Priority Algorithms for Makespan
Minimization in the Subset Model

Oded Regev *

February 14, 2002

Keywords: algorithmical approximation, scheduling

Abstract

We continue the recent study of priority algorithms initiated by
Borodin et al. [3]. The definition of a priority algorithm nicely cap-
tures the idea of a “greedy-like” type algorithm. While priority algo-
rithms are applicable to many optimization problems, in this paper
we consider the problem of makespan minimization in scheduling in
the subset model. We show that by using a fixed priority algorithm
one cannot achieve a considerable improvement over the approxima-
tion ratio given by the online greedy algorithm. Namely, we present
an Q(—26™_) Jower bound on the approximation ratio of any fixed

loglogm
priority algorithm where m is the number of machines.

1 Introduction

In a recent paper [3], Borodin et al. defined the notion of a “greedy-like”
algorithm. The definition is based on the observation that greedy-like al-
gorithms satisfy the property that the output is constructed incrementally
with each input item being considered once. Following this observation, they
define a FIXED PRIORITY algorithm as an algorithm that determines a total
ordering on all possible input items without actually seeing the input items.
Then the algorithm proceeds with processing one element of the input at a
time following this order. It is important to note that the decisions taken

*Institute for Advanced Study, Princeton, NJ. E-Mail: odedr@ias.edu. Research sup-
ported in part by NSF grant CCR-9987845.

by the algorithm are irrevocable. In the same paper, they also define a more
general class of algorithms called ADAPTIVE PRIORITY algorithms. An al-
gorithm in this class is allowed to change the total ordering after seeing each
item of the input. In this paper we will only consider the class of FIXED
PRIORITY algorithms.

The notion of priority algorithms can be applied to many optimization
problems. In this paper we will be concerned with scheduling problems or,
more specifically, the makespan minimization problem in the subset model
(e.g. Chapter 12 in [2]). The subset model, also known as the restricted
machines model, is the scheduling model where each job has in addition to
its processing time, a subset of the machines to which it can be assigned.
An assignment assigns an admissible machine to each job. The goal is to
minimize the makespan, i.e., the maximum total processing time over the
machines.

Lenstra et al. [5] and Shmoys and Tardos [6] presented offline algorithms
with an approximation ratio of 2 for scheduling in the subset model. The
problem was also considered in the online model by Azar et al. [1]. They
showed an online algorithm that achieves an O(logm) approximation ratio

where m is the number of machines!

. Note that as an online algorithm,
their algorithm is also a fixed priority algorithm. They also showed a tight
lower bound of Q(logm) on the approximation ratio of any online algorithm.
As shown in [3], the lower bound can be modified to provide an Q(logm)
lower bound for several specific total orderings of fixed priority algorithms,
such as the ordering that gives the highest priority to jobs having the least
number of allowable machines.

An indication that approximation ratios lower than O(logm) might be
possible can be found in a paper by Broder et al. [4]. Their results im-
ply that for certain instances of the problem consisting of unit jobs with
two admissible machines, assuming a random arrival order results in a tight
bound of @(%&:—m) on the approximation ratio of an algorithm that sched-
ules each job on the least loaded machine. Note that this is not a priority
algorithm because of the assumption that jobs arrive in a random order.

The question of whether there exists a lower bound that holds for any

priority algorithm was left as an open question in [3]. In this paper we show

'In the language of online algorithms, the term competitive ratio is usually used instead
of approximation ratio.

that a lower bound of Q(ﬁ(g—m) holds for any fixed priority algorithm. The
methods we use are different from methods used to show lower bounds for
online algorithms. We hope that the methods presented in this paper can

be used to show additional results for priority algorithms.

2 Definitions

An instance of a scheduling problem in the subset model is a set of m ma-
chines and a set of n jobs. Each job has its own processing time and a subset
of admissible machines. An assignment chooses an admissible machine for
each job. The goal is to minimize the makespan, or the maximum total
processing time of a machine. The approximation ratio of an algorithm is
said to be c if the makespan achieved by the algorithm on any input is at
most ¢ times the optimal makespan.

An algorithm is said to be a FIXED PRIORITY algorithm if it determines
a total ordering of all possible jobs and then, given an input S, repeats the
process of taking the first job in S according to the ordering and deciding
where to schedule it without looking at future jobs.

We denote the set {1,2,....k} by [k] and all logarithms are of base 2.

3 Lower Bound

Our lower bound consists of an adversarial sequence of jobs of processing
time 1 with exactly two allowable machines. Therefore, given any ordering of
all possible jobs we only have to consider its restriction to the total ordering
of all (%) such jobs. An alternative way to look at this restricted ordering
is as an ordering of the edges of a complete graph of m vertices and this
allows us to use the terminology of graph theory. Each vertex corresponds
to a machine and each edge corresponds to a job. From now on, we use
both definitions interchangeably. Also, since we are interested in asymptotic
behavior, we choose the parameters in order to simplify the proof and assume
that m is large enough. We begin with three simple technical lemmas.

Lemma 3.1 Given a graph G = (V, E) with an average degree d, the num-
ber of vertices whose degree is at least £ is at least \/d|V/2.

Proof: Suppose otherwise and denote by V; the set {v € V | d(v) > d/4}.
The number of edges is |E| = d|V|/2. Remove all the edges incident to
vertices in V' —Vj. The number of edges removed is at most d|V'|/4 and the
number of remaining edges is therefore at least d|V'|/4. Consider the graph
GG induced by the vertices in Vj. Since all the edges left after the removal
are between vertices in Vj, the number of edges in G is at least d|V'|/4. The
number of vertices in Gy is therefore at least \/2d|V]/4 > \/d|V]/2. n

Lemma 3.2 Given a set A of n elements and k subsets each of size at
least r, there are at least 5 elements that are contained in at least % of the
subsets.

Proof: Let a; denote the number of subsets in which element ¢ is contained.
Notice that), a; > kr and for every i, a; < k. Therefore, if there were less
than $ elements for which a; > % then >, a; < 5k + n% =rk. []
Lemma 3.3 Given a collection of k sets, A;,1 < i < k and another set B
of q elements such that every element of B is contained in at least s of the
subsets A;, there exists a set C C B and a set of indices I C [k] with |I| = s
such that every ¢ € C is contained in A; for every i € I and |C| > q/(lz)

Proof: Let I, = {i € [k] | a € A;} for every a € B be the set of indices
indicating the containment of a in the A;’s. Note that |I,| > s so for every
a € B let I be any subset of I, such that |I}| = s. Essentially, each element
a € B is assigned to a subset of [k] of size s. Since there are only (];) such
subsets, there must be a set C C B with |C| > ¢/(¥) such that I/ is the
same for every a € C. [

The following lemma proves the existence of certain structures in any
total ordering of the edges of the complete graphs. These structures will be
used in building the lower bound. Roughly speaking, the lemma proves the
existence of a big enough set V' of vertices and a sequence of sets of edges
such that each vertex has many incident edges in each of the sets of edges.

Lemma 3.4 Let G = (V, E) be the complete graph over m wvertices with a

total ordering of its edges. Also, let s = 81(1)(;1(?;m' Then there exists a subset

V! CV and a sequence of disjoint sets of edges Ey, Es, ..., E5 such that:

V| = /m

V1<i<j<s,e1 € Ej,es € Ej, ey is before ey in the ordering

V1 < i < s the edges of E; are between V' and V — V',

o V1 <i<s,ve V! there are at least m edges in E; incident to v.

eVl <i<sYV'"CV'VUCYV -V, such that |[V"| > m7 and
! m

|V -Vi- U‘ < 321log®m

by edges of E; to at least logm vertices in V.

, there exists a vertex v € U that is connected

Proof: Assume without loss of generality that the total orderingis ey, e, ..., e(m):
2
We partition the set of (’;l) edges into log? m equal parts. The set E; for

i € [log?m] consists of the edges C(i1)(7)/ log? m4 1+ €i(T) / log? m” Simi-

larly, we define a partition of the complete graph G into G1,Go, ..., Glong
(G; = (V,E;)). Since the average degree in each G; is 1(’)7;2_7171 > QIOZQm,
vertices whose

_m
4logm

degree in G; is at least ﬁ. Denote these vertices by V.

Lemma 3.1 implies that in each G; we can find at least

Each of the log? m sets V; contains at least TTow— vertices. According
~ gm
to Lemma 3.2, there exists a set of vertices V of size % all of which are

contained in lﬁgsﬂ of the V;’s.
We apply Lemma 3.3 with the collection of V;’s, the set V and the

parameters k = log?m, ¢ = % and s = E%lcl)?g;gf:}m' Note that we can
choose this value of s because 81(133;2;1:;;771 < logsm. Hence, there exists a set

V' C V and a set of s indices I such that every vertex of V' is contained in V;
for all 7 € I. The size of V' is at least q/(]Z) >q-k5 = %-2_%ﬂ > /m.
Remove vertices from V' so that |[V'| = /m.

Assume that I = {i1,19,...,15} with iy < iy < ... < i5 and define E; =
Eij N{{u,v} | ue V' Av e V-V'}, that is, the edges of Eij going between V'
and V —V’. We claim that the set V' and the sequence E1, Es, ..., B, satisfy
the required properties. The first three properties follow from the definition
of the sequence and the size of V'’ mentioned above. The fourth property
holds because for every j, 1 < j < sandv € V', v is in Vi;. Therefore, the
degree of v in FEj; is at least &. After removing at most |V'| edges in

Eij from v to vertices in V', the number of edges incident to v in Ej is at

least ﬁ —/m > 161:;2 — as required. The last property is a corollary of

the fourth property. This is because each vertex of V" is connected by edges
of E; to at least m vertices in V — V' and therefore to at least
vertices of U. By Lemma 3.2, there exist at least

_m__
32log® m
M > 1 elements in U

64 log? m

that are connected to at least m% m

m/@m) > log m elements in V. m

Theorem 3.5 For the makespan problem on the subset model, any fized
priority algorithm has an approzimation ratio Q(%golgog—m). Moreover, this
also holds when all the jobs have unit processing time and the number of

allowable machines per job is exactly two.

Proof: Given any fixed priority algorithm, consider the restriction of its to-
tal ordering to the edges of the complete graph over m vertices. Lemma 3.4
shows the existence of a subset of vertices V' and sets of edges E, Fs, ..., Es
with certain properties. The adversary proceeds in s stages where in stage ¢
jobs from F; are released. The jobs are released according to the total order-
ing. After each stage, the makespan of the priority algorithm increases by
one while the makespan of an optimal assignment remains one. Notice that
this proves the theorem since s = @(Flg()lg()?—m). We assume by contradiction
that the approximation ratio of the priority algorithm is less than s.

Let Vi = V' and Uy =V — V', At the end of stage 7 we define the sets
Viz1 C V; and U;41 C U; based on the decisions of the priority algorithm.
The size of the sets V; decreases by a factor of O(logm) in every stage
and the sizes of the sets U; decrease only slightly. Stage 7 is composed of
edges of F; between the set V; and U;. According to the last property in
Lemma 3.4, there exists a vertex v € U; that is connected by edges of F; to
log m vertices in V;. Provide as input to the priority algorithm these logm
edges and remove the logm vertices from V;. Continue with the remaining
vertices in V; as long as there are at least mi vertices in V;. Note that the
set of O(|V;]) edges of stage 7 described above should be given to the priority
algorithm according to the total ordering.

Consider a set of logm edges incident to a vertex v € U; that are given
to the priority algorithm in stage 7. The priority algorithm cannot assign
all the logm edges to vertex v or its load will be too high. Therefore,
at least one edge must be assigned to a vertex in V;. From every set of
log m vertices in V;, the set V11 contains one vertex to which the priority
algorithm assigned an edge in stage 7. The set U;11 contains the vertices of
U; except the vertices that are incident to an edge that was given as input

to the priority algorithm in stage i. Note that |U; — U;11| < |V;] < v/m
and that as long as |V;| > 2mi the size of Viy1 is at least |V;|/(21logm).
By a straight forward calculation, it can be seen that the conditions of the
last property in Lemma 3.4 hold after s stages. Note that the makespan of
the priority algorithm increases by one after each stage. Also, the optimal
assignment that assigns logm—1 edges of every set of log m edges to vertices
in V; — V;41 and the remaining edge to the common neighbor in U; is legal
and its makespan is one. [|

4 Conclusion

The above lower bound shows that a fixed priority algorithm cannot do
much better than an online algorithm in the subset model. A natural open
question is to consider the power of adaptive priority algorithms or that of
randomization.

Acknowledgements

I thank Yossi Azar and Allan Borodin for helpful discussions and comments.

References

[1] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assign-
ments. In Proc. 8rd ACM-SIAM Symposium on Discrete Algorithms,
pages 203-210, 1992. Also in Journal of Algorithms 18:2 (1995) pp.
221-237.

[2] A.Borodin and R. El-Yaniv. Online Computation and Competitive Anal-
ysis. Cambridge University Press, 1998.

[3] A. Borodin, M. N. Nielsen, and C. Rackoff. (Incremental) Priority Algo-
rithms. In Proc. 18th ACM-SIAM Symp. on Discrete Algorithms, pages
752-761, 2002.

[4] A. Z. Broder, A. Frieze, C. Lund, S. Phillips, and N. Reingold. Bal-
anced allocations for tree-like inputs. Information Processing Letters,
55(6):329-332, 1995.

[5] J.K. Lenstra, D.B. Shmoys, and E. Tardos. Approximation algorithms
for scheduling unrelated parallel machines. Math. Prog., 46:259-271,
1990.

[6] D. Shmoys and E. Tardos. An approximation algorithm for the gener-
alized assignment problem. Mathematical Programming A, 62:461-474,
1993. Also in the proceeding of the 4th Annual ACM-SIAM Symposium
on Discrete Algorithms, 1993.

