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Abstract

In this paper we consider the temporary tasks assignment problem.
In this problem, there are m parallel machines and n independent jobs.
Each job has an arrival time, a departure time and some weight. Each
job should be assigned to one machine. The load on a machine at a
certain time is the sum of the weights of jobs assigned to it at that time.
The objective is to find an assignment that minimizes the maximum
load over machines and time.

We present, a polynomial time approximation scheme for the case in
which the number of machines is fixed. We also show that for the case
in which the number of machines is given as part of the input (i.e., not
fixed), no polynomial algorithm can achieve a better approximation

ratio than % unless P = NP.
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1 Introduction

We consider the off-line problem of non-preemptive load balancing of tempo-
rary tasks on m identical machines. Each job has an arrival time, departure
time and some weight. Each job should be assigned to one machine. The
load on a machine at a certain time is the sum of the weights of jobs assigned
to it at that time. The goal is to minimize the maximum load over machines
and time. Note that the weight and the time are two separate axes of the
problem.

The load balancing problem naturally arises in many applications in-
volving allocation of resources. As a simple concrete example, consider the
case where each machine represents a communication channel with bounded
bandwidth. The problem is to assign a set of requests for bandwidth, each
with a specific time interval, to the channels. The utilization of a channel at
a specific time ¢ is the total bandwidth of the requests, whose time interval
contains ¢, which are assigned to this channel.

Load balancing of permanent tasks is the special case in which jobs
have neither an arrival time nor a departure time. This special case is also
known as the classical scheduling problem which was first introduced by
Graham [5, 6]. He described a greedy algorithm called “List Scheduling”
which has a 2 — % approximation ratio where m is the number of machines.
Interestingly, the same analysis holds also for load balancing of temporary
tasks. However, until now, it was not known whether better approximation
algorithms for temporary tasks exist.

For the special case of permanent tasks, there is a polynomial time ap-
proximation scheme (PTAS) for any fixed number of machines [6, 10] and
also for arbitrary number of machines by Hochbaum and Shmoys [7]. That
is, it is possible to obtain a polynomial time (14 €)-approximation algorithm
for any fixed € > 0.

In contrast we show in this paper that the model of load balancing of
temporary tasks behaves differently. Specifically, for the case in which the
number of machines is fixed we present a PTAS. However, for the case in
which the number of machines is given as part of the input, we show that no
algorithm can achieve a better approximation ratio than % unless P = NP.
(A weaker lower bound of % was presented in the proceedings version of this
paper.)

Note that similar phenomena occur at other scheduling problems. For
example, for scheduling (or equivalently, load balancing of permanent jobs)
on unrelated machines, Lenstra et al. [9] showed a PTAS for a fixed number



of machines. On the other hand, they showed that if the number of machines
is part of the input then no algorithm with an approximation ratio better
than % can exist unless P = NP.

In contrast to our result, in the on-line setting it is impossible to improve
the performance of Graham’s algorithm for temporary tasks even for a fixed
number of machines. Specifically, it is shown in [2] that for any m there is
a lower bound of 2 — % on the performance ratio of any on-line algorithm
(see also [1, 3]).

Our algorithm works in four phases: the rounding phase, the combining
phase, the solving phase and the converting phase. The rounding phase
actually consists of two subphases. In the first subphase the jobs’ active time
is extended: some jobs will arrive earlier, others will depart later. In the
second subphase, the active time is again extended but each job is extended
in the opposite direction to which it was extended in the first subphase. In
the combining phase, we combine several jobs with the same arrival and
departure time and unite them into jobs with higher weights. Solving the
resulting assignment problem in the solving phase is easier and its solution
can be converted into a solution for the original problem in the converting
phase.

The novelty of our algorithm is in the rounding phase. Standard round-
ing techniques are usually performed on the weights. If one applies similar
techniques to the time the resulting algorithm’s running time is not polyno-
mial. Thus, we had to design a new rounding technique in order to overcome
this problem.

Our lower bound is proved directly by a reduction from edge-coloring of
cubic graphs. It remains as an open problem whether one can improve the
lower bound using more sophisticated techniques such as PCP reductions.

2 Notation

We are given a set of n jobs that should be assigned to one of m identical
machines. We denote the sequence of events by ¢ = o1, ..., 09,,, where each
event is an arrival or a departure of a job; we assume that at each time only
one job arrives or departs, w.l.o.g. We view o as a sequence of times, the
time o; is the moment after the i*" event happened. In addition, oy denotes
the moment at the beginning, before the arrival of any job. We denote the
weight of job j by wj, its arrival time by a; and its departure time by d;. We
say that a job is active at time 7 if a; < 7 < d;. An assignment algorithm



for the temporary tasks problem has to assign each job to a machine.
Let Q; = {j | aj < 0; < d;} be the active jobs at time ;. For a given
algorithm A let A; be the machine on which job j is assigned. Let
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be the load on machine k£ at time o;, which is the sum of weights of all
jobs assigned to k and active at this time. The cost of an algorithm A is the
maximum load ever achieved by any of the machines, i.e., Cy = mami,kl?(z’).
We compare the performance of an algorithm to that of an optimal algorithm
and define the approximation ratio of A as r if for any sequence C'y < r-Copt
where C,; is the cost of the optimal solution.

3 The Polynomial Time Approximation Scheme

Assume without loss of generality that the optimal maximum load is in the
range (1,2]. That is possible since Graham’s algorithm can approximate
the optimal solution up to a factor of 2, and thus, we can scale all the jobs’
weights by 2/l where [ denotes the value of Graham’s solution. This does
not increase the running time of the scheme, since Graham’s algorithm runs
in linear time (for fixed m).

Let € > 0 be a constant, depending on the required precision (we will
determine it later). We fix three constants, « = ¢/[logn], 8 = ae/m =

€2/(mflogn]), and v = Be/m = €*/(m?[logn]).
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Figure 1: Partitioning J — R into {J;}

In order to describe the rounding phase with its two subphases we begin
with defining the partitions based on which the rounding will be performed.



The set R contains all jobs with weight at least v. We begin by defining
a partition {J;} of the set of jobs J — R. We set My = J — R and define
sets J; and M; iteratively as follows. Let M; be a set of jobs and consider
the sequence of times ¢ in which jobs of M; arrive and depart. The number
of such times is 2r for some r, let ¢; be any time between the r-th and the
r + 1-st elements in that set. The set J; contains the jobs in M; that are
active at time ¢;. The set My; contains the jobs in M; that depart before
or at ¢; and the set My;,1 contains the jobs in M; that arrive after ¢;. We
stop when all unprocessed M;’s are empty. The important property of that
partition is that the set of jobs that are active at a certain time is partitioned
into at most [logn] different sets J;.
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Figure 2: Partitioning J; into {Sg,Tij}

We continue by further partitioning the set J;. We order the jobs accord-
ing to their arrival time. We denote the smallest prefix of the jobs whose
total weight is at least « by S!. We order the same jobs as before according
to their departure time. We take the smallest suffix whose weight is at least
« and denote that set by T;'. Note that there might be jobs that are both in
S! and T!. We remove the jobs in S] UT}' from J;, repeat the process with
the jobs left in J; and similarly define SZ, T2, ..., Slk’,ﬂkl Each set S; and
T; has total weight between o and o + 7y, except for the last pair which may
have smaller weight than . However, if the last pair has smaller weight
than « then it satisfies Sf" = Tiki. We denote by 93 the arrival time of the
first job in Szj and by f{ the departure time of the last job in Tij. Note that
sl<s?<..<shi<eg<th<. <2<l

The first subphase of the rounding phase creates a new set of jobs .J'
which contains the same jobs as in J with slightly longer active times. We
change the arrival time of all the jobs in Si] for j =1,...,k; to sg. Also, we
change the departure time of all the jobs in TZ7 to tf The jobs in R are left



unchanged. We denote the sets resulting from the first subphase by J', J;,
S, 1.
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Figure 3: The set J; (after the first subphase)

The second subphase of the rounding phase further extends the active
time of the jobs resulting from the first subphase. We take one of the sets
J! and the partition we defined earlier to S’Z1 uT'y, SPuT?, L SR uT
For every j < k;, we order the jobs in S’} according to an increasing order
of departure times. We take the smallest prefix of this ordering whose total
weight is at least 8. We extend the departure time of all the jobs in that
prefix to the departure time of the last job in that prefix. The process is
repeated until there are no more jobs in S’g. The last prefix may have a
weight of less than 3. Similarly, extend the arrival times of jobs in T’g .
Note that if the weight of the last pair is smaller than « then Sf" = Tz-ki and
these jobs are left unchanged since they already have identical arrival and
departure times from the first phase. We denote the sets resulting from the
second subphase by J", J!', S"1 T"!.
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Figure 4: The set J' (after the rounding phase)

The combining phase of the algorithm involves the weight of the jobs. Let



J!, be the set of jobs in J” that arrive at s and depart at ¢. Assume the total
weight of jobs whose weight is at most v in J!, is z. The combining phase
replaces these jobs by [x/7] jobs of weight . We denote the resulting sets
by JI/. The set J" is created by replacing every J!, with its corresponding
JU, that is, J" = Us.t .

The solving phase of the algorithm solves the modified decision problem
of J" by building a layered graph. Every time o;, i = 0,...,2n, in which
jobs arrive or depart (including the initial state with no job) has its own
set of vertices called a layer. Each layer holds a vertex for every possible
assignment of the current active jobs to machines; furthermore, we label
each node by the maximum load of a machine in that configuration. The
first and last layers contain a single vertex, as there are no jobs at that point.
These vertices are called a source and a sink.

Two vertices of adjacent layers o;_1 and o;, 1 = 1,...,2n, are connected
by an edge if the transition from one assignment of the active jobs to the
other is consistent with the arrival and departure of jobs at time ;. More
precisely, the vertices are connected if and only if every job active both
before and after o; is assigned to the same machine in the assignments of
both vertices. At each event, jobs either arrive or depart but not both
(due to the assumption at the beginning that all the original events are
distinct; during rounding we do not mix arrival and departure events). If
0; is an arrival, the indegree of all vertices in the layer o; is 1, since the
new configuration determines the old one. Similarly if o; is a departure, the
outdegree of all vertices in the layer o; 1 is 1. In both cases, the number of
edges between two layers is linear in the number of vertices on these layers.
It follows that the total number of edges is linear in the number of vertices.

We define a value of a path from the source to sink as the maximal value
of its nodes. Now we can simply find a path with smallest value by any
shortest path algorithm in linear time (since the graph is layered).

In the converting phase the algorithm converts the assignment found for
J" into an assignment for J. Assume the number of jobs of weight « in
J! that are assigned to a certain machine i is r;. Remove these jobs and
assign all the jobs smaller than v in J!, such that a total weight of at most
(r; + 1) is assigned to each machine. This is possible since the replacement
involves jobs whose weight is at most v and from volume consideration there
is always at least one machine with a load of at most r;y of these jobs. The
assignment for .J” is also an assignment for .J' and .J.



4 Analysis

Lemma 4.1 Given a solution for the original problem J whose mazimum
load is X\, the same solution applied to J' has a maximum load of at most
A+ e+ €¥/4. Also, given a solution for J' whose mazimum load is ), the
same solution applied to J has a mazimum load of at most \.

Proof: The second claim is obvious since the jobs in J are shorter than the
corresponding jobs in J’. As for the first claim, every time 7 is contained in
at most [logn] sets .J;. Consider the added load at 7 from jobs in a certain
set J;. If 7 < 9} or T > f,] then the same load is caused by J; and J;.
Assume 7 < ¢; and define sf"H = ¢;, the other case is symmetrical. Then
for some 7, 327 <7< S'Zj+1 and the added load at 7 is at most the total load
of SZ which is at most « + . Summing on all sets .J;, we conclude that the

maximal load has increased by at most (o + )[logn] = € + €3/m?. |

Lemma 4.2 Given a solution for J' whose mazimum load is X, the same
solution applied to J" has a mazimum load of at most \(1 +¢€). Also, given
a solution for J" whose mazimum load is A\, the same solution applied to J'
has a mazimum load of at most \.

Proof: The second claim is obvious since the jobs in J' are shorter than the
corresponding jobs in J”. As for the first claim, given a time 7 and a pair
of sets S'7, T" from J! we examine the increase in load at 7. If 7 < s/ or
T > ff it is not affected by the transformation because no job in T’g U S"g
arrives before 93 or departs after ff Assume that 7 < ¢;, the other case is
symmetrical. So 7 is affected by the decrease in arrival time of jobs in T’g .
It is clear that the way we extend the jobs in T"Z increases the load at 7 by
at most . Also, since 7 > sg, we know that the load caused by S"g is at
least a if j < k;. Thus, an extra load of at most f is created by every pair
S"g, T"g for 1 < j < k; only if the pair contributes at least « to the load.
If the last pair Sfi, Tiki has weight smaller than «, it does not contribute,
as it is not changed from J’ to J”; otherwise the analysis is the same as for
j < k;. Since the total load on all machines at any time is at most Am, the

increase in load of any machine and therefore in maximum load is at most
B-Am/a=¢e. ]

Lemma 4.3 Given a solution for J" whose mazimum load is X\, the modified
problem J" has a solution with a mazimum load of \(1 + € + €2). Also,



giwen a solution for J" whose mazimum load is X\, the solution given by
the converting phase for the problem J" has a mazimum load of at most
M1+ e+ €?).

Proof: Consider a solution for J"” whose maximum load is A. If the load of
jobs smaller than 7 in a certain J, on a certain machine i is z, we replace
it by at most [z/v] jobs of weight  so that this is an assignment to J".
The increase in load on every machine is at most v times the number of sets
J!, that contain jobs which are scheduled on that machine. As for the other
direction, consider a solution whose maximum load is A to J"”. The increase
in load on every machine by the replacement described in the algorithm is
also at most y times the number of sets .J}, that contain jobs which are
scheduled on that machine.

It remains to estimate the number of sets .J!; that can coexist at a certain
time. Most of these sets have weight at least 3; their number is at most
Am/f3, since the total load at any time is at most Am. For each set Sg and
Tlrj, j < k;, we have at most one set J., with weight less than [, since the
weight of S] and T77 is at least «, there are at most Am/a such sets (if S‘Z and
ij are not disjoint, the small sets J, in both of them have the same s and ¢,
thus we do not need to multiply by 2). Last, there may be one set J;; smaller
than 8 in each SvlCZ = Tf“, there are only [logn] of such sets. Therefore,
the increase in maximum load is at most y(Am/f + Am/a + [logn]) =
X+ e2XN/m + €3 /m? < Ae + €2). |

Theorem 4.4 The algorithm described in the last section is a PTAS run-

-3,,3 .
m>logm) “where ¢ is some absolute constant.

ning in time O(n‘
Proof: We are given some € > 0 and want to find a solution with maximum
load at most A(1+€'). If € > 1, we use Graham’s List Scheduling. Otherwise
we use the algorithm described above for € = € /6. For an instance with
optimal solution with maximum load A, the algorithm yields a solution with
maximum load at most A\(1 4+ e+ €3/4)(1 + €)(1 + e+ €2)2 < A(1 +¢€).
Every layer in the graph stores all the possible assignments of jobs to ma-
chines. Since the smallest job is of weight v, the maximum number of active
jobs at a certain time is Am/v. So, the maximum number of edges in the
graph and the running time of the algorithm is nm*™/7 < nm?2¢ "m*[logn] —
O(n]+2673m3]°gm). This yields the result, with the constant ¢ bounded by
c<2-6%+1=433. u



5 The unrestricted number of machines case

In this section we show that in case the number of machines is given as part
of the input, the problem cannot be approximated up to a factor of 3/2 in
polynomial time unless P = N P.

Theorem 5.1 For every p < %, there does not exist a polynomial time p-
approximation algorithm for the temporary tasks assignment problem unless
P=NP.

Proof: The proof is by reduction from edge-coloring of cubic graphs (cubic
means that all vertices have degree three): A feasible edge 3-coloring of a
simple cubic graph G = (V, E) is a coloring of E with the colors 1, 2 and
3, such that for every vertex the incident edges receive three distinct colors.
Deciding whether a given cubic graph G = (V, E) possesses a feasible edge
3-coloring is NP-complete [4]. Since G is cubic, |V| = 2¢ and |E| = 3¢ holds
for some positive integer q. Moreover, since in a feasible edge 3-coloring of
G every color class forms a perfect matching, every color will occur exactly
q times.
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Figure 5: A 3-colorable cubic graph and the corresponding assignment

Given a graph GG we describe an instance of the load balancing prob-
lem. Let ey,...,e3, be an arbitrary enumeration of the edges in E, and let
v1,..., Uz be an arbitrary enumeration of the vertices in V. We construct an

10



instance of the temporary task assignment problem with m = 3¢ machines
and n = 18¢ jobs.

e For every edge ¢; (i = 1,...,3q), there is a corresponding job of
weight 2 starting at time 0 and ending at time 4.

e Let v; (j =1,...,2q) be a vertex, and let e, e, and e, be the three
edges incident to v;. Then there are six jobs J; ;, Jj,, J;. and Kj 1,
K2, Kj3 that correspond to v; and that all have weight 1. The jobs
Jjay Jjys Jj. start at times z, y, and 2, respectively, and all end at
time 3¢ + 7. The jobs Kj, K2, K; 3 start at time 3¢ + j and end at
times 5¢ + 1, 5¢ + 2, and bq + 3, respectively.

e Finally, there are 3¢ dummy jobs that all have weight 2. The dummy
jobs are divided into three classes of ¢ jobs. The ¢ dummy jobs in class
¢ (¢ =1,2,3) start at time 5q + ¢ and end at time 5q + 4.

This completes the description of the scheduling instance. We claim that
this scheduling instance possesses a schedule with maximum load 2 if and
only if the graph GG possesses a feasible edge 3-coloring.

Proof of the “if” part. Suppose that the graph G possesses a feasible edge
3-coloring. Let e¢; = [v;,vi] be an edge in E that receives color ¢ € {1,2,3}
in this coloring. The following jobs are processed on machine i: From time
0 to time ¢, process the job that corresponds to edge ¢;. From time 7 to
time 3¢ + j process job J;;, and from time 3¢ + j to time 5¢ + ¢, process
job K .. Analogously, from time ¢ to time 3¢q + k process job J; ;, and from
time 3¢ + k to time 5g + ¢, process job Kj .. Finally, from time 5¢ + ¢ to
time 5¢ + 4 process a dummy job from class c. It is easy to see that in this
schedule all jobs are processed, and at any moment in time every machine
has load at most 2.

Proof of the “only if” part. Now assume that there is a schedule with
maximum load 2. Note that at any moment 7 in time, 0 < 7 < 5g + 4, the
total available load is exactly 6g = 2m. Hence, in a schedule with maximum
load 2 every machine must be busy all the time. Without loss of generality
we assume that for 1 < ¢ < 3¢, machine 7 processes the job corresponding
to edge e;. Moreover, at time 5g + 4 machine 4 completes one of the dummy
jobs. We color edge e; by the class ¢ of this dummy job.

We claim that in the resulting coloring, every vertex is incident to three
differently colored edges: Suppose otherwise. Then there exist two edges
er = [vj,vx] and e, = [v;, v/] that receive the same color c. Consider machine

11



z at time z in the schedule. The job corresponding to e, ends at time x,
and the only available jobs are J; ; and Jj, ;. Since machine z is busy all the
time, it must process these two jobs. Consider machine z at time 3¢ + j in
the schedule. The processing of job .J; , ends, and the machine must process
some job from time 3¢+ j to time 5g + ¢; the only possible job for this is job
K .. By similar arguments we get that job Kj . is simultaneously processed
on machine y, a contradiction. Hence, the constructed edge-coloring indeed

is a feasible edge 3-coloring. [
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