
O�-line Temporary Tasks Assignment �Yossi Azar y Oded Regev z Ji�r�� Sgall xGerhard J. Woeginger {May 3, 2000AbstractIn this paper we consider the temporary tasks assignment problem.In this problem, there are m parallel machines and n independent jobs.Each job has an arrival time, a departure time and some weight. Eachjob should be assigned to one machine. The load on a machine at acertain time is the sum of the weights of jobs assigned to it at that time.The objective is to �nd an assignment that minimizes the maximumload over machines and time.We present a polynomial time approximation scheme for the case inwhich the number of machines is �xed. We also show that for the casein which the number of machines is given as part of the input (i.e., not�xed), no polynomial algorithm can achieve a better approximationratio than 32 unless P = NP .�A preliminary version of this paper appears in the proceedings of the 7th EuropeanSymp. on Algorithms (ESA), Lecture Notes in Comput. Sci. 1643, pages 163-171.Springer-Verlag, 1999.yDept. of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel. Researchsupported in part by the Israel Science Foundation and by the US-Israel Binational ScienceFoundation (BSF). E-Mail: azar@math.tau.ac.ilzDept. of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel. E-Mail:odedr@math.tau.ac.ilxMathematical Inst., AS CR, �Zitn�a 25, CZ-11567 Praha 1, Czech Republic; and Dept.of Applied Mathematics, Faculty of Mathematics and Physics, Charles University, Praha.Partially supported by grant A1019901 of GA AV �CR, postdoctoral grant 201/97/P038 ofGA �CR, and cooperative research grant INT-9600919/ME-103 from the NSF and M�SMTCR. E-Mail: sgall@math.cas.cz{Inst. f�ur Mathematik, TU Graz, Steyrergasse 30, A-8010 Graz, Austria. This researchhas been supported by the START program Y43-MAT of the Austrian Ministry of Science.E-Mail: gwoegi@opt.math.tu-graz.ac.at 1

1 IntroductionWe consider the o�-line problem of non-preemptive load balancing of tempo-rary tasks on m identical machines. Each job has an arrival time, departuretime and some weight. Each job should be assigned to one machine. Theload on a machine at a certain time is the sum of the weights of jobs assignedto it at that time. The goal is to minimize the maximum load over machinesand time. Note that the weight and the time are two separate axes of theproblem.The load balancing problem naturally arises in many applications in-volving allocation of resources. As a simple concrete example, consider thecase where each machine represents a communication channel with boundedbandwidth. The problem is to assign a set of requests for bandwidth, eachwith a speci�c time interval, to the channels. The utilization of a channel ata speci�c time t is the total bandwidth of the requests, whose time intervalcontains t, which are assigned to this channel.Load balancing of permanent tasks is the special case in which jobshave neither an arrival time nor a departure time. This special case is alsoknown as the classical scheduling problem which was �rst introduced byGraham [5, 6]. He described a greedy algorithm called \List Scheduling"which has a 2� 1m approximation ratio where m is the number of machines.Interestingly, the same analysis holds also for load balancing of temporarytasks. However, until now, it was not known whether better approximationalgorithms for temporary tasks exist.For the special case of permanent tasks, there is a polynomial time ap-proximation scheme (PTAS) for any �xed number of machines [6, 10] andalso for arbitrary number of machines by Hochbaum and Shmoys [7]. Thatis, it is possible to obtain a polynomial time (1+�)-approximation algorithmfor any �xed � > 0.In contrast we show in this paper that the model of load balancing oftemporary tasks behaves di�erently. Speci�cally, for the case in which thenumber of machines is �xed we present a PTAS. However, for the case inwhich the number of machines is given as part of the input, we show that noalgorithm can achieve a better approximation ratio than 32 unless P = NP .(A weaker lower bound of 43 was presented in the proceedings version of thispaper.)Note that similar phenomena occur at other scheduling problems. Forexample, for scheduling (or equivalently, load balancing of permanent jobs)on unrelated machines, Lenstra et al. [9] showed a PTAS for a �xed number2

of machines. On the other hand, they showed that if the number of machinesis part of the input then no algorithm with an approximation ratio betterthan 32 can exist unless P = NP .In contrast to our result, in the on-line setting it is impossible to improvethe performance of Graham's algorithm for temporary tasks even for a �xednumber of machines. Speci�cally, it is shown in [2] that for any m there isa lower bound of 2 � 1m on the performance ratio of any on-line algorithm(see also [1, 3]).Our algorithm works in four phases: the rounding phase, the combiningphase, the solving phase and the converting phase. The rounding phaseactually consists of two subphases. In the �rst subphase the jobs' active timeis extended: some jobs will arrive earlier, others will depart later. In thesecond subphase, the active time is again extended but each job is extendedin the opposite direction to which it was extended in the �rst subphase. Inthe combining phase, we combine several jobs with the same arrival anddeparture time and unite them into jobs with higher weights. Solving theresulting assignment problem in the solving phase is easier and its solutioncan be converted into a solution for the original problem in the convertingphase.The novelty of our algorithm is in the rounding phase. Standard round-ing techniques are usually performed on the weights. If one applies similartechniques to the time the resulting algorithm's running time is not polyno-mial. Thus, we had to design a new rounding technique in order to overcomethis problem.Our lower bound is proved directly by a reduction from edge-coloring ofcubic graphs. It remains as an open problem whether one can improve thelower bound using more sophisticated techniques such as PCP reductions.2 NotationWe are given a set of n jobs that should be assigned to one of m identicalmachines. We denote the sequence of events by � = �1; :::; �2n, where eachevent is an arrival or a departure of a job; we assume that at each time onlyone job arrives or departs, w.l.o.g. We view � as a sequence of times, thetime �i is the moment after the ith event happened. In addition, �0 denotesthe moment at the beginning, before the arrival of any job. We denote theweight of job j by wj, its arrival time by aj and its departure time by dj . Wesay that a job is active at time � if aj � � < dj . An assignment algorithm3

for the temporary tasks problem has to assign each job to a machine.Let Qi = fj j aj � �i < djg be the active jobs at time �i. For a givenalgorithm A let Aj be the machine on which job j is assigned. LetlAk (i) = XfjjAj=k;j2Qigwjbe the load on machine k at time �i, which is the sum of weights of alljobs assigned to k and active at this time. The cost of an algorithm A is themaximum load ever achieved by any of the machines, i.e., CA = maxi;klAk (i).We compare the performance of an algorithm to that of an optimal algorithmand de�ne the approximation ratio of A as r if for any sequence CA � r �Coptwhere Copt is the cost of the optimal solution.3 The Polynomial Time Approximation SchemeAssume without loss of generality that the optimal maximum load is in therange (1; 2]. That is possible since Graham's algorithm can approximatethe optimal solution up to a factor of 2, and thus, we can scale all the jobs'weights by 2=l where l denotes the value of Graham's solution. This doesnot increase the running time of the scheme, since Graham's algorithm runsin linear time (for �xed m).Let � > 0 be a constant, depending on the required precision (we willdetermine it later). We �x three constants, � = �=dlog ne, � = ��=m =�2=(mdlog ne), and = ��=m = �3=(m2dlog ne).
c1J1 c2J2 c3J3c4J4 c5J5 c6J6 c7J7::: ::: ::: :::dlogne8>>>>>>>><>>>>>>>>: Figure 1: Partitioning J �R into fJigIn order to describe the rounding phase with its two subphases we beginwith de�ning the partitions based on which the rounding will be performed.4

The set R contains all jobs with weight at least . We begin by de�ninga partition fJig of the set of jobs J � R. We set M1 = J � R and de�nesets Ji and Mi iteratively as follows. Let Mi be a set of jobs and considerthe sequence of times � in which jobs of Mi arrive and depart. The numberof such times is 2r for some r, let ci be any time between the r-th and ther + 1-st elements in that set. The set Ji contains the jobs in Mi that areactive at time ci. The set M2i contains the jobs in Mi that depart beforeor at ci and the set M2i+1 contains the jobs in Mi that arrive after ci. Westop when all unprocessed Mi's are empty. The important property of thatpartition is that the set of jobs that are active at a certain time is partitionedinto at most dlogne di�erent sets Ji.
S1i T 1i�:::� + � S2i T 2i�:::� + �s1i t1is2i t2ici

::::::
Figure 2: Partitioning Ji into fSji ; T ji gWe continue by further partitioning the set Ji. We order the jobs accord-ing to their arrival time. We denote the smallest pre�x of the jobs whosetotal weight is at least � by S1i . We order the same jobs as before accordingto their departure time. We take the smallest suÆx whose weight is at least� and denote that set by T 1i . Note that there might be jobs that are both inS1i and T 1i . We remove the jobs in S1i [T 1i from Ji, repeat the process withthe jobs left in Ji and similarly de�ne S2i , T 2i , . . . , Skii ; T kii . Each set Si andTi has total weight between � and �+, except for the last pair which mayhave smaller weight than �. However, if the last pair has smaller weightthan � then it satis�es Skii = T kii . We denote by sji the arrival time of the�rst job in Sji and by tji the departure time of the last job in T ji . Note thats1i � s2i � ::: � skii � ci � tkii � ::: � t2i � t1i .The �rst subphase of the rounding phase creates a new set of jobs J 0which contains the same jobs as in J with slightly longer active times. Wechange the arrival time of all the jobs in Sji for j = 1; :::; ki to sji . Also, wechange the departure time of all the jobs in T ji to tji . The jobs in R are left5

unchanged. We denote the sets resulting from the �rst subphase by J 0, J 0i ,S0ji , T 0ji .
S01i T 01i�:::� + � S02i T 02i�:::� + �s1i t1is2i t2ici

::::::
Figure 3: The set J 0i (after the �rst subphase)The second subphase of the rounding phase further extends the activetime of the jobs resulting from the �rst subphase. We take one of the setsJ 0i and the partition we de�ned earlier to S01i [T 01i , S02i [T 02i , . . . , S0kii [T 0kii .For every j � ki, we order the jobs in S0ji according to an increasing orderof departure times. We take the smallest pre�x of this ordering whose totalweight is at least �. We extend the departure time of all the jobs in thatpre�x to the departure time of the last job in that pre�x. The process isrepeated until there are no more jobs in S0ji . The last pre�x may have aweight of less than �. Similarly, extend the arrival times of jobs in T 0ji .Note that if the weight of the last pair is smaller than � then Skii = T kii andthese jobs are left unchanged since they already have identical arrival anddeparture times from the �rst phase. We denote the sets resulting from thesecond subphase by J 00, J 00i , S00ji , T 00ji .
S001i T 001i�:::� + � S002i T 002i�:::� + �s1i t1is2i t2ici

::::::
Figure 4: The set J 00i (after the rounding phase)The combining phase of the algorithm involves the weight of the jobs. Let6

J 00st be the set of jobs in J 00 that arrive at s and depart at t. Assume the totalweight of jobs whose weight is at most in J 00st is x. The combining phasereplaces these jobs by dx=e jobs of weight . We denote the resulting setsby J 000st . The set J 000 is created by replacing every J 00st with its correspondingJ 000st , that is, J 000 = Ss;t J 000st .The solving phase of the algorithm solves the modi�ed decision problemof J 000 by building a layered graph. Every time �i, i = 0; : : : ; 2n, in whichjobs arrive or depart (including the initial state with no job) has its ownset of vertices called a layer. Each layer holds a vertex for every possibleassignment of the current active jobs to machines; furthermore, we labeleach node by the maximum load of a machine in that con�guration. The�rst and last layers contain a single vertex, as there are no jobs at that point.These vertices are called a source and a sink.Two vertices of adjacent layers �i�1 and �i, i = 1; : : : ; 2n, are connectedby an edge if the transition from one assignment of the active jobs to theother is consistent with the arrival and departure of jobs at time �i. Moreprecisely, the vertices are connected if and only if every job active bothbefore and after �i is assigned to the same machine in the assignments ofboth vertices. At each event, jobs either arrive or depart but not both(due to the assumption at the beginning that all the original events aredistinct; during rounding we do not mix arrival and departure events). If�i is an arrival, the indegree of all vertices in the layer �i is 1, since thenew con�guration determines the old one. Similarly if �i is a departure, theoutdegree of all vertices in the layer �i�1 is 1. In both cases, the number ofedges between two layers is linear in the number of vertices on these layers.It follows that the total number of edges is linear in the number of vertices.We de�ne a value of a path from the source to sink as the maximal valueof its nodes. Now we can simply �nd a path with smallest value by anyshortest path algorithm in linear time (since the graph is layered).In the converting phase the algorithm converts the assignment found forJ 000 into an assignment for J . Assume the number of jobs of weight inJ 000st that are assigned to a certain machine i is ri. Remove these jobs andassign all the jobs smaller than in J 00st such that a total weight of at most(ri+1) is assigned to each machine. This is possible since the replacementinvolves jobs whose weight is at most and from volume consideration thereis always at least one machine with a load of at most ri of these jobs. Theassignment for J 00 is also an assignment for J 0 and J .7

4 AnalysisLemma 4.1 Given a solution for the original problem J whose maximumload is �, the same solution applied to J 0 has a maximum load of at most� + � + �3=4. Also, given a solution for J 0 whose maximum load is �, thesame solution applied to J has a maximum load of at most �.Proof: The second claim is obvious since the jobs in J are shorter than thecorresponding jobs in J 0. As for the �rst claim, every time � is contained inat most dlog ne sets Ji. Consider the added load at � from jobs in a certainset Ji. If � < s1i or � � t1i then the same load is caused by J 0i and Ji.Assume � < ci and de�ne ski+1i = ci, the other case is symmetrical. Thenfor some j, sji � � < sj+1i and the added load at � is at most the total loadof Sji which is at most �+ . Summing on all sets Ji, we conclude that themaximal load has increased by at most (�+)dlog ne = �+ �3=m2.Lemma 4.2 Given a solution for J 0 whose maximum load is �, the samesolution applied to J 00 has a maximum load of at most �(1 + �). Also, givena solution for J 00 whose maximum load is �, the same solution applied to J 0has a maximum load of at most �.Proof: The second claim is obvious since the jobs in J 0 are shorter than thecorresponding jobs in J 00. As for the �rst claim, given a time � and a pairof sets S0ji , T 0ji from J 0i we examine the increase in load at � . If � < sji or� � tji it is not a�ected by the transformation because no job in T 0ji [S0jiarrives before sji or departs after tji . Assume that � < ci, the other case issymmetrical. So � is a�ected by the decrease in arrival time of jobs in T 0ji .It is clear that the way we extend the jobs in T 0ji increases the load at � byat most �. Also, since � � sji , we know that the load caused by S0ji is atleast � if j < ki. Thus, an extra load of at most � is created by every pairS0ji , T 0ji for 1 � j < ki only if the pair contributes at least � to the load.If the last pair Skii , T kii has weight smaller than �, it does not contribute,as it is not changed from J 0 to J 00; otherwise the analysis is the same as forj < ki. Since the total load on all machines at any time is at most �m, theincrease in load of any machine and therefore in maximum load is at most� � �m=� = ��.Lemma 4.3 Given a solution for J 00 whose maximum load is �, the modi�edproblem J 000 has a solution with a maximum load of �(1 + � + �2). Also,8

given a solution for J 000 whose maximum load is �, the solution given bythe converting phase for the problem J 00 has a maximum load of at most�(1 + �+ �2).Proof: Consider a solution for J 00 whose maximum load is �. If the load ofjobs smaller than in a certain J 00st on a certain machine i is x, we replaceit by at most dx=e jobs of weight so that this is an assignment to J 000.The increase in load on every machine is at most times the number of setsJ 00st that contain jobs which are scheduled on that machine. As for the otherdirection, consider a solution whose maximum load is � to J 000. The increasein load on every machine by the replacement described in the algorithm isalso at most times the number of sets J 00st that contain jobs which arescheduled on that machine.It remains to estimate the number of sets J 00st that can coexist at a certaintime. Most of these sets have weight at least �; their number is at most�m=�, since the total load at any time is at most �m. For each set Sji andT ji , j < ki, we have at most one set J 00st with weight less than �, since theweight of Sji and T ji is at least �, there are at most �m=� such sets (if Sji andT ji are not disjoint, the small sets J 00st in both of them have the same s and t,thus we do not need to multiply by 2). Last, there may be one set J 00st smallerthan � in each Skii = T kii ; there are only dlog ne of such sets. Therefore,the increase in maximum load is at most (�m=� + �m=� + dlog ne) =��+ �2�=m+ �3=m2 � �(�+ �2).Theorem 4.4 The algorithm described in the last section is a PTAS run-ning in time O(nc��3m3 logm), where c is some absolute constant.Proof: We are given some �0 > 0 and want to �nd a solution with maximumload at most �(1+�0). If �0 � 1, we use Graham's List Scheduling. Otherwisewe use the algorithm described above for � = �0=6. For an instance withoptimal solution with maximum load �, the algorithm yields a solution withmaximum load at most �(1 + �+ �3=4)(1 + �)(1 + �+ �2)2 < �(1 + �0).Every layer in the graph stores all the possible assignments of jobs to ma-chines. Since the smallest job is of weight , the maximum number of activejobs at a certain time is �m=. So, the maximum number of edges in thegraph and the running time of the algorithm is nm�m= � nm2��3m3dlog ne =O(n1+2��3m3 logm). This yields the result, with the constant c bounded byc < 2 � 63 + 1 = 433. 9

5 The unrestricted number of machines caseIn this section we show that in case the number of machines is given as partof the input, the problem cannot be approximated up to a factor of 3=2 inpolynomial time unless P = NP .Theorem 5.1 For every � < 32 , there does not exist a polynomial time �-approximation algorithm for the temporary tasks assignment problem unlessP = NP .Proof: The proof is by reduction from edge-coloring of cubic graphs (cubicmeans that all vertices have degree three): A feasible edge 3-coloring of asimple cubic graph G = (V;E) is a coloring of E with the colors 1, 2 and3, such that for every vertex the incident edges receive three distinct colors.Deciding whether a given cubic graph G = (V;E) possesses a feasible edge3-coloring is NP-complete [4]. Since G is cubic, jV j = 2q and jEj = 3q holdsfor some positive integer q. Moreover, since in a feasible edge 3-coloring ofG every color class forms a perfect matching, every color will occur exactlyq times.

v1v2v3 v4e1e2 e3e4 e5 e6 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14v1 v2 v3 v4e1 e2 e3 e4 e5 e6

Type I Type II Type III Type IVType I Type II Type III Type IV
01201201
201201201
2
load 654

321 machine
Figure 5: A 3-colorable cubic graph and the corresponding assignmentGiven a graph G we describe an instance of the load balancing prob-lem. Let e1; : : : ; e3q be an arbitrary enumeration of the edges in E, and letv1; : : : ; v2q be an arbitrary enumeration of the vertices in V . We construct an10

instance of the temporary task assignment problem with m = 3q machinesand n = 18q jobs.� For every edge ei (i = 1; : : : ; 3q), there is a corresponding job ofweight 2 starting at time 0 and ending at time i.� Let vj (j = 1; : : : ; 2q) be a vertex, and let ex, ey and ez be the threeedges incident to vj . Then there are six jobs Jj;x, Jj;y, Jj;z and Kj;1,Kj;2, Kj;3 that correspond to vj and that all have weight 1. The jobsJj;x, Jj;y, Jj;z start at times x, y, and z, respectively, and all end attime 3q + j. The jobs Kj;1, Kj;2, Kj;3 start at time 3q + j and end attimes 5q + 1, 5q + 2, and 5q + 3, respectively.� Finally, there are 3q dummy jobs that all have weight 2. The dummyjobs are divided into three classes of q jobs. The q dummy jobs in classc (c = 1; 2; 3) start at time 5q + c and end at time 5q + 4.This completes the description of the scheduling instance. We claim thatthis scheduling instance possesses a schedule with maximum load 2 if andonly if the graph G possesses a feasible edge 3-coloring.Proof of the \if" part. Suppose that the graphG possesses a feasible edge3-coloring. Let ei = [vj; vk] be an edge in E that receives color c 2 f1; 2; 3gin this coloring. The following jobs are processed on machine i: From time0 to time i, process the job that corresponds to edge ei. From time i totime 3q + j process job Jj;i, and from time 3q + j to time 5q + c, processjob Kj;c. Analogously, from time i to time 3q+ k process job Jk;i, and fromtime 3q + k to time 5q + c, process job Kk;c. Finally, from time 5q + c totime 5q + 4 process a dummy job from class c. It is easy to see that in thisschedule all jobs are processed, and at any moment in time every machinehas load at most 2.Proof of the \only if" part. Now assume that there is a schedule withmaximum load 2. Note that at any moment � in time, 0 � � � 5q + 4, thetotal available load is exactly 6q = 2m. Hence, in a schedule with maximumload 2 every machine must be busy all the time. Without loss of generalitywe assume that for 1 � i � 3q, machine i processes the job correspondingto edge ei. Moreover, at time 5q+4 machine i completes one of the dummyjobs. We color edge ei by the class c of this dummy job.We claim that in the resulting coloring, every vertex is incident to threedi�erently colored edges: Suppose otherwise. Then there exist two edgesex = [vj ; vk] and ey = [vj ; v`] that receive the same color c. Consider machine11

x at time x in the schedule. The job corresponding to ex ends at time x,and the only available jobs are Jj;x and Jk;x. Since machine x is busy all thetime, it must process these two jobs. Consider machine x at time 3q + j inthe schedule. The processing of job Jj;x ends, and the machine must processsome job from time 3q+ j to time 5q+ c; the only possible job for this is jobKj;c. By similar arguments we get that job Kj;c is simultaneously processedon machine y, a contradiction. Hence, the constructed edge-coloring indeedis a feasible edge 3-coloring.References[1] Y. Azar. On-line load balancing. In A. Fiat and G. Woeginger, editors,Online Algorithms - The State of the Art, chapter 8, pages 178{195.Springer, 1998.[2] Y. Azar and L. Epstein. On-line load balancing of temporary tasks onidentical machines. In 5th Israeli Symp. on Theory of Computing andSystems, pages 119{125, 1997.[3] A. Borodin and R. El-Yaniv. Online Computation and CompetitiveAnalysis. Cambridge University Press, 1998.[4] M.R. Garey and D.S. Johnson. Computers and Intractability. W.H.Freeman and Company, San Francisco, 1979.[5] R.L. Graham. Bounds for certain multiprocessor anomalies. Bell Sys-tem Technical Journal, 45:1563{1581, 1966.[6] R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM J.Appl. Math, 17:263{269, 1969.[7] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algo-rithms for scheduling problems: Theoretical and practical results. J. ofthe ACM, 34(1):144{162, January 1987.[8] R.M. Karp. Reducibility among Combinatorial Problems, R.E. Millerand J.W. Thatcher (eds.), Complexity of Computer Computations.Plenum Press, 1972.[9] J.K. Lenstra, D.B. Shmoys, and E. Tardos. Approximation algo-rithms for scheduling unrelated parallel machines. Math. Programming,46:259{271, 1990. 12

[10] S. Sahni. Algorithms for scheduling independent tasks. Journal of theAssociation for Computing Machinery, 23:116{127, 1976.

13

