
Priority Algorithms for MakespanMinimization in the Subset ModelOded Regev �February 14, 2002Keywords: algorithmical approximation, schedulingAbstractWe continue the recent study of priority algorithms initiated byBorodin et al. [3]. The de�nition of a priority algorithm nicely cap-tures the idea of a \greedy-like" type algorithm. While priority algo-rithms are applicable to many optimization problems, in this paperwe consider the problem of makespan minimization in scheduling inthe subset model. We show that by using a �xed priority algorithmone cannot achieve a considerable improvement over the approxima-tion ratio given by the online greedy algorithm. Namely, we presentan 
( logmlog logm ) lower bound on the approximation ratio of any �xedpriority algorithm where m is the number of machines.1 IntroductionIn a recent paper [3], Borodin et al. de�ned the notion of a \greedy-like"algorithm. The de�nition is based on the observation that greedy-like al-gorithms satisfy the property that the output is constructed incrementallywith each input item being considered once. Following this observation, theyde�ne a Fixed Priority algorithm as an algorithm that determines a totalordering on all possible input items without actually seeing the input items.Then the algorithm proceeds with processing one element of the input at atime following this order. It is important to note that the decisions taken�Institute for Advanced Study, Princeton, NJ. E-Mail: odedr@ias.edu. Research sup-ported in part by NSF grant CCR-9987845.1



by the algorithm are irrevocable. In the same paper, they also de�ne a moregeneral class of algorithms called Adaptive Priority algorithms. An al-gorithm in this class is allowed to change the total ordering after seeing eachitem of the input. In this paper we will only consider the class of FixedPriority algorithms.The notion of priority algorithms can be applied to many optimizationproblems. In this paper we will be concerned with scheduling problems or,more speci�cally, the makespan minimization problem in the subset model(e.g. Chapter 12 in [2]). The subset model, also known as the restrictedmachines model, is the scheduling model where each job has in addition toits processing time, a subset of the machines to which it can be assigned.An assignment assigns an admissible machine to each job. The goal is tominimize the makespan, i.e., the maximum total processing time over themachines.Lenstra et al. [5] and Shmoys and Tardos [6] presented o�ine algorithmswith an approximation ratio of 2 for scheduling in the subset model. Theproblem was also considered in the online model by Azar et al. [1]. Theyshowed an online algorithm that achieves an O(logm) approximation ratiowhere m is the number of machines1. Note that as an online algorithm,their algorithm is also a �xed priority algorithm. They also showed a tightlower bound of 
(logm) on the approximation ratio of any online algorithm.As shown in [3], the lower bound can be modi�ed to provide an 
(logm)lower bound for several speci�c total orderings of �xed priority algorithms,such as the ordering that gives the highest priority to jobs having the leastnumber of allowable machines.An indication that approximation ratios lower than O(logm) might bepossible can be found in a paper by Broder et al. [4]. Their results im-ply that for certain instances of the problem consisting of unit jobs withtwo admissible machines, assuming a random arrival order results in a tightbound of �( logmlog logm ) on the approximation ratio of an algorithm that sched-ules each job on the least loaded machine. Note that this is not a priorityalgorithm because of the assumption that jobs arrive in a random order.The question of whether there exists a lower bound that holds for anypriority algorithm was left as an open question in [3]. In this paper we show1In the language of online algorithms, the term competitive ratio is usually used insteadof approximation ratio. 2



that a lower bound of 
( logmlog logm ) holds for any �xed priority algorithm. Themethods we use are di�erent from methods used to show lower bounds foronline algorithms. We hope that the methods presented in this paper canbe used to show additional results for priority algorithms.2 De�nitionsAn instance of a scheduling problem in the subset model is a set of m ma-chines and a set of n jobs. Each job has its own processing time and a subsetof admissible machines. An assignment chooses an admissible machine foreach job. The goal is to minimize the makespan, or the maximum totalprocessing time of a machine. The approximation ratio of an algorithm issaid to be c if the makespan achieved by the algorithm on any input is atmost c times the optimal makespan.An algorithm is said to be a Fixed Priority algorithm if it determinesa total ordering of all possible jobs and then, given an input S, repeats theprocess of taking the �rst job in S according to the ordering and decidingwhere to schedule it without looking at future jobs.We denote the set f1; 2; :::; kg by [k] and all logarithms are of base 2.3 Lower BoundOur lower bound consists of an adversarial sequence of jobs of processingtime 1 with exactly two allowable machines. Therefore, given any ordering ofall possible jobs we only have to consider its restriction to the total orderingof all �m2 � such jobs. An alternative way to look at this restricted orderingis as an ordering of the edges of a complete graph of m vertices and thisallows us to use the terminology of graph theory. Each vertex correspondsto a machine and each edge corresponds to a job. From now on, we useboth de�nitions interchangeably. Also, since we are interested in asymptoticbehavior, we choose the parameters in order to simplify the proof and assumethat m is large enough. We begin with three simple technical lemmas.Lemma 3.1 Given a graph G = (V;E) with an average degree d, the num-ber of vertices whose degree is at least d4 is at least pdjV j=2.3



Proof: Suppose otherwise and denote by V1 the set fv 2 V j d(v) � d=4g.The number of edges is jEj = djV j=2. Remove all the edges incident tovertices in V � V1. The number of edges removed is at most djV j=4 and thenumber of remaining edges is therefore at least djV j=4. Consider the graphG1 induced by the vertices in V1. Since all the edges left after the removalare between vertices in V1, the number of edges in G1 is at least djV j=4. Thenumber of vertices in G1 is therefore at least p2djV j=4 � pdjV j=2.Lemma 3.2 Given a set A of n elements and k subsets each of size atleast r, there are at least r2 elements that are contained in at least rk2n of thesubsets.Proof: Let ai denote the number of subsets in which element i is contained.Notice that Pi ai � kr and for every i, ai � k. Therefore, if there were lessthan r2 elements for which ai � rk2n then Pi ai < r2k + n rk2n = rk.Lemma 3.3 Given a collection of k sets, Ai; 1 � i � k and another set Bof q elements such that every element of B is contained in at least s of thesubsets Ai, there exists a set C � B and a set of indices I � [k] with jIj = ssuch that every c 2 C is contained in Ai for every i 2 I and jCj � q=�ks�.Proof: Let Ia = fi 2 [k] j a 2 Aig for every a 2 B be the set of indicesindicating the containment of a in the Ai's. Note that jIaj � s so for everya 2 B let I 0a be any subset of Ia such that jI 0aj = s. Essentially, each elementa 2 B is assigned to a subset of [k] of size s. Since there are only �ks� suchsubsets, there must be a set C � B with jCj � q=�ks� such that I 0a is thesame for every a 2 C.The following lemma proves the existence of certain structures in anytotal ordering of the edges of the complete graphs. These structures will beused in building the lower bound. Roughly speaking, the lemma proves theexistence of a big enough set V 0 of vertices and a sequence of sets of edgessuch that each vertex has many incident edges in each of the sets of edges.Lemma 3.4 Let G = (V;E) be the complete graph over m vertices with atotal ordering of its edges. Also, let s = logm8 log logm . Then there exists a subsetV 0 � V and a sequence of disjoint sets of edges E1; E2; :::; Es such that:4



� jV 0j = pm� 81 � i < j � s; e1 2 Ei; e2 2 Ej, e1 is before e2 in the ordering� 81 � i � s the edges of Ei are between V 0 and V � V 0.� 81 � i � s; v 2 V 0 there are at least m16 log2 m edges in Ei incident to v.� 81 � i � s 8 V 00 � V 0 8 U � V � V 0, such that jV 00j � m 14 andjV � V 0 � U j � m32 log2m , there exists a vertex v 2 U that is connectedby edges of Ei to at least logm vertices in V 00.Proof: Assume without loss of generality that the total ordering is e1; e2; :::; e(m2 ).We partition the set of �m2 � edges into log2m equal parts. The set Êi fori 2 [log2m] consists of the edges e(i�1)(m2 )= log2m+1; :::; ei(m2 )= log2m. Simi-larly, we de�ne a partition of the complete graph G into G1; G2; :::; Glog2 m(Gi = (V; Êi)). Since the average degree in each Gi is m�1log2 m � m2 log2m ,Lemma 3.1 implies that in each Gi we can �nd at least m4 logm vertices whosedegree in Gi is at least m8 log2m . Denote these vertices by Vi.Each of the log2m sets Vi contains at least m4 logm vertices. Accordingto Lemma 3.2, there exists a set of vertices V̂ of size m8 logm all of which arecontained in logm8 of the Vi's.We apply Lemma 3.3 with the collection of Vi's, the set V̂ and theparameters k = log2m, q = m8 logm and s = logm8 log logm . Note that we canchoose this value of s because logm8 log logm � logm8 . Hence, there exists a setV 0 � V̂ and a set of s indices I such that every vertex of V 0 is contained in Vifor all i 2 I. The size of V 0 is at least q=�ks� � q �k�s = m8 logm �2� logm4 � pm.Remove vertices from V 0 so that jV 0j = pm.Assume that I = fi1; i2; :::; isg with i1 < i2 < ::: < is and de�ne Ej =Êij\ffu; vg j u 2 V 0 ^ v 2 V �V 0g, that is, the edges of Êij going between V 0and V �V 0. We claim that the set V 0 and the sequence E1; E2; :::; Es satisfythe required properties. The �rst three properties follow from the de�nitionof the sequence and the size of V 0 mentioned above. The fourth propertyholds because for every j, 1 � j � s and v 2 V 0, v is in Vij . Therefore, thedegree of v in Êij is at least m8 log2m . After removing at most jV 0j edges inÊij from v to vertices in V 0, the number of edges incident to v in Ej is atleast m8 log2 m�pm � m16 log2m as required. The last property is a corollary of5



the fourth property. This is because each vertex of V 00 is connected by edgesof Ei to at least m16 log2m vertices in V �V 0 and therefore to at least m32 log2 mvertices of U . By Lemma 3.2, there exist at least m64 log2m � 1 elements in Uthat are connected to at least m 14 m32 log2m=(2m) � logm elements in V 00.Theorem 3.5 For the makespan problem on the subset model, any �xedpriority algorithm has an approximation ratio 
( logmlog logm ). Moreover, thisalso holds when all the jobs have unit processing time and the number ofallowable machines per job is exactly two.Proof: Given any �xed priority algorithm, consider the restriction of its to-tal ordering to the edges of the complete graph over m vertices. Lemma 3.4shows the existence of a subset of vertices V 0 and sets of edges E1; E2; :::; Eswith certain properties. The adversary proceeds in s stages where in stage ijobs from Ei are released. The jobs are released according to the total order-ing. After each stage, the makespan of the priority algorithm increases byone while the makespan of an optimal assignment remains one. Notice thatthis proves the theorem since s = �( logmlog logm). We assume by contradictionthat the approximation ratio of the priority algorithm is less than s.Let V1 = V 0 and U1 = V � V 0. At the end of stage i we de�ne the setsVi+1 � Vi and Ui+1 � Ui based on the decisions of the priority algorithm.The size of the sets Vi decreases by a factor of O(logm) in every stageand the sizes of the sets Ui decrease only slightly. Stage i is composed ofedges of Ei between the set Vi and Ui. According to the last property inLemma 3.4, there exists a vertex v 2 Ui that is connected by edges of Ei tologm vertices in Vi. Provide as input to the priority algorithm these logmedges and remove the logm vertices from Vi. Continue with the remainingvertices in Vi as long as there are at least m 14 vertices in Vi. Note that theset of O(jVij) edges of stage i described above should be given to the priorityalgorithm according to the total ordering.Consider a set of logm edges incident to a vertex v 2 Ui that are givento the priority algorithm in stage i. The priority algorithm cannot assignall the logm edges to vertex v or its load will be too high. Therefore,at least one edge must be assigned to a vertex in Vi. From every set oflogm vertices in Vi, the set Vi+1 contains one vertex to which the priorityalgorithm assigned an edge in stage i. The set Ui+1 contains the vertices ofUi except the vertices that are incident to an edge that was given as input6



to the priority algorithm in stage i. Note that jUi � Ui+1j � jVij � pmand that as long as jVij � 2m 14 the size of Vi+1 is at least jVij=(2 logm).By a straight forward calculation, it can be seen that the conditions of thelast property in Lemma 3.4 hold after s stages. Note that the makespan ofthe priority algorithm increases by one after each stage. Also, the optimalassignment that assigns logm�1 edges of every set of logm edges to verticesin Vi � Vi+1 and the remaining edge to the common neighbor in Ui is legaland its makespan is one.4 ConclusionThe above lower bound shows that a �xed priority algorithm cannot domuch better than an online algorithm in the subset model. A natural openquestion is to consider the power of adaptive priority algorithms or that ofrandomization.AcknowledgementsI thank Yossi Azar and Allan Borodin for helpful discussions and comments.References[1] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assign-ments. In Proc. 3rd ACM-SIAM Symposium on Discrete Algorithms,pages 203{210, 1992. Also in Journal of Algorithms 18:2 (1995) pp.221{237.[2] A. Borodin and R. El-Yaniv. Online Computation and Competitive Anal-ysis. Cambridge University Press, 1998.[3] A. Borodin, M. N. Nielsen, and C. Racko�. (Incremental) Priority Algo-rithms. In Proc. 13th ACM-SIAM Symp. on Discrete Algorithms, pages752{761, 2002.[4] A. Z. Broder, A. Frieze, C. Lund, S. Phillips, and N. Reingold. Bal-anced allocations for tree-like inputs. Information Processing Letters,55(6):329{332, 1995. 7
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