorithm samples only a polynomial number of cosets, we can take f to be
large enough such that with high probability all the registers are coset states. This is
summarized in the following corollary.

COROLLARY 1.2. If there exists a solution to the dihedral HSP that samples cosets
(e.g., any solution using the ‘standard method’) then there exists a quantum algorithm
that solves poly(n)-unique-SVP.

The following is the second result of this paper. While still not an efficient solu-
tion, it shows a new way to approach the dihedral HSP. In the subset sum problem we
are given two integers ¢, N and a set of numbers. We are asked to find a subset of the
numbers that sums to ¢ modulo N. A legal input is an input for which such a subset
exists (a formal definition appears in Section 4) and we are interested in algorithms
that solve a non-negligible fraction of the inputs:

THEOREM 1.3. If there exists an algorithm S that solves m of the legal
subset sum inputs with parameter N then there exists a solution to the DCP with
failure parameter f = 1.

As shown in [7], the dihedral HSP can be reduced to the case where the subgroup
is of the form {(0,0), (1,d)}. Then, by sampling cosets we obtain states of the form
|0, z) + |1, (x + d) mod N) with no error. Hence,

COROLLARY 1.4. If there exists an algorithm S that solves m of the legal
subset sum inputs with parameter N then there exists a solution to the dihedral HSP.



QUANTUM COMPUTATION AND LATTICE PROBLEMS 3

Finally, as a curiosity, let us comment that by combining the two previous theo-
rems one can obtain the following corollary:

COROLLARY 1.5. If there exists an algorithm that solves m of the legal
subset sum inputs with parameter N then there exists a quantum algorithm for the
O (n?%)-unique-SVP.

This result can be described as a worst case to average case quantum reduction.
Such reductions are already known in the classical case [1, 3, 4, 20, 23]. The exponent
2.5 in our reduction is better than the one in [1, 3, 4, 20]. However, the reduction
in [23], which appeared after the original publication of the current paper, further
improves the exponent to 1.5 and hence subsumes our reduction. In addition, unlike
the classical reductions, our subset sum problems have a density of one, i.e., the size
of the input set is very close to log N. Therefore, some cryptographic applications
such as the one by Impagliazzo and Naor [14] cannot be used.

Intuitive overview. Before proceeding to the main part of the paper, we de-
scribe our methods in a somewhat intuitive way. First, let us describe the methods
used in solving the unique-SVP. Recall that our solution is based on a solution to the
DCP. We begin by showing how such a solution can be used to solve a slightly differ-
ent problem which we call the two point problem. Instead of a superposition of two
numbers with a fixed difference, our input consists of registers in a superposition of
two n-dimensional vectors with a fixed difference. Then, the idea is to create an input
to the two point problem in the following way. Start by creating a superposition of
many lattice points and collapse the state to just two lattice points whose difference
is the shortest vector. Repeating this procedure creates an input to the two point
problem whose solution is the shortest vector.

Collapsing the state is performed by partitioning the space into cubes. Assume
the partition has the property that in each cube there are exactly two lattice points
whose difference is the shortest vector. Then, we compute the cube in which each
point is located and measure the result. The state collapses to a superposition of just
the two points inside the cube we measured. The important thing is to make sure
that exactly two points are located in each cube. First, in order to make sure that the
cubes are not aligned with the lattice, we randomly translate them. The length of the
cubes is proportional to the length of the shortest vector. Although the exact length
of the shortest vector is unknown, we can try several estimates until we find the right
value. Since the lattice has a unique shortest vector, all other nonparallel vectors
are considerably longer and do not fit inside a cube. Therefore we know that the
difference between any two points inside the same cube is a multiple of the shortest
vector. Still, this is not good enough since instead of two points inside each box we
are likely to have more points aligned along the shortest vector. Hence, we space out
the lattice: instead of creating a superposition of all the lattice points we create a
superposition of a subset of the points. The set of points created by this technique
has the property that along the direction of the shortest vector there are pairs of
points whose difference is the shortest vector and the distance between two such pairs
is much larger than the shortest vector. As before, this can be done without knowing
the shortest vector by trying several possibilities.

The second part of the paper describes a solution to the DCP with failure param-
eter 1 which uses a solution to the average case subset sum problem. Recall that we
are given registers of the form

|0, 2) + |1, (x + d) mod N)
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where z € {0,..., N —1} is arbitrary and we wish to find d € {0,..., N—1}. Consider
one such register. We begin by applying the Fourier transform to the second part of
the register (the one holding 2 and x 4+ d) and then measuring it. If a is the value
we measured, the state collapses to a combination of the basis states |0) and |1) such
that their phase difference is 271'%(1. If we were lucky enough to measure a = 1, then
the phase difference is 27T% and by measuring this phase difference we can obtain
an estimation on d. This, however, happens with exponentially small probability.
Since the phase is modulo 27, extracting the value d is much harder when a is larger.
Instead, we perform the same process on r registers and let aq,...,a, be the values
we measure. The resulting tensor state includes a combination of all 2" different 0, 1
sequences. The phase of each sequence can be described as follows. By ignoring a
fixed phase, we can assume that the phase of the sequence 00...0 is 0. Then, the
phase of the sequence 100...0 is 277“%1 and in general, the phase of the sequence
Q1o ... 18 277% multiplied by the sum of the values a; for which «; = 1. This
indicates that we should try to measure the phase difference of two sequences whose
sums differ by 1. However, although we can estimate the phase difference of one qubit,
estimating the phase difference of two arbitrary sequences is not possible.

We proceed by choosing r to be very close to log N. This creates a situation in
which for almost every ¢ € {0,..., N — 1} there is a subset whose sum modulo N is
t and in addition, there are not too many subsets that sum to the same ¢ modulo N.
Assume for simplicity that every ¢ has exactly one subset that sums to t modulo N.
We calculate for each sequence the value L%J where ¢ is its sum. After measuring the
result, say s, we know that the state is a superposition of two sequences: one that sums
to 2s and one that sums to 2s + 1. Notice that since ag, ..., a, are uniformly chosen
between {0, ..., N—1} we can use them as an input to the subset sum algorithm. The
key observation here is that the subset sum algorithm provides the reverse mapping,
i.e., from a value t to a subset that sums to ¢. So, from s we can find the sequence
o1 that sums to 2s and the sequence s that sums to 2s + 1. Since we know that
the state is a superposition of |a;) and |az) we can use a unitary transformation
that transforms |a1) to |0) and |az2) to |1). Now, since the two states differ in one
qubit, we can easily measure the phase difference and obtain an estimate on d. This
almost completes the description of the DCP algorithm. The estimate on d is only
polynomially accurate but in order to find d we need exponential accuracy. Hence, we
repeat the same process with pairs whose difference is higher. So, instead of choosing
pairs of difference 1 we choose pairs of difference 2 to get an estimate on 2d, then 4
to get an estimate on 4d and so on'.

Outline. The next section contains some notations that are used in this pa-
per. The two main sections of this paper are independent. In Section 3 we prove
Theorem 1.1 and Section 4 contains the proof of Theorem 1.3.

2. Preliminaries. We denote the imaginary unit by 2 and use the notation
e(x) = e*™®. Occasionally, we omit the normalization of quantum states. We use the
term n-ball to refer to the n-dimensional solid body and the term sphere to refer to its
surface. We denote the set {1,...,n} by [n]. All logarithms are of base 2. We use §;;
to denote the Kronecker delta, i.e., 1if ¢ = j and 0 otherwise. A sequence & € {0,1}"

I This description is very similar to the method of exponentially accurate phase estimation used in
Kitaev’s algorithm [17]. Actually, our case is slightly more difficult because we cannot measure all the
multiples 2. Nevertheless, we can measure enough multiples of the phase to guarantee exponential
accuracy.
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is identified with the set {i | a; = 1}. Several constants appear in our proofs. To make
it easier to follow, we denote constants with a subscript that is somewhat related to
their meaning. Specifically, in Section 3, ccyp is related to the cubes that partition
the space, cpa is related to the radius of the balls, and cynq appears in the guarantee
of the unique shortest vector. Also, in Section 4 we use ¢, in the definition of the
parameter 7, ¢s in our assumptions on the subset sum subroutine and ¢, when we
prove the existence of matchings.

The following is the formal definition of the DCP:

DEFINITION 2.1. The input to the DCP with failure parameter f consists of
poly(log N) registers. Each register is with probability at least 1 — m in the state

1

V2

on 1+ [log N qubits where x € {0,...,N — 1} is arbitrary and d is fized. Otherwise,
with probability at most m, its state is |b,x) where b € {0,1} and x € {0,..., N —
1} are arbitrary. We call such a register a ‘bad’ register. We say that an algorithm

solves the DCP if it outputs d with probability poly(ﬁ) in time poly(log N).

(10,2) + |1, (x + d) mod N))

3. A Quantum Algorithm for unique-SVP. In this section we prove Theo-
rem 1.1. We begin by showing a simple reduction from the two point problem to the
DCP in Section 3.1. We then prove a weaker version of Theorem 1.1 with ©(n!+2f)
instead of ©(nz12) in Section 3.2. We complete the proof of Theorem 1.1 in Section
3.3. Throughout this section, we use a failure parameter f > 0 in order to make our
results more general. The reader might find it easier to take f = 1.

3.1. The Two Point Problem.
DEFINITION 3.1. The input to the two point problem with failure parameter
f consists of poly(nlog M) registers. Fach register is with probability at least 1 —

m in the state

1
V2

on 1+nllog M| qubits where a,a’ € {0,..., M —1}" are arbitrary such that @’ — a is

fized. Otherwise, with probability at most TrTez(anny s its state is |b,a) whereb € {0, 1}

and a € {0,..., M —1}" are arbitrary. We say that an algorithm solves the two point
problem if it outputs @’ — a with probability poly(m) in time poly(nlog M).
LEMMA 3.2. If there exists an algorithm that solves the DCP with failure pa-
rameter f then there is an algorithm that solves the two point problem with failure
parameter f.
Proof. Consider the following mapping from {0,..., M —1}" to {0,...,(2M)" —
1}:

(10,a) +1,a"))

flay,...,an) = a1 +as-2M + ...+ a,(2M)" 1.

Given an input to the two point problem, we create an input to the DCP by using
the above mapping on the last n[log M| qubits of each register. Hence, each register
is with probability at least 1 — % in the state

n(log2M))

(0. £@) + L £(@))
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The difference f(a') — f(a) is
(@) —ay) + (ah —as) -2M + ...+ (al, — a,)(2M)" !

and is therefore fixed. Otherwise, with probability at most (MTlQM))f the register
is in the state |b, f(a)) for arbitrary b,a. This is a valid input to the DCP with

N = (2M)™ since the probability of a bad register is at most

1 _ 1
(nlog(2M))f ™ (log N)f*
Using the DCP algorithm with the above input we obtain the difference

by +by-2M + ...+ by (2M)" T
where b; = a; — a;. In order to extract the b;’s we add
M+ M -2M + M(2M)* 4 ...+ M(2M)" 1.
Extracting b; from
(b1 + M)+ (bg+ M) -2M + ...+ (b + M)(2M)"*

is possible since each b; + M is an integer in the range 1 to 2M — 1. The solution to
the two point problem is the vector (bq,...,b,). O

3.2. A Weaker Algorithm. We recall several facts about an LLL-reduced ba-
sis. Such a basis can be found for any lattice by using a polynomial time algorithm [19].
Given a basis (b1,...,b,), let (bf,...,b;) be its Gram-Schmidt orthogonalization.

That is, b; is the component of b; orthogonal to the subspace spanned by b, ... bi_1.
An LLL reduced basis (b1, ..., b,) satisfies that

1611 < v21b7 4 |

and that for i > j,

- 1,
BB < S 2
In addition, recall that min; ||b}]| is a lower bound on the length of the shortest vector.
Since bt = by and ||b¥]| < 20D/2||b¥|| we get that the vector by is at most 2(»~1)/2
times longer than the shortest vector. Consider the representation of the LLL basis
in the orthonormal basis

bi by,

<Ta e _—>
161l 1165

The vector b; can be written as (bi1, b2, - - -, bii,0,...,0). Notice that b; = ||b}|| and

that [b;;| < 3|b7[| for every i > j. In the following, @ denotes the shortest vector.
LeMMA 3.3. Consider the representation of the shortest vector u in the LLL-

reduced lattice basis =Y ;| u;b;. Then, |u;| < 22" for i € [n].
Proof. Changing to the orthonormal basis,

> ujbj,i)m'

1 j=i
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In addition, we know that [|b3]| > 2= G=D/2(|p%|| > 27| a||. Hence,

1> ugbgal < 2n bl

j=i

for every ¢ € [n]. By taking i = n we get that |uy| is at most 2. We continue

inductively and show that |ug| < 22n—k -~ Agsume that the claim holds for Ug 1y - -+ 5 Uy
Then,
. 1 . 7k 1 . 2n—j 7k 1 2n—k || 1*
Dbk < 5| D0 willBEl <5 | D0 227 Bl < 5 - 22 FBg-
j=k+1 j=k+1 j=k+1

By the triangle inequality,

n n 1 - - -
il < | 3 witin| + [Susbsa| < (52744 2) 15l < 25|
j=k+1 j=k

and the proof is completed. O
Let p > n?T%f be any fixed prime. The following is the main lemma of this section:
LEMMA 3.4. For any f > 0, if there exists a solution to the two point problem
with failure parameter f then the following holds. There exists a quantum algorithm
that given a (cunqn1+2f)-unique lattice for some large enough constant cynq > 0 whose
shortest vector is u = E?:l wu;bi, two integers m,ig and a number | returns
Uiy — M

io
(ula"'auio—lu P 7ui0+17"'7un)

with probability 1/poly(n) if the following conditions hold: |a| <1 < 2|4, ui, =
m (mod p) and 1 <m <p—1.

We first show how this lemma implies Theorem 1.1 with ©(n'*2f) by describing
the SVP algorithm. According to Lemma 3.2 and the assumption of the theorem, there
exists a solution to the two point problem with failure parameter f. Hence, Lemma 3.4
implies that there exists an algorithm that given the right values of [, m, iy outputs

(ul, ey Ugg—1, %,’UJ%JFM e ,Un).

The value [ is an estimate of the length of the shortest vector 4. Because the LLL
algorithm gives a 2("~1/2_approximation to the length of the shortest vector, one
of (n — 1)/2 different values of [ is as required. In addition, since @ is the shortest
vector, 4/p cannot be a lattice vector and therefore there exists an ip such that
u;, Z 0 (mod p). Hence, there are only O(pn?) possible values for I,m and ig. With
each of these values the SVP algorithm calls the algorithm of Lemma 3.4 a polynomial
number of times. With high probability in one of these calls the algorithm returns
the vector
(ul, ey Ugg—1, %,’UJ%JFM N ,un)

from which @ can be extracted. The results of the other calls can be easily discarded
because they are either longer lattice vectors or non-lattice vectors.
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Proof. (of Lemma 3.4) We start by applying the LLL algorithm to the unique

lattice in order to create a reduced basis. Denote the resulting basis by (by,...,by).
Let (€1,...,&,) be the standard orthonormal basis of R".
Let wi,...,w, be n real values in [0,1) and let M = 2%". Assume without loss

of generality that ¢g = 1. The function f is defined as

n

f(t,a) = (arp+tm)by + Y aib;
i=2
where ¢t € {0,1} and a = (a1,...,a,) € A={0,...,M —1}". It maps the elements
of {0,1} x A to lattice points. In addition, consider a lattice vector © represented in
the orthonormal basis o = -, v;€;. The function g maps v to the vector

(Lvl/(ccubn%”f D) —wi, ..., Lvn/(ccubnéﬁ‘c 1) —wy])

in Z™ where the constant c,p > 0 will be specified later.
In the following, we describe a routine that creates one register in the input to
the two point problem that hides the difference

Uiy —
(Ul,...,UiO_l, p 7ui0+17"'7un)'

We call the routine poly(nlog M) = poly(n) times in order to create a complete input
to the two point problem. We then call the two point algorithm and output its result.
This completes the proof of the lemma since with probability 1/poly(nlog M) =
1/poly(n) our output is correct.

The routine starts by choosing wq, ..., w, uniformly from [0,1). We create the
state
I
, Q).
2Mn te{0,1},acA
Then, we compute the function F' = go f and measure the result, say rq,...,r,. The

state collapses to (normalization omitted)

> t,a)|r1,. .., ).

te {0,1} ae€ A
F(t,a) = (ry,. .., )
This completes the description of the routine. Its correctness is shown in the next
two claims.

CLAIM 3.5. For every 7 € Z™, there is at most one element of the form (0,a)
and at most one element of the form (1,a’) that get mapped to ¥ by F. Moreover, if
both (0,a) and (1,a’) get mapped to 7 then &’ — a is the vector

Uy —m

(T,Ug, Ce ,Um).

Proof. Consider two different lattice points in the image of f, v = f(¢,a) and
v/ = f(t',a’), that get mapped to 7 by g. Let v = >_I  v;¢; and v/ = Y | vle; be
their representation in the orthonormal basis. If ¥/ — o is not a multiple of the shortest
vector, then

1
5 = 71l > cungn™* ¥l 2 S eungn+* 1
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Therefore, there exists a coordinate ¢ € [n] such that |v] —v;| > %cunqnéﬁf -1 and for
Cung > 2Ccub this implies ¢(0) # ¢g(¢') no matter how w1, ..., w, are chosen. Hence,
' — v = k - u for some integer k # 0. By considering the first coordinate of 7/ — ¥ in
the lattice basis we get that

(aip+t'm) — (a1p+tm) = k- m (mod p).

This implies that k = ¢’ — ¢ (mod p). If ¢ = ¢’ then k =0 (mod p) which implies that
|k| > p. Thus,

17" = ol| = plla] > capn' " -1
and again, g(v) # g(?"). This proves the first part of the claim. For the second part,
let t =0 and ¢ = 1. Then, k = 1 (mod p). As before, this can only happen when
k =1 and hence the second part of the claim holds. O

Hence, it is enough to show that the probability that this register is bad is low
enough. The probability of measuring |r1,...,7,) equals

1
2M™

H(t,a) | F(t,a) = (r1,...,ra)} -

Notice that this probability is the same as the probability that F(t,a) = (r1,...,7)
for randomly chosen ¢ and a. Hence, we consider a randomly chosen ¢ and a. If t = 0,
let

d’:(al—l—u

,a2—|—u2,...,an—|—un)

and if t =1 let

Uy —m

,CLQ—UQ,.--,CLn—Un)-

CLAIM 3.6. With probability at least 1 —
a, a isin A and F(1 —t,a’) = F(t,a).

Proof. We assume that ¢ = 0, the proof for ¢ = 1 is similar. According to
Lemma 3.3, |u;| < 22" Hence, unless there exists an ¢ for which a; < 22" or a; >
M —22"_ @' is guaranteed to be in \A. This happens with probability at most n22"+1 /M
because a is a random element of A.

Notice that f(1,a’) — f(0,a) = @. Since ws,...,w, are randomly chosen, the
probability that F(1 —¢,a’) and F(¢,a) differ on the i’th coordinate is at most

(@enl __ @&

Ccubn%-i_mf a Ccubn%—i_z1f ' Hu”

WM, for randomly chosen t and

By the union bound, the probability that F(1 —¢,a’) # F(¢,a) is at most

Sil@men 1

n2f

cepn2 P2 @) T Ceub

where we used the fact that the {; norm of a Vector is at most y/n times its l9 norm.
The sum of the two error probabilities n2
Ceub large enough. O

This concludes the proof of Lemma 3.4. O

+ m lS at most W{ fOI'
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3.3. An Improved Algorithm. In this section we complete the proof of Theo-
rem 1.1. The algorithm we describe has many similarities with the one in the previous
section. The main difference is that it is based on n-dimensional balls instead of cubes.
The idea is to construct a ball of the right radius around lattice points and to show
that if two lattice points are close then the two balls have a large intersection while
for any two far lattice points the balls do not intersect. For technical reasons, we will
assume in this section that the lattice is a subset of Z". Any lattice with rational
points can be scaled so that it is a subset of Z™. We begin with some technical claims:

CrAMm 3.7. For any R > 0, let B, be the ball of radius R centered around the
origin in R"™ and let B!, = B, + d for some vector d be a shifted ball. Then, the
relative n-dimensional volume of their intersection is at least 1 — O(y/n||d||/R), i.e.,

vol(B, N B},) .
—¥ >1-0 d||/R).
i 2 L Oaldl/R)
Proof. Consider a point Z € R™ such that (z,d)/||d|| > ||d||/2, i.e., a point which is
closer to the center of B], than to the center of B,,. Notice that € B,, implies T € BJ,.
In other words, the cap C,, of B, given by all such points Z is contained in B, N Bl
By using a symmetric argument for points & € R™ such that (z,d)/||d|| < ||d||/2 we
get,

vol(B, N By,) =2 -vol(Cy,).

We can lower bound the volume of C), by half the volume of B;,, minus the volume of
an n-dimensional cylinder of radius R and height ||d||/2:

vol(Cy) > %VOI(Bn) - @VOI(Bn_l)

where By, _; is the n—1-ball of radius R. We complete the proof by using the estimate
vol(B,_1)/vol(B,) = O(y/n/R),

vol(Cy)/vol(By) = o — O(v/nl|d||/R).

N =

O

In the algorithm we will actually represent the balls using points of a fine grid.
Therefore, we would like to say that the above claim still holds if we consider the
number of grid points inside B,, B], and B, N Bj, instead of their volumes. The
following claim is more than enough for our needs:

CLAIM 3.8 (Special case of Proposition 8.7 in [21]). Let L be an integer and
consider the scaled integer grid %Z”. Then, for any convex body @Q that contains a
ball of radius r > %nlﬁ,

|$Z" N Q)| 2n !5
Lvol(Q) rL

COROLLARY 3.9. Let L = 2™ and consider the scaled integer grid %Z”. For
any R > 1, let B, be the ball of radius R centered around the origin in R™ and let
B!, = B,, +d for some vector d such that R/poly(n) < ||d|| < R. Then, the relative
number of grid points in their intersection is at least 1 — O(y/nl||d||/R), i.e.,

|+Z" N B, N By

|$Z" N By

> 1 O(Valldl/R).
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Proof. 'We first note that B,, B, and B, N B, all contain the ball of radius
R/2 > 1/2 centered around d/2. Using Claim 3.8 we obtain that the number of
grid points in these bodies approximates their volume up to a multiplicative error of

1.5
22 72 = 2" We complete the proof by using Claim 3.7. [0
Let D(-,-) denote the trace distance between two quantum states [22], i.e.,

D(Ul,Ug) = %tr\/(ol — UQ)T(O'l — 02).

It is known that the trace distance represents the maximum probability of distin-
guishing between the two states using quantum measurements. We need the following
simple bound on the trace distance:

CLAIM 3.10. For all k > 0 and density matrices o1, ...,0%,01,...,0},

k
D1 ®...Q0p,01®@...00)) SZ (04,0

Proof. Using the triangle inequality,

Doy ®...Q0k, 01 ®...Q0})
< DO1®...00, 01R02®...@01) +
Do) ®02®...Q0), 01 ®058038...Q0%) +...
D1 ®...Q0)_1 ®0y, 01@...Q0})
= D(oy, ‘71)+D(U2, b))+ ...+ D(oy, o}).

In addition, we will need the following lemma:
LEMMA 3.11. Forany 1 < R < 2p°ly("), let

1

=——— ¥
|fZ" N Bn| ZELZ"NBy,

be the uniform superposition on grid points inside a ball of radius R around the origin
where L = 2™. Then, for any ¢ > 0, a state |) whose trace distance from |n) is at
most 1/n¢ can be efficiently computed.

Proof. In order to bound the trace distance, we will use the fact that for any two

pure states [1)1), [1)2),

(3.1) D([h1), [92)) = V1 = [(rfvo2) > < [l[Y1) — [2) |2

The first equality appears in [22] and the inequality follows by a simple calculation.
Consider the (continuous) uniform probability distribution ¢ over B,,. Then one
can define its discretization ¢’ to the grid %Z" as

(7 = / 4(7)dy
Z+[0,1/L]"

for T € %Z”. In other words, ¢'(Z) is proportional to the volume of the intersection
of B,, with the cube Z + [0,1/L]™. Notice that for points Z such that Z + [0,1/L]"

)
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completely contained in By, ¢'(Z) = 1/(L"vol(By)). We claim that the state
)= > Vd@)|z)
TELL"

is exponentially close to |n). Intuitively, this holds since the two differ only on points
which are very close to the boundary of the ball, namely, of distance v/n/L from the
boundary. The number of such points is negligible compared to the number of points
in the interior of the ball. More formally, define

Lvol(B,,)
" o__ /
n >_\/7|%an3n||”>'

D(In), ")) < "y = ImMll2 < 10"y = In" M2 + ") = Im) -

Using Equation 3.1,

The first term is at most 2~2(") according to Claim 3.8. For the second term, notice
that the amplitudes of |”) and |n) are the same except possibly on points Z of
distance v/n/L from the boundary. Using Claim 3.8 again we get that the fraction of
such points is closely approximated by one minus the ratio of volumes of the ball of
radius R — y/n/L and the ball of radius R. This ratio of volumes is

(1=+vn/(RL)" > (1 —v/n/L)* >1—n'%/L =1-2"%",

In the following we show how to approximate the state |n'). This idea is essentially
due to Grover and Rudolph [10]. Let m € Z be large enough so that B,, is contained
in the cube [-2™,2™]". Using our assumption on R, m < n° for some ¢; > 1. We
represent Z using K = n(m+1+log L) < 2n'T¢ qubits, i.e., a block of m +1+log L
qubits for each dimension. Hence, we can write |n’) as

In") = Z V& (T, k)T, . ).

We now show an equivalent way of writing |n’). Let us extend the definition of ¢/
in the following way: for any k < K and any z1, ...,z € {0,1} define ¢'(z1,...,xx)

as the sum of ¢'(x1,..., 2k, Tk+1,...,2K) over all sequences xgy1,...,xx € {0,1}.
Notice that ¢'(z1,...,x) corresponds to the volume of the intersection of B, with
a certain cuboid (also known as a rectangular parallelepiped). For example, ¢’(0) =
¢'(1) = 3 since they represent the intersection of B,, with two halves of the cube
[-2™,2™]". Using the definition s(x1) = ¢'(z1) and for k& > 1, s(x1,...,zx) =
qd(x1,...,2k)/¢ (x1,...,25—1) We see that
In') = Z Vs(z1) Z Vs(xy,ma) ... Z Vs(x, .o xi)|T, . T ).
z1€4{0,1} z2€{0,1} zr€{0,1}

The algorithm starts with all K qubits in the state |0) and sets one qubit at a
time. The first qubit is rotated to the state %(|O> + |1)). Assume we are now in
the k’th step after setting the state of qubits 1,...,k — 1. We use the fact that there
exists a classical algorithm for approximating the volume of a convex body up to
any 1/poly(n) error (see [16] and references therein). The body should be provided
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by a “well-guaranteed weak membership oracle”, i.e., a sphere containing the body,
a sphere contained in the body, both of non-zero radius and an oracle that given a
point decides if it is inside the body or not. It is easy to construct such two spheres
and an oracle for a body given by the intersection of a ball with a cuboid. Hence, we
can compute two values §(z1,...,25-1,0) and §(z1,...,25_1,1) such that

§(I1,...,Ik,1,0) +§(I1,...,Ik,1,1) =1
and

5(%1,...,5Ek,1,i)

s(x1, ..., Th—1,1)

—1l<n™

for ¢ = 0,1 and some constant ¢y which will be chosen later. Then, we rotate the i’th
qubit to the state

\/§($1,...,xk_1,0)|0> + \/§($1,...,xk_1,1)|1>.

This completes the description of the procedure.
Notice that the amplitude of each basis state |z1,...,2k) in the resulting state
|7) is given by

K

K
H Valxy, .., xp) > (1 —n—2)K H s(x1,. .., xk).
k=1

k=1

Hence the inner product (7|n’) is at least

K
(1_n_02)K Z HS(Ila"'axk)
z1,..,.xx €{0,1} k=1
= (1_n762)K Z q/(xlv"'axK)

z1,...,cx €{0,1}
=(1-n")K>1-K n®>1-2p'ta"e,

Using Equation 3.1,

D(ln'), 1) = V1 = [(aln) > <n™°

for a large enough co. O

Let p > n?T%f be any fixed prime. The following is the main lemma of this section.
It essentially replaces Lemma 3.4 and hence implies Theorem 1.1.

LEMMA 3.12. For any f > 0, if there exists a solution to the two point problem
with failure parameter f then the following holds. There exists a quantum algorithm
that given a (cunqn%“‘%)—umque lattice for some large enough constant cynq > 0 whose
shortest vector is u = Z?:l u;bi, two integers m,ig and a number | returns

(ul, ey Ugg—1, me m,uioJrl, NN ,un)

with probability 1/poly(n) if the following conditions hold: |a| <1 < 2|4, wi, =
m (mod p) and 1 <m < p—1.
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Proof. As before, let (b1,...,b,) be an LLL reduced basis, let M = 2" and
assume that ig = 1. We also define f(¢,a) as before. Assume that the number of
registers needed by the two point algorithm is at most n“* for some constant ¢; > 0.

The algorithm starts by calling the routine of Claim 3.11 n°* times with accuracy
parameter n~“? and R = cbanﬁJr2f - | for some constants cs, cpa > 0. The state we
obtain is

(3.2) 1) @ @ [ine)

where each |7;) has a trace distance of at most n~2 from |n). According to Claim 3.10,
the above tensor product has a trace distance of at most n® = from |77>®"Cl. In the
following we show that the algorithm succeeds with probability at least n~° for some
cs > 0 given the state |77>®"C1. This would complete the proof since given the state in
Equation 3.2, the algorithm succeeds with probability at least n= —n“17° > %n’%
for large enough cs.

We describe a routine that given the state |n) creates one register in the input
to the two point problem. In order to produce a complete input to the two point
problem, the algorithm calls this routine n°! times, each time with a new |n) register.
It then calls the two point algorithm and outputs the result. As required, the success
probability is 1/poly(nlog M) = n= for some c3 > 0.

Given |n), the routine creates the state

1 _
— > [taem),
te{0,1},acA

or equivalently,
E |t,a, T)
t€{0,1},a€A,Z€ £ Z"N By,

where B,, is the ball of radius R around the origin and L = 2". We add the value
f(t,a) to the last register,

> t.a, f(t.a) +z).
te{0,1},acA,z€ 1 Z"NBy,

Finally, we measure the last register and if Z’ denotes the result, the state collapses

to
> It,a, 7).

te{0,1},ac A|z’€ f(t,a)++Z"NB,

CrAaM 3.13. For every &', there is at most one element of the form (0,a) and at
most one element of the form (1,a’) such that &' € f(t,a) + +Z" N By,. Moreover, if
there are two such elements (0,a) and (1,a’) then @ — a is the vector

(

uy —m

p

,’LLQ,...,Um)-

Proof. Consider two different lattice points in the image of f, v = f(¢,a) and
v = f(t',a@’), such that Z’ is both in o + $Z" N B, and ¥’ + +Z™ N B,,. This implies
that

15— || < coan? 2 -1 < 2epm2 T2 - |al.



QUANTUM COMPUTATION AND LATTICE PROBLEMS 15

For cunq > 2cpar this means that ¢ — o = k - u for some integer k # 0. As before, by
considering the first coordinate of ' — ¥ in the lattice basis we get that

(ayp +t'm) — (a1p+tm) = k-m (mod p).

Hence, k =t — t (mod p). If t = ¢’ then k = 0 (mod p) and therefore |k| > p which
contradicts the above upper bound on the distance between v and v’. This proves the
first part of the claim. For the second part, let t = 0 and ¢ = 1. Then, k =1 (mod p).
As before, this can only happen when & = 1 and hence the second part of the claim
holds. O

Notice that the probability of measuring Z’ is the same as that obtained by first
choosing random ¢ and a and then choosing a random point in f(¢,a) + +Z" N By.
Let us define for any ¢ and a the vector @’ as before.

CrLam 3.14. With probability at least 1 — ——=++, for randomly chosen t

1
(nTog(20))

"4s in A and T’ is also in

and @ and a random point T’ in f(t,a) + %Z" N By, a
fA=t,a)+ 1Z" N B,.

Proof. According to Lemma 3.3, |u;| < 22". Hence, unless there exists an 4 for
which a; < 22" or a; > M — 22", @' is guaranteed to be in A. This happens with
probability at most n22"*1 /M because a is a random element of A.

Fix a,a’ € A. We would like to show that if Z’ is chosen uniformly from f(¢,a)+

1Z™ N B,, then with high probability it is also in
1
fa—ta)+ ZZ” N By,

By translating both sets by —f(¢,a) we get the equivalent statement that if Z’ is
chosen uniformly from %Z" N B, then with high probability it is also in (f(1 —
t,a’) — f(t,a)) + £Z™ N B,. Since we assumed that our lattice is a subset of Z",
f(1—t,a')— f(t,a) € Z" and the latter set equals +Z" N (f(1—t,a’) — f(t,a) + By).
Using Corollary 3.9 and the fact that ||f(1 —¢,a’") — f(¢,a)| = ||a|| < I, we get that
the required probability is at least

1—O(V/nl/R) =1 —O(/nl/(ceam? > - 1)) = 1 — O(1/(cban®)).

The sum of the two error probabilities n22"+1/M + O(1/(cpan®)) is at most
m for cpa large enough. O
This concludes the proof of Lemma 3.12. O

4. The Dihedral Coset Problem. We begin this section with a description of
the average case subset sum problem. We describe our assumptions on the subroutine
that solves it and prove some properties of such a subroutine. In the second subsection
we present an algorithm that solves the DCP with calls to an average case subset sum
subroutine.

4.1. Subset Sum. The subset sum problem is defined as follows. An input is a
sequence of numbers A = (a1, ...,a,) and two numbers ¢, N. The output is a subset
B C [r] such that ), pa; =t (mod N). Let a legal input be an input for which
there exists a subset B with ), ;a; =t (mod N). For a constant ¢, > 0, we fix r
to be log N + ¢, since we will only be interested in such instances. First we show that
there are many legal inputs:

LEMMA 4.1. Let ¢, be a large enough constant. Then, for randomly chosen
ai,...,ap,t in {0,...,N — 1}, the probability that there is no B C [r] such that
Yicpai =t (mod N) is at most .
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Proof. Fix a value of ¢. For each b € {0,1}",b # 0", define a random variable X;
as », bja; mod N. It is easy to check that for any b # 0", X is uniformly distributed
on {0,...,N — 1} and that the random variables X7 are pairwise independent. For
every b € {0,1}7,b # 0, deﬁne a random variable Y}, as 1 if X; =t and 0 otherwise.
Then the expectation of Y; is 4 and its variance is N N2 < % Hence,

ED> Y] = ZE 1
b

The Y3’s are defined as a function of the Xj3’s and are therefore also pairwise inde-
pendent. Therefore, by the Chebyshev bound,

1 2—1 N
E Y < J<4: <2
2r —1 = 2

In particular, the probability of > ; Y3 = 0, that is, the probability that there is no B
such that >°,. 5 a; =t (mod N) is at most 5% = £ for ¢, = 4. O

We assume that we are given a determlnlstlc subroutlne S that answers a logls ~
fraction of the legal subset sum inputs with parameter N where ¢; > 0 is any constant?.
The previous lemma implies that .S answers a non-negligible fraction of all inputs (and
not just the legal inputs). We denote by S(A,t) the result of the subroutine S on the
input A = (a1, ...,a,),t and we omit N. This result can either be a set or an error. We
assume that whenever S(A,t) is not an error, it is correct, i.e., it represents a subset of
A that sums to ¢t modulo N. This can be assumed without loss of generality since we
can easily check the correctness of any output of S. Let S(A) denote the set of ¢’s for
which the subroutine returns a set and not an error, i.e., S(A) = {t | S(A,t) # error}.

LEMMA 4.2. For randomly chosen ay,...,a, in {0,...,N — 1},

N 1
Al > =0
11)4:[‘“5’( )| —_ 410gcs 7\]] (1Ogcs 7\])

where A = (ay,...,a,).
Proof. Since S(A,t) # error only when (A,t) is a legal input,

Eg[S(A’ t) # error]

Pr[ S(A,t) #error A (A,t) is legal ]

)

= Pr[S(A1) # error | (A1) is legal ] - Pr[ (A,¢) is legal | = 208" N’

In addition,

S(A
E};[S(A,t) £ error] = E4] | ](V)| ]
N N 1
< > .
—_ ].?4:[‘[ |S(A)| —_ 410gcsN ]+I?4r[ |S(A)| < 410gcsN ] 410gcsN
< N 1

Pr[ |S(A)] = .
TSN 2 oy | T

2We could also consider randomized routines S but this makes essentially no difference: there is
always a way to fix the random coins of a randomized routine such that the resulting deterministic
routine answers an equally large fraction of the inputs.
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We complete the proof by combining the two inequalities. O

LEMMA 4.3. Let T C {0,...,N — 1} be a set such that |T| > £ for a certain s.
Then, for any q < 8—11 there exists ¢ € {q,2q,...,sq} such that the number of pairs
t,t+q' that are both in T is Q(%).

Proof. Define the partition of 7" into sets Tp, ..., Tq—1 as

Ty, ={i|ieT,i=k (mod q)}.

At least L of the sets are of size at least % since their union is 7" and 2% - % +2& < |T).
Let T; be such a set and for ¢ € T; consider the values

t+q,t+2q,...,t+4sq.

N

Therefore, the number of ¢ € T; such that none of these values is in T; is less than 1sq

because

N
(i 10<i< Noi=k (mod g)}[ =
N>N

— of the elements t € T; are such that one of

Therefore, more than |T;| — Is7 = sq

t+q,t+2q,...,t+4sq

is also in T;. Summing over all sets T; such that |T;| > 2, there are at least

2sq’

4—];7(1 o = % elements ¢ € T for which one of t + g, 4+ 2q,...,t + 4sq is also in T.
Thus, there exists a ¢’ € {q,2q,...,4sq} such that the number of ¢ € T for which
t+q €T is at least 55. O

DEFINITION 4.4. A partial function f : {0,...,N—1} — {0,..., N —1} is called
a matching if for all i such that f(i) is defined, f(i) #1i and f(f(i)) =i. A matching
is a g-matching if for all i such that f(i) is defined, |f(i) —i| = q. We define an equal
partition of the domain of a matching f by A1(f) = {i | f(i) defined A f(i) > i}
and As(f) = {i | f(i) defined N f(i) <i}. The intersection of a matching f and a
setT CH{O,...,.N—1} istheset{i |i€T N f(i)eT}.

For any ¢ we define the following g-matchings:

t+gq tmod 2¢ <q, t+q <N,
ft)=1 t—q tmod 2g>gq, t—q >0,
unde fined otherwise.

t—q t mod 2q <q, t—q >0,
fg(t): t+q t mod 2¢ > ¢q, t+q < N,
unde fined otherwise.
LEMMA 4.5. There exists a constant ¢, such that for any integer q < logCLmN
there exists a matching f among the 2log®™ N matchings
1 r1 1 2 g2 2
q7f2q7 e wflogc"' qufq7f2q7 o '7flog°"1 Ngq
such that with probability at least W+N on the choice of A, the intersection of f and

S(A) is lochmN. We call such an f a good matching.
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Proof.  According to Lemma 4.2 of the possible values of A satisfy

1
’ dlog= N
|S(A)] > 410g+5N' For such A, Lemma 4.3 with s = 4log™ N implies that there exists
a value

¢ €{q,2q,...,410g™ N - q}

such that the number of pairs ¢, ¢+ ¢’ that are both in S(A) is Q(y R N) Therefore,
for such A and ¢/, the size of the intersection of one of the matchlngs fq,, fq, and S(A)
is Aoy é\cfs ~)- This implies that one of the 8log™ N matchings considered must have
an intersection of size Q( = N) with at least
We conclude the proof by choosmg cm > 3cs. O

m of the possible values of A.

4.2. The Quantum Algorithm. We begin with the following simple claim:

CLAIM 4.6. For any two basis states |a) and |b), a # b, there exists a routine
such that given the state |a) 4 e(¢)|b) outputs the state |0) + e(@)|1).

Proof. Consider the function f defined as f(a) =0, f(0) = a, f(b) =1,f(1) =b
and f(i) = i otherwise. It is reversible and can therefore be implemented as a quantum
routine. 0

We now describe the main routine in the DCP algorithm.

LEMMA 4.7. There exist routines Ry, Ry such that given a q-matching f and
an input for the DCP with failure parameter 1, they either output a bit or they fail.
Conditioned on non-failure, the probability of the bit being 1 is %— % cos(27rq%) for Ry
and & s+35 1 sin(27rq%) for Ra. Moreover, if f is a good matching, the success probability
is Q( logem N)

Proof. The routines begin by performing a Fourier transform on the last log IV
qubits of each input register. Consider one register. Assuming it is a good register,
the resulting state is

T

N-
e(iz/N)|0,1) + — i(x +d)/N)[1,i) =
7 2

z
L

e(iz/N)(10) + e(id/N)[1))[i).

3)- 5-
= =

[}

i=

We measure the last log N qubits and let a € {0,..., N — 1} be the result. The state
collapses to

1
—e(az/N)(|0) + e(ad/N)|1))|a).

\/5( /N)(10) + e(ad/N)[1))[a)

If it is a bad register, it is in the state |b, ) where both b and = are arbitrary. After
the Fourier transform the state is

1 N-1
Zem/N |b, )
=0

and after measuring a in the last log N qubits, the state is e(axz/N)|b, a). Notice that
in both cases any value a in {0, ..., N —1} has an equal probability of being measured.

We choose the number of input registers to be r. Let A = (ay,...,a,) be the
sequence of values measured in the above process. Notice that this sequence is uniform
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and hence can be used as an input to the average case subset sum algorithm. In the
following, we assume that s of the r registers are bad. Later we will claim that with
good probability, none of the registers is bad. Yet, we have to show that even if one
of the registers is bad, the routine does not return erroneous results. Without loss of
generality, assume that the first s registers are bad. The resulting state is:

Qle(aizs /N)[bi,a:)] Q) [ie(aiwi/N)(|0> + e(aid/N)[1))[a:)].
i=1 i=s+1 V2

Or, by omitting the multiplication by the fixed phase and the r - [log N fixed qubits,

S T

1

Denote these r qubits by & = (a1, ..., a;).
We add 7+1 new qubits, 8 = (B1,...,3,) and . Let t5 denote the sum Y., aa;.
Next, we perform the following operations:

if S(A,ts) #a Vv S(A, f(ta)) = error
then exit

if tz € Ai(f)

f—a
—1

else if t5 € Ax(f)

then {3 — S(Aa f(t@))

then

—1
else exit

In order to describe the state after the above procedure, we define the following
subsets of {0,1}":

M:{@E{O,l}r|011:b1,...7015:b5}

L={aeM|tseAi(f) N S(Ata) =a NS(A4, f(ta)) # error}

R={ae M|tz Aa2(f) N S(Ajta) =a ANS(A, f(ta)) # error}

Using the order |@, 3,7), the resulting state is:

acL aER
1 d
= e({a,a)—)|a,0,0)+
2 <aeM—L— N
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)|S(A7 f(td))a 6‘) 1>)>

2l s

(e({a, &>%)I547 a, 1) +e((S(4, f(ta)), @)

e((@,8) ) (18) + ela - IS(A, F(ta))))la 1>>

aclL

Now we measure @ and ~. If v = 0, the routine failed. Otherwise, the state of &
is (omitting the fixed 5 and 7):

Z5(13) + ela- IS(A. £t5)).

Notice that since (3 is known and S(A, f(t3)) can be easily found by calling S, we can
transform this state to the state
1
V2

by using Claim 4.6. By omitting some qubits, we can assume that this is a state on
one qubit. By using the Hadamard transform the state becomes

(10) + (g 2)1)

1 d d
S (L elg-12)I0) + (1= elg- 1)ID).
We measure the qubit and the probability of measuring 1 is

1 d 1 d 1 1 d

This completes the description of R;. The routine Ry applies the transform

(o)

before the Hadamard transform and thus the state becomes

S o1/ g )0} + (L—e(1/4+ g~ )IL)

and the probability of measuring 1 becomes

1 1 d 1 1 d
373 cos(m/2 + 2mgq - N) =3 + B sin(2mq - N)

From the previous description, it is clear that the probability of measuring 1
conditioned on a non-failure is correct. Thus, it remains to prove that when f is
a good matching the failure probability is low. The success probability equals the
probability of measuring v = 1 which is |L U R|/2"®. Assume that none of the r
registers is bad. Then, |L U R|/2"~* = |L U R|/2" and L U R becomes

{ae{0,1}" | ta € A1(f)UA(f) N S(A,ta) =a N S(A4, f(ta)) # error}.
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Notice that the size of this set equals

{t[teSA) A F(t) e S(A)}

which, according to the definition of a good matching, is at least lochmN.

the probability of success conditioned on all of the registers being good is

Therefore

1 1
LURJ/2" = =Q
| I/ 2¢r log®™ N (1ogc’“ N

).
This concludes the proof since with probability at least

1 1
1-— T=01-—=
( 1ogN) ( log N

)logN-i—c, _ Q(l)

none of the registers is bad. O
CLAaM 4.8. Given an approximation x of sin ¢ and an approximation y of cos ¢
with additive error €, we can find ¢ mod 2w up to an additive error of O(e).

Proof.  Assume y > 0 and let z = . A simple calculation shows that z is
an estimate of 1?&‘2’ 5 up to an additive error of at most 4e. The estimate on ¢ is

2 arctan z. Since the absolute value of the differential of arctan is at most 1, this is an

estimate of 2 arctan( 1iifof¢) = ¢ with an additive error of at most 8. When y < 0
we compute an estimate of 2arccot( 1fié’of ;) =0¢. 0O
LEMMA 4.9. There exists a routine Rz such that with probability exponentially
close to 1, given any q < IOgCLmN finds a value ¢’ € {q,...,log"™ N-q} and an estimate
x such that
/! /
x€l¢d- 710gcm+1 N,q d+ 710gcm+1 N] (mod N).

Proof.  Assume we are given a ¢'-matching f. We call routines R; and Rp
log®»*4 N times. If the number of successful calls to one of the routines is less than
log? 3 N, we fail. Otherwise, let = € [0,1] be the average of the successful calls
to Ry and y € [0,1] be the average of the successful calls to Re. According to the
Chernoff bound,

1 1 d 1 om em
Pr{jz — (5 -3 cos(2mq’ - N))| > m] < 9p—2log® M N/(ce” log>m+2 N)

which is exponentially low in log N for any constant ce > 0. A similar bound holds

for y. Hence, we can assume that 2’ = 1 — 2z and 3’ = 2y — 1 are approximations of
d d 2

cos(2mq’ - +7) and of sin(27q" - ) respectively up to an additive error of e TN

According to Claim 4.8, this translates to an estimate of ¢’ - % mod 1 with an additive
error of W for ce large enough.
By repeating the above procedure with all the matchings that appear in Lemma 4.5,
we are guaranteed to find a good matching. According to Lemma 4.7, a call to routine
1

R; or to routine Ry with a good matching succeeds with probability at least CeTogem N

for a certain c¢g > 0. The probability that none of log‘™ ™ N calls to the subroutine
succeeds is

1 em+1
1— log N
( Cg long N)
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which is exponentially small. Thus, for one of the matchings, with probability ex-
ponentially close to 1 we have log?™® N successful calls to routines R; and Ry and
routine R3 is successful. O

We conclude the proof of Theorem 1.3 with a description of the algorithm for
finding d. We begin by using routine R3 with the value 1 to obtain an estimate x
and a value ¢ < log® N such that

N y N
logemT1 N’d * log 1 N

xy € ld — ] (mod N)

where d' denotes (d§ mod N). In the following we find d’ exactly by calling Rs with
multiples of §. The algorithm works in stages. In stage ¢ we have an estimate z; and
a value ¢;. The invariant we maintain is

zi € [qid - ] (mod ¢; V).

log ™! N logtm ™! N

We begin with z; as above and ¢; = 1. Assume that the invariant holds in stage .
We use routine R3 with the value 2¢;¢ to obtain an estimate x with a value

ql € {Qquv 4quA, o2 logcm N - qlé}

such that

, Gid +

_ —————] (mod N
log Tt N logemt? N] ( )

z € [gip1d —

where ¢g;+1 = ¢'/§. Notice that our previous estimate x; satisfies

qi+1

2N 2N
. . / P . / .
T; € [qip1d 1ogN’qz+1d + 1ogN] (mod ;11 N).

K2

Since this range is much smaller than N, we can combine the estimate x on
(¢i+1d’ mod N) and the estimate qiq#xi on (g;+1d’ mod ¢;11N) to obtain x;y; such
that

! !
Tit1 € [qipad — g TN Gitrd + W] (mod gi+1 ).
The last stage is when ¢; > log:flﬂ%N' Then, d’ can be found by rounding % to the

nearest integer. Given d’ there are at most ¢ < log® N possible values for ¢. Since
this is only a polynomial number of options we can output one randomly.

5. Acknowledgements. I would like to thank Dorit Aharonov, Noga Alon, An-
dris Ambainis, Irit Dinur, Sean Hallgren, Alexei Kitaev, Hartmut Klauck, Greg Ku-
perberg, Ashwin Nayak, Cliff Smyth and Avi Wigderson for many helpful discussions
and comments. I also thank the anonymous referees for their comments.

REFERENCES

[1] M. Ajtai. Generating hard instances of lattice problems. In Proc. 28th ACM Symp. on Theory of
Computing, pages 99-108, 1996. Available from ECCC at http://www.uni-trier.de/eccc/.

[2] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence.
In Proc. 29th ACM Symp. on Theory of Computing, pages 284-293, 1997. Available from
ECCC at http://www.uni-trier.de/eccc/.



QUANTUM COMPUTATION AND LATTICE PROBLEMS 23

[3] J-Y. Cai. A new transference theorem and applications to Ajtai’s connection factor. Electronic
Colloquium on Computational Complezity (ECCC), 5, 1998.

[4] J-Y. Cai and A. Nerurkar. An improved worst-case to average-case connection for lattice
problems. In Proc. 88th IEEE Symp. on Found. of Comp. Science, pages 468—477, 1997.

[5] W. van Dam, S. Hallgren, and L. Ip. Quantum algorithms for hidden coset problems. In Proc.
14th ACM-SIAM Symp. on Discrete Algorithms, 2003.

[6] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. Proc. Roy.
Soc. London Ser. A, 439(1907):553-558, 1992.

[7] M. Ettinger and P. Hgyer. On quantum algorithms for noncommutative hidden subgroups.
Adv. in Appl. Math., 25(3):239-251, 2000.

K. Friedl, G. Ivanyos, F. Magniez, M. Santha, and P. Sen. Hidden translation and orbit coset
in quantum computing. In Proc. 35th ACM Symp. on Theory of Computing, 2003.
[9] M. Grigni, L. J. Schulman, M. Vazirani, and U. V. Vazirani. Quantum mechanical algorithms
for the nonabelian hidden subgroup problem. In Proc. 33rd ACM Symp. on Theory of
Computing, pages 68-74, 2001.
[10] L. Grover and T. Rudolph. Creating superpositions that correspond to efficiently integrable
probability distributions. In quant-ph/0208112, http://zzz.lanl.gov, 2002.

[11] L. Grover. A fast quantum mechanical algorithm for database search. In Proc. 28th ACM
Symp. on Theory of Computing, pages 212-219, 1996.

[12] S. Hallgren. Polynomial-time quantum algorithms for Pell’s equation and the principal ideal
problem. In Proc. 84th ACM Symp. on Theory of Computing, pages 653—658, 2002.
[13] S. Hallgren, A. Russell, and A. Ta-Shma. Normal subgroup reconstruction and quantum com-
putation using group representations. In Proc. 32nd ACM Symp. on Theory of Computing,
pages 627—635, 2000.
R. Impagliazzo and M. Naor. Efficient cryptographic schemes provably as secure as subset sum.
J. Cryptology, 9(4):199-216, 1996.
K. Johannes, S. Uwe, and T. Jacobo. The Graph Isomorphism Problem: Its Structural Com-
plexity. Birkhduser Boston Inc., 1993.
R. Kannan, L. Lovész, and M. Simonovits. Random walks and an O*(n®) volume algorithm
for convex bodies. Random Structures Algorithms, 11(1):1-50, 1997.
[17] A. Y. Kitaev. Quantum measurements and the abelian stabilizer problem. In quant-
ph/9511026, hitp://xxz.lanl.gov, 1995.
G. Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden subgroup
problem. In quant-ph/0302112, hitp://zzz.lanl.gov, 2003.
A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovész. Factoring polynomials with rational coeffi-
cients. Math. Ann., 261(4):515-534, 1982.
D. Micciancio. Improved cryptographic hash functions with worst-case/average-case connection.
In Proc. 34th ACM Symp. on Theory of Computing, 2002.
D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: A Cryptographic Perspec-
tive, volume 671 of The Kluwer International Series in Engineering and Computer Science.
Kluwer Academic Publishers, Boston, Massachusetts, March 2002.
[22] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge, 2000.
O. Regev. New lattice based cryptographic constructions. In Proc. 85th ACM Symp. on Theory
of Computing, San Diego, CA, June 2003.
[24] M. Rotteler and T. Beth. Polynomial-time solution to the hidden subgroup problem for a class
of non-abelian groups. In quant-ph/9812070, http://xzz.lanl.gov, 1998.

[25] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comput., 26(5):1484-1509, 1997.

[26] D. R. Simon. On the power of quantum computation. SIAM J. Comput., 26(5):1474-1483,
1997.



