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Abstract

We present reductions from lattice problems in the `2 norm to the corresponding problems

in other norms such as `1, `∞ (and in fact in any other `p norm where 1 ≤ p ≤ ∞). We consider

lattice problems such as the Shortest Vector Problem, Shortest Independent Vector Problem,

Closest Vector Problem and the Closest Vector Problem with Preprocessing. Most reductions

are simple and follow from known constructions of embeddings of normed spaces.

Among other things, our reductions imply that the Shortest Vector Problem in the `1 norm

and the Closest Vector Problem with Preprocessing in the `∞ norm are hard to approximate

to within any constant (and beyond). Previously, the former problem was known to be hard to

approximate to within 2 − ε, while no hardness result was known for the latter problem.

1 Introduction

Consider the space Rn equipped with the `1 norm. Now take a random subspace of dimension,

say, n/100. As it turns out, with very high probability, the `1 norm of points on that subspace is

essentially the same as the `2 norm. This basic and by now well-known fact follows from the work

of Dvoretzky [Dvo61] and Figiel, Lindenstrauss and Milman [FLM77] on embeddings of normed

spaces.

Our main contribution is the observation that this fact allows one to easily construct reductions

among lattice problems in different norms: given an n-dimensional lattice problem in the `2 norm,

take a random subspace of R100n and place the given lattice inside this space. Then a solution to

the `1 problem on the resulting 100n dimensional lattice is essentially a solution to the `2 problem

of the original lattice.

Before we describe this idea in more detail, we survey some known results on lattices and

embeddings of normed spaces.

1.1 Lattices

Given n-linearly independent vectors b1, . . . , bn ∈ Rm, the lattice generated by them is the set of

vectors

L(b1, . . . , bn) :=

{

n
∑

i=1

xibi

∣

∣

∣
xi ∈ Z

}

⊆ Rm
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We refer to n as the rank of the lattice and to m as the dimension of the lattice. We also say that

the vectors b1, . . . , bn form a basis of the lattice.

There are several natural computational problems involving lattices. These problems play a

fundamental role in various areas, such as computational number theory and cryptography. Two of

the main lattice problems are the Shortest Vector Problem (SVP) and the Closest Vector Problem

(CVP). In SVP, the goal is to find the shortest nonzero vector in a lattice given some basis of the

lattice. In CVP, in addition to a lattice, we are given some target vector and the goal is to find

a lattice vector that is closest to the target vector. In both problems, one needs to specify the

norm by which the length of the shortest vector, or the distance to the closest vector is measured.

A common choice is to take the `p norm for some 1 ≤ p ≤ ∞, where for 1 ≤ p < ∞ we define

‖x‖p = (
∑

i |xi|p)1/p and ‖x‖∞ = maxi |xi|.
In this paper, we are mainly interested in approximation versions of these problems. For exam-

ple, in the case of SVP, the goal is to find a lattice vector that is longer than the shortest lattice

vector by at most some given approximation factor. Similarly, in the case of CVP, the goal is to

find a lattice vector whose distance to the target point is larger than that of the nearest lattice

vector by at most the approximation factor.

The complexity of lattice problems has been investigated extensively in the last two decades,

both in terms of approximation algorithms (e.g., [LLL82]), and computational hardness results

(e.g., [DKRS03, Kho04]). Connections to average-case hardness have been obtained in the seminal

work of Ajtai [Ajt96], which later led to lattice-based cryptosystems (e.g., [AD97, Reg04b]). For a

more thorough introduction to lattices see [MG02].

Algorithms: In their celebrated 1982 paper, Lenstra, Lenstra and Lovász (LLL) [LLL82] de-

scribe an efficient algorithm that approximates SVP to within 2n/2 where n is the rank of the

lattice. Although this might seem like a very poor approximation factor, their algorithm had a

significant impact on many important problems such as factoring polynomials over the rationals

and simultaneous diophantine approximation [LLL82], integer programming [Len83], solving low-

density subset-sum problems, breaking knapsack-based cryptosystems [LO85], and approximation

algorithms for CVP [Bab86]. Moreover, it seems very difficult to obtain significantly better factors.

The best known deterministic algorithm was given by Schnorr [Sch87] and achieves an approxima-

tion factor of 2O(n(log log n)2/ log n). The best known algorithm is a recent randomized algorithm that

achieves an approximation factor of 2O(n log log n/ log n) [AKS01].

As for an exact solution to SVP, all known algorithms have exponential running time. The best

known deterministic algorithm is the one by Kannan [Kan87], and has running time 2O(n log n). The

best known randomized algorithm has running time 2O(n) and is given in a recent paper by Ajtai,

Kumar, and Sivakumar [AKS01].

Hardness: There are many known hardness results for lattice problems. We will now review

some of them in detail. As we will see, all known results give hardness of approximation for

sub-polynomial factors. This is in stark contrast to the almost exponential approximation factors

achieved by known algorithms. One might therefore suspect that the known hardness results can

be substantially improved. However, it is a somewhat surprising fact that most lattice problems

are unlikely to be NP-hard to approximate to within factors such as O(
√

n). Such results can be

found in, e.g., [GG00, AR05]. For example, [AR05] shows that approximating SVP in the `2 norm

to within a factor of O(
√

n) is in NP ∩ coNP and is therefore not NP-hard unless the polynomial
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hierarchy collapses.

Hardness of SVP: Already in 1981, van Emde Boas [vEB81] showed that SVP in the `∞ norm

is NP-hard. Extending this result to other norms turned out to be very difficult. This was finally

achieved by Ajtai in 1998 [Ajt98]. He showed that for any p ≥ 1, SVP in the `p norm is hard

assuming NP * RP. This was later improved, under the same complexity assumption, by Cai and

Nerurkar [CN99] who showed that the problem is hard to approximate to within (1 + 1
nε ). The

first constant factor hardness result was obtained by Micciancio [Mic01b] who proved that for any

p < ∞, ε > 0, SVP in the `p norm is hard to approximate to within p
√

2 − ε under the assumption

that NP * RP.1 Dinur [Din02] boosted the hardness of SVP in the `∞ norm to nO(1/ log log n).

Khot [Kho03] showed a hardness result of the form p0.99 for large enough p. Finally, in a recent

breakthrough result, Khot [Kho04] shows that for any p strictly greater than 1, SVP in the `p norm

is hard to approximate to within any constant unless NP ⊆ RP. Under the stronger assumption

that NP * RTIME(2poly(log n)), the hardness factor becomes 2(log n)1/2−ε
for any ε > 0.

Summarizing, the best known hardness result is nO(1/ log log n) in `∞ [Din02], any constant (and

beyond) in `p for 1 < p < ∞ [Kho04], and 2 − ε in `1 [Mic01b].

Hardness of other lattice problems: Already in 1981, van Emde Boas [vEB81] established

that CVP is NP-hard in any `p norm. A series of hardness results for CVP was obtained in the

following years. The best known hardness result shows that for any 1 ≤ p ≤ ∞, CVP in the `p

norm is NP-hard to approximate to within nO(1/ log log n). For p < ∞, this result is due to Dinur,

Kindler, Raz, and Safra [DKRS03]; Dinur [Din02] used similar techniques to obtain the result for

p = ∞.

Another problem considered in this paper is a variant of CVP known as the Closest Vector

Problem with Preprocessing (CVPP). The motivation for this problem comes from applications in

cryptography and coding (see [Mic01a] for more details). Informally, our goal in CVPP is to solve

the CVP for any fixed lattice (so the input of the algorithm consists only of a target point). Since

the lattice is fixed, our algorithm can be hardwired with some information on the lattice that is

hard to compute, such as a short basis. Indeed, using such ideas, [AR05] present an algorithm that

approximates CVPP to within O(n/
√

log n) in the `p norm for 1 ≤ p ≤ ∞.2 Feige and Micciancio

[FM04] showed that for any p < ∞, CVPP is NP-hard to approximate to within p
√

5/3 − ε. This

was later improved to p
√

3 − ε by Regev [Reg04a]. More recently, Alekhnovich, Khot, Kindler and

Vishnoi [AKKV05] improved this result by showing that CVPP is NP-hard to approximate to within

any constant. They also showed hardness of (log n)1/p−ε for any 1 ≤ p < ∞ under the assumption

that NP * DTIME(2poly log(n)). Note that no hardness result was previously known for p = ∞.

Two more lattice problems considered here are the Shortest Independent Vector Problem (SIVP)

and the Shortest Basis Problem (SBP). Part of the interest in these problems comes from Ajtai’s

work [Ajt96] where they play an important role. In the former problem, the goal is to find n linearly

independent vectors in a given lattice while minimizing the length of the longest vector in the set.

In the latter problem, the goal is to find a basis of a given lattice while minimizing the length

of the longest vector in the basis. Both problems can be defined in their approximation version.

1Under a certain number-theoretic conjecture, the assumption becomes NP 6= P.
2In fact, for the `2 norm their algorithm gives an approximation factor of O(

√

n/ log n). Using well-known relations

between norms (see Section 1.2), the same algorithm gives an approximation factor of O(n1/2+|1/2−1/p|/
√

log n) in

any `p norm.
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Blömer and Seifert [BS99] showed that in the `2 norm, both problems are NP-hard to approximate

to within any constant. Under the stronger assumption NP * DTIME(2poly log(n)), they prove a

hardness factor of 2log1−ε n for any ε > 0.

Behavior as a function of p? Considering the above results, we see many different behaviors as

a function of p: one result works only for large enough p and improves as p increases [Kho03], some

results only hold for p = ∞ [vEB81, Din02], most results weaken as p increases and do not work

for p = ∞ [Mic01b, FM04, Reg04a, AKKV05], and one result does not work for p = 1 [Kho04]. Is

there any unifying pattern here? This is the question we set out to answer in this paper.

Our results

Informally, our main result shows that for lattice problems, the `2 norm is the easiest. A more

precise description is given in the following theorem.

Theorem 1.1 For any ε > 0, γ ≥ 1 and 1 ≤ p ≤ ∞ there exists a randomized polynomial time

reduction from approximating SVP in the `2 norm to within (1 + ε)γ to approximating SVP in the

`p norm to within γ. A similar result holds for CVP, SIVP, SBP, and CVPP.

Notice that these reductions almost preserve the approximation factor. This will be important

for deriving hardness results. As we mention later, if one is willing to lose a factor of
√

n in the

approximation factor, trivial reductions exist. We note that due to the nature of the problem, our

reductions in the case of CVPP are in fact deterministic. Moreover, all our reductions hold also for

the decision variants of these lattice problems. Finally, in Section 6 we mention some extensions of

Theorem 1.1.

The theorem implies that it is enough to show hardness of approximation for problems such

as SVP, SIVP, and CVP in the `2 norm. Any such hardness result automatically implies hardness

of approximation within essentially the same factor in all other `p norms for 1 ≤ p ≤ ∞. By

combining our theorem with known results, we obtain the following new hardness of approximation

results. See also Table 1 for a summary.

Norm Complexity Assumption New Hardness Known Hardness

SVP 1
NP * RP any constant 2 − ε

NP * RTIME(2poly(log n)) 2(log n)1/2−ε
2 − ε

CVPP

[2,∞) NP * RTIME(2poly(log n)) (log n)1/2−ε (log n)1/p−ε

∞ NP * RP any constant none

NP * RTIME(2poly(log n)) (log n)1/2−ε none

SBP

SIVP
[1,∞]

NP * RP any constant same only in `2

NP * RTIME(2poly(log n)) 2(log n)1/2−ε
same only in `2

Table 1: Summary of new inapproximability results

• Using [Kho04], we obtain that SVP in the `1 norm is hard to approximate

– to within any constant unless NP ⊆ RP, and

– to within 2(log n)1/2−ε
for any ε > 0 unless NP ⊆ RTIME(2poly(log n)).
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Previously, this problem was known to be hard to approximate to within 2−ε unless NP ⊆ RP

[Mic01b].

• Using [AKKV05], we obtain that for any 2 < p < ∞, CVPP in the `p norm is hard to

approximate

– to within (log n)1/2−ε, for any ε > 0, unless NP has quasi-polynomial sized circuits.

Previously, this problem was known to be hard to approximate to within (log n)1/p−ε under

the same assumption. For the case p = ∞, we show that CVPP is hard to approximate

– to within any constant unless NP ⊆ P/poly, and

– to within (log n)1/2−ε for any ε > 0, unless NP has quasi-polynomial sized circuits.

Previously, no hardness of approximation was known in the `∞ norm.

• Using [BS99], we obtain that SIVP and SBP in the `p norm for 1 ≤ p ≤ ∞ are hard to

approximate

– to within any constant unless NP ⊆ RP, and

– to within 2(log n)1−ε
for any ε > 0 unless NP ⊆ RTIME(2poly log(n)).

To the best of our knowledge, all previous results apply only to the `2 norm.

It also follows from the theorem that it is enough to find algorithms for, say, SVP or CVP in, say,

the `1 or `∞ norm. Any such algorithm yields an algorithm in the `2 norm. Obtaining algorithms in

the `1 and `∞ norm might be conceptually easier. For instance, [AKS01] first present an algorithm

for SVP in the `∞ norm and then extend it to the `2 norm.

However, the usefulness of Theorem 1.1 in deriving algorithmic results in the case p > 2 is quite

limited. The reason for this is that for p > 2, the reductions incur a polynomial blowup in the

dimension. To see why this might be a problem, assume one comes up with an algorithm that

solves SVP in the `∞ norm in time 2O(
√

n) where n is the dimension. Because of the polynomial

blowup in the dimension, the running time of the resulting algorithm in the `2 norm is 2O(nc) for

some possibly large constant c and is thus not better than known algorithms. To this end, we prove

the following theorem. It shows a reduction from `2 to `p for any 2 < p ≤ ∞ that preserves the

dimension. This comes at the expense of a small loss in the approximation factor.

Theorem 1.2 For any γ ≥ 1 and 2 ≤ p ≤ ∞ there exists a randomized polynomial time dimension-

preserving reduction from approximating SVP in the `2 norm to within γ′ to approximating SVP in

the `p norm to within γ where in the case p < ∞, γ′ = c(p)γ for some constant c(p) and in the

case p = ∞, γ′ = O(
√

log nγ). A similar result holds for CVP, SIVP, SBP, and CVPP.

1.2 Embeddings

It is a well-known fact (and not too difficult to verify) that for any vector x ∈ Rn and any p,

n1/p−1/2‖x‖2 ≤ ‖x‖p ≤ ‖x‖2 if p > 2 and ‖x‖2 ≤ ‖x‖p ≤ n1/p−1/2‖x‖2 if 1 ≤ p < 2. This

fact alone already allows one to construct (trivial) reductions among lattice problems in different

norms. These reductions, however, lose a polynomial factor (in n) in the approximation factor,

and are therefore useless when dealing with sub-polynomial approximation factors (as is the case
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in virtually all hardness of approximation results of lattice problems). Our goal in this paper is

to present reductions that (almost) preserve the approximation factor. Our reductions are based

on embeddings of normed spaces, a topic which has fascinated mathematicians for many decades,

and has recently also found applications in computer science (see the survey by Indyk [Ind01] and

references therein).3 An embedding is simply a mapping from one normed space (say, Rn with the

`2 norm) to another (say, Rm with the `1 norm). We then define the distortion of the embedding

as the amount by which distances are distorted by the embedding. We will be interested in finding

low-distortion embeddings, as such embeddings approximately preserve distances. By using low-

distortion embeddings, one can essentially take any solution to a problem in one norm (say, `1) and

extend it to a solution in another norm (say, `2).

More formally, let X be the space Rn equipped with the `q norm and let Y be the space Rm

equipped with the `p norm. By an embedding from X to Y we mean a linear function f : X → Y .4

If an embedding f satisfies that for any two points x, x′ ∈ X,

(1 − ε)‖x − x′‖q ≤ ‖f(x) − f(x′)‖p ≤ (1 + ε)‖x − x′‖q,

then we say that the distortion of f is (1+ε)
(1−ε) . Since f is linear, this is equivalent to the property

that for all x ∈ X

(1 − ε) ‖x‖q ≤ ‖f(x)‖p ≤ (1 + ε) ‖x‖q . (1)

Moreover, it is equivalent to require this only for x such that ‖x‖q = 1 (again by linearity).

The celebrated theorem of Dvoretzky [Dvo61] was the first to establish that embeddings of

normed spaces exist. More specifically, it shows that if X is the space Rn equipped with the `2

norm and Y is the space Rm equipped with some `p norm, then for large enough m, a random

orthogonal mapping from X to Y is with high probability an embedding with very low distortion,

namely, 1+ε. (An equivalent, and more common formulation of Dvoretzky’s theorem says that most

low-dimensional subspaces of an `p space are close to Euclidean; yet another equivalent formulation

says that most low-dimensional slices of the `p ball are close to an `2 ball.) This result was later

improved by Figiel, Lindenstrauss and Milman [FLM77] who gave a tight estimate on how large m

should be. Specifically, they show that for any p < ∞, it is enough to take m = poly(n). This fact

is important since it allows our reductions to run in polynomial time.

However, for the case p = ∞, things are not that good: [FLM77] showed that in order to achieve

any constant distortion, m must be exponential in n. A way to bypass this problem was suggested

by Indyk in [Ind03]. His idea was to relax the distortion requirement and to instead settle for the

requirement that for any fixed x ∈ X, each of the inequalities in (1) holds with high probability

over the choice of f . He then shows that such an embedding exists for m = poly(n). We will

discuss this and other known embedding techniques in more detail later.

In most of our applications we use known embedding results in a black-box fashion. Never-

theless, it is instructive to review how such embedding results are established. Specifically, we

concentrate on the elegant proof of [FLM77] and consider the case p = 1. Our goal is to prove that

if f is chosen from an appropriate distribution, then with high probability Equation (1) (with p = 1,

q = 2) holds for any x ∈ Rn. Moreover, it is enough to show this for any x satisfying ‖x‖2 = 1.

3We note that another notion of embedding, namely embedding of finite metrics, has recently attracted much

attention (see, e.g., [ALN05]). In contrast, our focus in this paper is on embeddings of normed spaces (containing an

infinite number of points).
4One can easily extend this definition (and most of our results) to arbitrary finite dimensional Banach spaces, but

for simplicity we restrict our attention to `p spaces.
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The main idea in the proof is what is known as the concentration of measure phenomenon. In our

case, it implies that a y chosen uniformly from the unit `2 sphere Sm−1 = {y ∈ Rm | ‖y‖2 = 1}
satisfies that ‖y‖1 is in the range (1± ε)M with probability 1− 2−cm for some constant c and some

M that depends only on m. Let f be a random orthogonal mapping from Rn to Rm normalized by

1/M . Fix some x ∈ Rn with ‖x‖2 = 1. Using the fact that a random orthogonal mapping maps x

to a uniform element of Sm−1, we see that ‖f(x)‖1 ∈ (1 ± ε) holds with probability 1 − 2−cm. By

an application of a union bound, we obtain that for any fixed set K ⊆ Rn of cardinality at most

2cm/2, Equation (1) is satisfied for all x ∈ K with probability at least 1− 2−cm/2. To complete the

proof, [FLM77] show that it is enough if (1) holds for all x in some ‘dense enough’ set of points on

the unit `2 sphere, and that there exist such a set of cardinality 2Cn for some constant C. Hence,

by choosing m > 2Cn/c = O(n) we obtain the required result. For more details, see the friendly

survey by Ball [Bal97, Sections 8 and 9].

1.3 Overview of the Proofs

The proof of Theorem 1.1 consists of three parts, where in each part we apply a different embedding.

We now briefly describe each part. In the first part, we prove the reductions to `p norms for p < ∞.

Our goal here is to solve an instance of a lattice problem, say SVP, in the `2 norm using a solution

in the `p norm. The proof in this case follows almost immediately from the embedding of [FLM77].

Indeed, we can take a random orthogonal mapping from Rn to Rm for some m = poly(n) and apply

it to our input lattice. Since this mapping has low-distortion, a solution to the resulting instance

in `p is also a solution to the original problem in `2.

In the second part of the proof, we present the reduction to the `∞ norms for all problems except

CVPP. This case requires some more care, as we no longer have the low-distortion embeddings of

[FLM77]. Instead, using the embedding of Indyk [Ind03] we construct an embedding with the

property that it does not contract any point in Rn (i.e., the left inequality in (1) holds for any x)

and that for any fixed point in Rn there is a polynomially small probability of expansion (i.e., for

any fixed x, the right inequality in (1) holds with high probability). This embedding is given in

Theorem 3.6. Fortunately, this weak guarantee is enough to make essentially the same reduction

as before work. The main observation is that all we care about, say in the case of SVP or CVP, is

that one fixed vector does not expand by too much and that no other vector contracts by too much.

For instance, in the case of SVP, we want the shortest vector not to expand. Other vectors can

expand, but we must make sure that they do not contract. This is exactly what our embedding

guarantees.

In the third part of the proof, we consider the `∞ case of CVPP. In this case, we cannot no

longer apply the embedding of Theorem 3.6 directly. The reason for this is that a reduction for

CVPP is required to fix a lattice that is good for all possible query points. If we apply Theorem

3.6 directly, the resulting lattice will be good for most query points, but not all. Instead, we take a

sample of embeddings into `∞. In Theorem 3.11, we show that with high probability, such a sample

has the following property: For any point x ∈ Rn, there is an embedding in the sample that does

not expand it by ‘too much’ and moreover, no embedding in the sample contracts it by ‘too much’.

This property is enough to establish the CVPP reduction.

Finally, for the proof of Theorem 1.2 we analyze a simple embedding that consists of nothing

more than a random rotation. Somewhat surprisingly, we show that this simple embedding is

already good enough to be used for lattice reductions.
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2 Preliminaries

The space Rn equipped with the `p norm is denoted by `n
p . We denote by Sn−1 the set of points

{x ∈ Rn | ‖x‖2 = 1}. The `p distance of a point t from a set of points L is denoted by distp(t,L) =

infv∈L ‖v − t‖p.

Definition 2.1 (successive minima) For a lattice L, we define its ith successive minimum in

the `p norm as

λp
i (L) = inf {r | Bp(r) contains i linearly independent vectors from L}

where Bp(r) is defined as {x | ‖x‖p ≤ r}. In particular, λp
1(L) is the length of the shortest nonzero

vector in the `p norm.

Fact 2.2 For m ≥ n, a full rank linear mapping f : Rn → Rm preserves linear dependencies. In

particular, if L is a lattice in Rn then f(L) is a lattice in Rm.

Definition 2.3 (θ-net) A θ-net on the sphere Sn−1 = {x | ‖x‖2 = 1} is a set of points K0 ⊆ Sn−1

such that for any x ∈ Sn−1 there is a point y ∈ K0 for which dist2(x, y) ≤ θ.

In this paper we consider the following lattice problems. In all problems, γ ≥ 1 is some arbitrary

approximation factor, 1 ≤ p ≤ ∞ is the norm involved, and the input lattice is given in the form of

some arbitrary basis. For each problem we describe both its search variant and its decision variant.

Definition 2.4 (SVPp
γ) In SVPp

γ, we are given a lattice L ⊆ Rn. Our goal is to find a nonzero

vector v ∈ L such that ‖v‖p ≤ γ · λp
1(L).

Definition 2.5 (GapSVPp
γ) In GapSVPp

γ, we are given a lattice L ⊆ Rn and a parameter d > 0.

In YES instances, λp
1(L) ≤ d whereas in NO instances λp

1(L) > γ · d.

Definition 2.6 (CVPp
γ) In CVPp

γ , we are given a lattice L ⊆ Rn and a target vector t ∈ Rn. Our

goal is to find a vector v ∈ L such that ‖v − t‖p ≤ γ · distp(t,L).

Definition 2.7 (GapCVPp
γ) In GapCVPp

γ , we are given a lattice L ⊆ Rn, a target vector t ∈ Rn,

and a parameter d > 0. In YES instances distp(v,L) ≤ d. In NO instances distp(v,L) > γd.

We now consider the preprocessing variant of CVP. Recall the intuition that in CVPP we try

to solve CVP instances for any fixed lattice. In other words, we ask whether for any fixed lattice

L there exists a circuit that solves CVP instances of the form (L, t). We make this precise in the

following definitions by introducing a computationally unlimited ‘preprocessing’ function.

Definition 2.8 (CVPPp
γ) A solution to CVPPp

γ is a (computationally unlimited) function P that

maps any given lattice L ⊆ Rn to a circuit of size polynomial in the description of L. This circuit,

given any target vector t ∈ Rn, solves the CVPp
γ instance given by (L, t).

Definition 2.9 (GapCVPPp
γ) A solution to GapCVPPp

γ is a (computationally unlimited) function

P that maps any given lattice L ⊆ Rn to a circuit of size polynomial in the description of L. This

circuit, given any target vector t ∈ Rn and a number d, solves the GapCVPp
γ instance given by

(L, t, d).
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Notice that the above definitions are non-uniform. A uniform formulation also exists. Here,

given a uniform sequence of bases {Bn}∞n=1 of increasing dimension (i.e., an algorithm that given n

generates the basis Bn), P generates an algorithm that given n, and any point t, solves CVPp
γ(Bn, t).

In this paper we focus on the non-uniform case.

We now review the Shortest Independent Vectors Problem (SIVP). In SIVPp, we are given a

lattice L and our goal is to find a set of n linearly independent vectors {vi}n
i=1 in L such that

maxi ‖vi‖p is minimized.

Definition 2.10 (SIVPp
γ) In SIVPp

γ, we are given a rank-n lattice L ⊆ Rm and our goal is to find

a set of n linearly independent vectors {vi}n
i=1 in L such that maxi ‖vi‖p ≤ γ · λp

n(L).

Definition 2.11 (GapSIVPp
γ) In GapSIVPp

γ , we are given a rank-n lattice L ⊆ Rm and a parameter

d > 0. In YES instances, λp
n(L) ≤ d whereas in NO instances λp

n(L) > γd.

A closely related problem is the Shortest Basis Problem (SBP). In SBPp, given a lattice L, our

goal is to find a basis {vi}n
i=1 of L such that maxi ‖vi‖p is minimized. For the following definitions

it is useful to define κp(L) as the minimum of maxi ‖vi‖p over all bases {vi}n
i=1 of L.

Definition 2.12 (SBPp
γ) In SBPp

γ, we are given a rank-n lattice L ⊆ Rm and the goal is to find a

basis {vi}n
i=1 of L, such that maxi ‖vi‖p ≤ γ · κp(L).

Definition 2.13 (GapSBPp
γ) In GapSBPp

γ, we are given a rank-n lattice L ⊆ Rm and a parameter

d > 0. In YES instances, κp(L) ≤ d and in NO instances κp(L) > γ · d.

Most of our reductions are randomized. Recall that a randomized Karp reduction from a decision

problem A to a decision problem B is a polynomial time randomized machine R mapping instances

of A to instances of B, such that for every x ∈ A, R(x) ∈ B with probability at least 2/3 and

similarly, for every x /∈ A, R(x) /∈ B with probability at least 2/3. In addition, a randomized Cook

reduction R from A to B is a randomized polynomial time machine R that solves A by using an

oracle to B. We require that for any instance x of A, R(x) is a correct solution with probability at

least 2/3.

3 Embedding

In this section we introduce several families of embeddings that will be used later to prove the

main theorem. In Section 3.1 we state the result of [FLM77] and indicate how to apply it in our

setting. Then, in Section 3.2, we discuss the result of Indyk [Ind03] for embedding into `∞. We

then present a generalization of it that will be used in most of our reductions into `∞. In our

CVPP reduction into `∞, we combine several embeddings together. This method is described and

analyzed in Section 3.3.

3.1 Embedding into `p for p < ∞
Definition 3.1 (Embedding family for p < ∞) For any real 1 ≤ p < ∞ and integers m ≥ n

we define a distribution F(p, n,m) over embedding functions f : `n
2 → `m

p . Choosing a function

f from F(p, n,m) is done as follows. First choose n orthonormal vectors in Sm−1 uniformly at

9



random5 and let A be the m × n matrix whose columns are the orthonormal vectors. Then define

f(x) = νp · Ax where νp = νp(n,m) is some normalization factor.

Clearly, any embedding function f ∼ F(p, n,m) is linear and moreover has full column rank. In

particular, by Fact 2.2, for any lattice L in `n
2 , f(L) is a lattice in `m

p .

The following result shows that for large enough m, F(p, n,m) is a low-distortion family of

embeddings from ln2 into lmp .

Theorem 3.2 [FLM77] There exists νp(n,m) such that for all p < ∞, ε > 0 and n there is m

such that with probability at least 1−2−Ω(n), a randomly chosen embedding function f ∼ F(p, n,m)

satisfies that for all x ∈ Rn

(1 − ε) ‖x‖2 ≤ ‖f(x)‖p ≤ (1 + ε) ‖x‖2 . (2)

A choice of m that satisfies this is

m =

{

ε−2n 1 ≤ p < 2

ε−pp−p/2np/2 2 ≤ p < ∞
.

For our applications, we will need to efficiently sample a function from F(p, n,m). Let us briefly

describe how this can be done. In order to sample n orthonormal vectors, first choose n vectors

independently from the uniform distribution on Sm−1. With probability 1, the vectors are linearly

independent and we can therefore apply the Gram-Schmidt orthogonalization process to them.

By normalizing the resulting vectors, we obtain n orthogonal vectors with the correct distribution.

Another issue to consider is the computation of the constant νp. It is possible to calculate it directly

from its definition as given in [FLM77]. A simpler solution, which is sufficient for our purposes,

is the following. Choose a random matrix A as in Definition 3.1. Then, for some fixed vector x,

compute ‖x‖2/‖Ax‖p. As can seen from Equation (2), with probability 1 − 2−Ω(n), this value is

in the range (1 ± ε)νp and we can therefore use it instead of νp with only a small increase in the

distortion.

3.2 Embedding into `∞

Definition 3.3 (Embedding family for p = ∞) For any m ≥ n, we define a distribution F(∞, n,m)

over embedding functions f : `n
2 → `m

∞. Choosing a function f from F(∞, n,m) is done as follows.

Let A be an m×n matrix each of whose entries in chosen independently from the standard normal

distribution N(0, 1), and define f(x) = ν∞ ·Ax where ν∞ = (2 ln(m/
√

ln m))−1/2 is a normalization

factor.

As before f ∼ F(∞, n,m) is a linear transformation, moreover, it is easy to see that with probability

1, it has full rank (for m ≥ n).

Definition 3.4 (Probability of expansion and contraction) For a family F of embedding func-

tions from `n
q to `m

p we define the probability of expansion by more than (1 + ε) as

max
v

Pr
f∼F

[

‖f(v)‖p ≥ (1 + ε) ‖v‖q

]

.

5More precisely, from the unique rotationally invariant probability measure on the set of all n-tuples of orthogonal

vectors in Sm−1.
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Similarly, we define the probability of contraction by more than (1 − ε) as

max
v

Pr
f∼F

[

‖f(v)‖p ≤ (1 − ε) ‖v‖q

]

.

Theorem 3.5 [Ind03] For any small enough positive reals ε, δ, η > 0, the family F(∞, n,m) for

m = (δ−1 + log η−1 + 1/ε)O(1/ε) satisfies that its probability of contraction by more than (1 − ε) is

at most η and its probability of expansion by more than (1 + ε) is at most δ.

For completeness, we include a proof in Appendix A.1. Notice that in order to keep m ≤ poly(n)

we can take, for any constant ε > 0, η to be exponentially small in n and δ only polynomially small.

Partly for this reason, this embedding is sometimes known as an asymmetric embedding.

Notice also that, unlike Theorem 3.2, this theorem does not imply any bound on the distortion

of the embedding. Indeed, it only tells us that for a randomly chosen f , ‘most points’ are not

distorted by ‘too much’. However, for our reductions to work, we need the embedding to satisfy

a stronger property: a randomly chosen f should not contract any x ∈ Rn by ‘too much’. This

stronger property is shown in the following theorem.

Theorem 3.6 For any ε > 0, any large enough n, and any δ > 0, the family F(∞, n,m) for

m = (n log n+ δ−1 +1/ε)O(1/ε) satisfies the following two properties. Its probability of expansion by

more than 1 + ε is at most δ and with probability 1 − m2−Ω(n) over the choice of f ∼ F(∞, n,m),

we have that for any x ∈ Rn,

‖f(x)‖∞ ≥ (1 − ε) ‖x‖2 .

Proof: The proof starts by taking a fine enough net on Sn−1. We then choose η to be small

enough, and show that with high probability on the choice of f , none of the points on the net

contracts under f . Finally, we complete the proof of the theorem in Lemma 3.10 by showing that

if f does not contract any point on the net, then it also does not contract any point in Rn (in fact,

this lemma requires some rough bound on the maximum expansion of f ; such a bound is given in

Lemma 3.9). We start with two standard claims.

Claim 3.7 For any θ > 0, the unit sphere Sn−1 has a θ-net of cardinality at most (1 + 2/θ)n.

Proof: We follow [FLM77]. Let K0 be a maximal set of points in Sn−1 with pairwise distances

greater than θ. This set is a θ-net. The `2-balls of radius θ
2 centered at each y ∈ K0, (i.e.,

y + B2(
θ
2 )) are disjoint and contained in B2(1 + θ/2). By a volume argument it follows that

|K0| ≤ (1 + θ/2)n/(θ/2)n = (1 + 2/θ)n.

Claim 3.8 For a vector z chosen from the standard n-dimensional normal distribution,

Pr[‖z‖2 ≥ 2
√

n] ≤ 2−n.

Proof: By a change of variable, we see that
∫

Rn

e−‖z‖2
2/8dz = 2n

∫

Rn

e−‖z‖2
2/2dz.

On the other hand,
∫

Rn

e−‖z‖2
2/8dz ≥

∫

‖z‖2≥2
√

n
e−‖z‖2

2/8dz ≥ 4n

∫

‖z‖2≥2
√

n
e−‖z‖2

2/2dz

where we use that e−‖z‖2
2/8/e−‖z‖2

2/2 = e3‖z‖2
2/8 ≥ 4n whenever ‖z‖2 ≥ 2

√
n. The claim follows by

combining the two equations.
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The following lemma gives a rough bound on the maximum expansion of f .

Lemma 3.9 Let f be chosen randomly from F(∞, n,m). Then, with probability 1 − m2−Ω(n), for

any x ∈ Rn,

‖f(x)‖∞ ≤ 2
√

n ‖x‖2 .

Proof: We have

‖f(x)‖∞ = ν∞ max
i

|〈zi, x〉| < max
i

‖zi‖2 ‖x‖2

where ν∞ < 1 is the normalization factor from Definition 3.3. By a union bound and Claim 3.8,

Pr

[

max
i

‖zi‖2 ≥ 2
√

n

]

≤ m Pr
[

‖zi‖2 ≥ 2
√

n
]

≤ m · 2−n.

Lemma 3.10 Let K0 be some θ-net on the sphere Sn−1, and let f be an embedding function that

satisfies

∀y ∈ K0 ‖f(y)‖∞ ≥ (1 − ε) ‖y‖2 and ∀x ∈ Rn ‖f(x)‖∞ ≤ 2
√

n ‖x‖2 .

Then for any x ∈ Rn

‖f(x)‖∞ ≥ (1 − (ε + 2
√

nθ)) ‖x‖2 .

Proof: By linearity of f , it is enough to prove the theorem for any x ∈ Sn−1. So let x ∈ Sn−1 and

let y ∈ K0 be such that ‖x − y‖2 ≤ θ. By the triangle inequality and the linearity of f ,

‖f(x)‖∞ ≥ ‖f(y)‖∞ − ‖f(x) − f(y)‖∞
= ‖f(y)‖∞ − ‖f(x − y)‖∞
≥ (1 − ε) ‖y‖2 − 2

√
nθ

= (1 − ε) − 2
√

nθ.

We now return to the proof of the theorem. Set η = 2−10n log n and m = (δ−1+n log n+1/ε)O(1/ε)

as in Theorem 3.5. The bound on the expansion probability of F(∞, n,m) follows immediately

from Theorem 3.5. In the rest of the proof we prove the second claim.

For θ = 1
n let K0 be a θ-net of cardinality |K0| ≤ (1 + 2/θ)n. Such a net exists by Claim 3.7.

By Theorem 3.5, the probability that a randomly chosen f ∼ F(∞, n,m) contracts a point y ∈ K0

by more than (1 − ε) is at most η. By the union bound we obtain that with probability at least

1 − η · (1 + 2/θ)n ≥ 1 − 2−Ω(n) a random f satisfies that for every y ∈ K0

‖f(y)‖∞ ≥ (1 − ε) ‖y‖2 .

Moreover, by Lemma 3.9, we know that with probability 1−m2−Ω(n), a random f satisfies that for

all x ∈ Rn, ‖f(x)‖∞ ≤ 2
√

n ‖x‖2. We can now apply Lemma 3.10 and obtain that for all x ∈ Rn

‖f(x)‖∞ ≥
(

1 −
(

ε +
2√
n

))

‖x‖2 ≥ (1 − 2ε) ‖x‖2

for large enough n. Since ε is arbitrary, this completes the proof of the theorem.
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3.3 Combining Several Embeddings in `∞

In the previous subsection, we showed that an embedding function chosen from the family F(∞, n,m)

does not contract any x ∈ Rn by more than 1 − ε. On the other hand, the bound we have on ex-

pansion is much weaker and only says that the probability of expansion is some small polynomial.

As shown in [FLM77], this bound is in fact close to being tight, so there is no hope to improve the

analysis substantially. For almost all of our applications, this small probability of expansion causes

no difficulty and we can use the family F(∞, n,m) directly.

The only exception is our application to CVPP. The problem is that in CVPP, we must fix an

embedding of the lattice already in the preprocessing function. This embedding should be good for

any query point x ∈ Rn. We need an embedding that will not expand nor contract any x ∈ Rn.

Hence, it might seem at first that we have to use a low-distortion embedding. This is in fact what

we do for p < ∞; however, by the result of [FLM77], such an embedding does not exist for p = ∞
unless m is exponential in n.

We solve this issue by combining several embedding functions. More precisely, we sample

k = O(n) embedding functions f1, . . . , fk from F(∞, n,m), and show that with high probability,

for any x ∈ Rn there is at least one fi that does not expand x and none of f1, . . . , fk contracts x.

In particular, this shows that for any x ∈ Rn, mini ‖fi(x)‖∞ gives a good estimate of ‖x‖2. This

estimate is the one we use in our application to CVPP.

Theorem 3.11 For any ε > 0 and any large enough n the following holds. Let k = 10n and

m = (n log n)O(1/ε). Then for f1, . . . , fk chosen independently from F(∞, n,m) we have that with

high probability, for any x ∈ Rn,

∃i, ‖fi(x)‖∞ ≤ (1 + ε) ‖x‖2 and (3)

∀j, ‖fj(x)‖∞ ≥ (1 − ε) ‖x‖2 . (4)

Proof: Choose m = (n log n)O(1/ε) as given by Theorem 3.6 with ε and δ = 1/n. For any fixed j,

Theorem 3.6 says that with probability 1− 2−Ω(n), for any x we have ‖fj(x)‖∞ ≥ (1− ε) ‖x‖2. By

the union bound, we obtain that (4) holds with probability 1− k2−Ω(n) = 1 − 2−Ω(n).

In the remainder of the proof we prove (3). We first show that it holds for all y in some θ-net

and then show how to extend it to any x ∈ Rn. Let θ = 1/n and let K0 be a θ-net on Sn−1

with |K0| ≤ (1 + 2/θ)n, as given by Claim 3.7. Fix some y ∈ K0. By Theorem 3.6, we know

that the probability that a randomly chosen f ∼ F(∞, n,m) expands y by more than (1 + ε) is

at most δ. Hence, the probability that all of f1, . . . , fk expand y by more than (1 + ε) is at most

δk = 2−10n log n. By the union bound it follows that the probability that there exists a y ∈ K0

which every fi expands by more than (1 + ε) is at most (1 + 2/θ)n · 2−10n log n ≤ 2−8n log n. Hence

with probability 1 − 2−Ω(n), (3) holds for all y ∈ K0. We complete the proof of the theorem in the

following lemma. To apply it, notice that by Lemma 3.9, we have that with probability 1− 2−Ω(n)

no fi expands any point by more than 2
√

n.

Lemma 3.12 Let f1, f2, . . . , fk be such that

∀y ∈ K0 ∃i, ‖fi(y)‖∞ ≤ (1 + ε) ‖y‖2 and ∀x ∈ Rn ∀j, ‖fj(x)‖∞ ≤ 2
√

n ‖x‖2

hold where K0 is some θ-net on Sn−1. Then

∀x ∈ Rn,∃i, ‖fi(x)‖∞ ≤ (1 + ε + 2
√

nθ) ‖x‖2 .
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Proof: By linearity of fi, it is enough to prove the lemma for x ∈ Sn−1. So for any x ∈ Sn−1, let

y ∈ K0 be such that ‖x−y‖2 ≤ θ and let i be such that ‖fi(y)‖∞ ≤ (1+ ε) ‖y‖2. Using the triangle

inequality and the linearity of fi,

‖fi(x)‖∞ ≤ ‖fi(y)‖∞ + ‖fi(x − y)‖∞ ≤ (1 + ε) ‖y‖2 + 2
√

nθ = 1 + ε + 2
√

nθ.

4 Reductions among Lattice Problems

In this section we prove Theorem 1.1. In Sections 4.1, 4.2, and 4.3 we present a sequence of

reductions for the ‘standard’ lattice problems, namely SVP, CVP, SIVP, and SBP and for each

problem we consider both the search variant and the decision variant. Although these reductions

are not exactly the same, they follow an almost identical pattern. The reader might therefore

wish to read the first reduction and then skip directly to Section 4.4 where we describe the CVPP

reduction (which is somewhat more subtle).

4.1 SVP reductions

Theorem 4.1 For all ε > 0 and for all 1 ≤ p ≤ ∞, there is a randomized Cook reduction from

SVP2
γ to SVP

p
γ′ where γ′ = 1−ε

1+εγ.

Proof: The reduction is given an n-dimensional lattice L. The reduction randomly chooses f ∼
F(p, n,m) that is used to embed `n

2 in `m
p where m is given by

m =











ε−2n 1 ≤ p < 2 by Theorem 3.2

ε−pp−p/2np/2 2 ≤ p < ∞ by Theorem 3.2

(n log n)O(1/ε) p = ∞ by setting δ = 1/n in Theorem 3.6

. (5)

The reduction then invokes the oracle of SVP
p
γ′ with f(L) and obtains some s′ ∈ f(L). The output

of the reduction is the lattice vector f−1(s′) ∈ L (where f−1 is defined on the image of f).

We now prove the correctness of the reduction. Let w ∈ L be a vector that achieves λ2
1(L). By

Theorem 3.2 (for p < ∞) or Theorem 3.6 (for p = ∞) with probability at least 1 − 2−Ω(n) over

f ∼ F(p, n,m), for any x ∈ Rn,

(1 − ε) ‖x‖2 ≤ ‖f(x)‖p . (6)

In addition, for the vector w, with probability at least 1 − 1/n (and in fact 1− 2−Ω(n) for p < ∞),

‖f(w)‖p ≤ (1 + ε) ‖w‖2 . (7)

So with probability at least, say, 1 − 2
n , both (6) and (7) hold. We complete the proof by showing

that in such a case
∥

∥f−1(s′)
∥

∥

2
≤ γλ2

1(L). Using ‖s′‖p ≤ γ′ · λp
1(f(L)),

∥

∥f−1(s′)
∥

∥

2

(6)

≤ 1

1 − ε

∥

∥s′
∥

∥

p
≤ 1

1 − ε
γ′ · λp

1(f(L))

≤ 1

1 − ε
γ′ ‖f(w)‖p

(7)

≤ 1 + ε

1 − ε
γ′ ‖w‖2 = γ · λ2

1(L)

where the third inequality holds since f(w) ∈ f(L).
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Theorem 4.2 For any ε > 0, 1 ≤ p ≤ ∞, γ > 1 there is a randomized Karp reduction from

GapSVP2
γ to GapSVP

p
γ′ where γ′ = 1−ε

1+εγ.

Proof: The input of the reduction is a GapSVP2
γ instance (L, d). The reduction randomly chooses

f ∼ F(p, n,m) where m is as in Equation (5). The output of the reduction is the GapSVP
p
γ′ instance

(f(L), d′) where d′ = (1 + ε)d.

We now prove the correctness of the reduction. First we consider a YES instance where there

exists u ∈ L such that ‖u‖2 ≤ d. From Theorem 3.6 (for p = ∞) or Theorem 3.2 (for p < ∞) we

obtain that with probability at least 1 − 1/poly(n) (and in fact 1 − 2−Ω(n) for p < ∞) ‖f(u)‖p ≤
(1 + ε) ‖u‖2 ≤ (1 + ε)d = d′. Since f(u) ∈ f(L), λp

1(f(L)) ≤ (1 + ε)d = d′ and hence the output is

a YES instance for GapSVP
p
γ′ .

We now consider a NO instance where λ2
1(L) > γd. From Theorem 3.6 (for p = ∞) or Theorem

3.2 (for p < ∞), with probability 1−2−Ω(n) over the choice of f ∼ F(∞, n,m), f does not contract

any x ∈ Rn by more than (1 − ε). In particular, f does not contract any u ∈ L. Thus, if for all

nonzero u ∈ L, ‖u‖2 > γd then with probability at least 1 − 2−Ω(n),

∀v ∈ f(L), v 6= 0 ‖v‖p ≥ (1 − ε)
∥

∥f−1(v)
∥

∥

2
> (1 − ε)γd =

1 − ε

1 + ε
γd = γ′d′

where we use that f−1(v) ∈ L. We have obtained a NO instance of GapSVP
p
γ′ .

Combining Khot’s result [Kho04] and Theorem 4.2 we obtain the following corollaries:

Corollary 4.3 SVP in the `1 norm is hard to approximate to within any constant unless NP ⊆ RP

and hard to approximate to within 2(log n)1/2−ε
for any ε > 0 unless NP ⊆ RTIME(2poly(log n)).

4.2 CVP reductions

Theorem 4.4 For any ε > 0, γ > 1 and any 1 ≤ p ≤ ∞, there is a randomized Cook reduction

from CVP2
γ to CVP

p
γ′ where γ′ = 1−ε

1+εγ.

Proof: The reduction is given an n-dimensional lattice L, and a target point t. The reduction

randomly chooses f ∼ F(p, n,m) that is used to embed `n
2 in `m

p where m is as in Equation (5).

The reduction then invokes the oracle of CVP
p
γ′ with f(L) and f(t) and obtains some v′ ∈ f(L).

The output of the reduction is the lattice vector f−1(v′) ∈ L.

We now prove the correctness of the reduction. Let w ∈ L be such that ‖w − t‖2 = dist2(t,L).

By Theorem 3.2 (for p < ∞) or Theorem 3.6 (for p = ∞) with probability at least 1− 2−Ω(n) over

f ∼ F(p, n,m), for any x ∈ Rn,

(1 − ε) ‖x‖2 ≤ ‖f(x)‖p . (8)

In addition, for the vector w−t, with probability at least 1−1/n (and in fact 1−2−Ω(n) for p < ∞),

‖f(w − t)‖p ≤ (1 + ε) ‖w − t‖2 . (9)

So with probability at least, say, 1 − 2
n , both (8) and (9) hold. We complete the proof by showing

that in such case
∥

∥f−1(v′) − t
∥

∥

2
≤ γ · dist2(t,L), where v′ is the vector returned by the oracle. By
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definition, ‖v′ − f(t)‖p ≤ γ′ · distp(f(t), f(L)). Indeed,

∥

∥f−1(v′) − t
∥

∥

2

(8)

≤ 1

1 − ε

∥

∥v′ − f(t)
∥

∥

p
≤ 1

1 − ε
γ′ · distp(f(t), f(L))

≤ 1

1 − ε
γ′ ‖f(w) − f(t)‖p

(9)

≤ 1 + ε

1 − ε
γ′ ‖w − t‖2 = γ · dist2(t,L)

where the second inequality follows from the choice of v′, and the third inequality holds since

f(w) ∈ f(L).

Theorem 4.5 For any ε > 0, γ > 1 and any 1 ≤ p ≤ ∞ there is a randomized Karp reduction

from GapCVP2
γ to GapCVP

p
γ′ , where γ′ = 1−ε

1+εγ.

Proof: The input of the reduction is a GapCVP2
γ instance (L, t, d), i.e., a lattice L, a target point t

and a parameter d. The reduction randomly chooses f ∼ F(p, n,m) where m is as in Equation (5).

The output of the reduction is the GapCVP
p
γ′ instance (f(L), f(t), d′) where f(L) is the embedded

lattice , f(t) is the embedded target vector, and d′ is a parameter d′ = (1 + ε)d.

We now prove the correctness of the reduction. First we consider a YES instance of GapCVP2
γ

where there exists u ∈ L such that ‖u − t‖2 ≤ d. With probability at least (1 − 1/n) (and even

1 − 2−Ω(n) for p < ∞), it follows from Theorem 3.2 (for p < ∞) or Theorem 3.6 (for p = ∞) that

‖f(u − t)‖p ≤ (1 + ε) ‖u − t‖2 ≤ (1 + ε)d = d′. In particular this implies that (f(L), f(t), d′) is a

YES instance for GapCVP
p
γ′ .

We now consider a NO instance of GapCVP2
γ in which dist2(t,L) > γd. By Theorem 3.2 (for

p < ∞) or Theorem 3.6 (for p = ∞), we conclude that with probability at least 1 − 2−Ω(n), for all

v ∈ f(L), ‖v − f(t)‖p ≥ (1 − ε)
∥

∥f−1(v) − t
∥

∥

2
> (1 − ε)γd = γ′d′ and thus (f(L), f(t), d′) is a NO

instance of GapCVP
p
γ′ and the correctness of the reduction follows.

4.3 SIVP and SBP reductions

We next show that the Shortest Independent Vector Problem SIVP under the `2 norm is not harder

than SIVP in the `p norm, for 1 ≤ p ≤ ∞. An essentially identical reduction works for the SBP

problem and is omitted.

Theorem 4.6 For any ε > 0, γ > 1 and any 1 ≤ p ≤ ∞ there is a randomized Karp reduction

from GapSIVP2
γ to GapSIVP

p
γ′ , where γ′ = 1−ε

1+εγ.

Proof: Given a GapSIVP2
γ instance (L, d), the reduction randomly chooses f ∼ F(p, n,m) where

m is chosen as in Equation (5) except for the case p = ∞:

m =











ε−2n 1 ≤ p < 2 by Theorem 3.2

ε−pp−p/2np/2 2 ≤ p < ∞ by Theorem 3.2

(n log n)O(1/ε) p = ∞ by setting δ = 1/n2 in Theorem 3.6

.

The reduction outputs the GapSIVP
p
γ′ instance (f(L), d′) where d′ = (1 + ε)d.

We now analyze the reduction. We first consider a YES instance, where there is a set U =

{u1, u2, . . . , un} of n linearly independent vectors in L whose length is at most d and show that there

is a set V = {v1, v2, . . . , vn} of n linearly independent vectors in f(L) whose length is at most d(1+ε).
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For all i define vi = f(ui). By union bound over all vectors in U it follows that with probability

at least 1 − 1/n (and in fact 1 − 2−Ω(n) for p < ∞), for all i, ‖vi‖p ≤ (1 + ε) ‖ui‖2 ≤ (1 + ε)d = d′.
Moreover, by Fact 2.2 v1, . . . , vn are linearly independence. Hence,(f(L), d′) a YES instance of

GapSIVP
p
γ′ .

We now consider a NO instance where any set U = {u1, u2, . . . , un} of n linearly independent

vectors in L is of length greater than γd and show that any set V = {v1, . . . , vn} of n linearly

independent vectors in f(L), is of length greater than γ′d(1 + ε) = γ′d′ where γ′ = 1+ε
1−εγ. By

Theorem 3.6 (for p = ∞) or Theorem 3.2 (for p < ∞) we obtain that with probability at least

1 − 2−Ω(n), f does not contract any x ∈ Rn by more than 1 − ε. So assume f has this property.

Let V = {v1, . . . , vn} be a set of n linearly independent vectors in f(L). Since f−1(V ) is a set

of n linearly independent vectors in `n
2 then there is i such that

∥

∥f−1(vi)
∥

∥

2
> γd. Therefore,

‖vi‖p ≥ (1 − ε)
∥

∥f−1(vi)
∥

∥

2
> (1 − ε)γd = γ′d′. We obtained a NO instance of GapSIVP

p
γ′ .

Theorem 4.7 For any ε > 0, γ > 1 and any 1 ≤ p ≤ ∞ there is a randomized Cook reduction

from SIVP2
γ to SIVP

p
γ′ , where γ′ = 1−ε

1+εγ.

The proof is very similar to that of Theorem 4.6 and is omitted.

4.4 CVPP reductions

We now present our reductions for the case of CVPP. As mentioned before, we focus on the

non-uniform variant of the problem. It is possible to apply similar ideas to the uniform case.

However, because of their probabilistic nature, our reductions do not quite fit the standard uniform

formulation of CVPP. While this can be mended by an appropriate modification of the model, the

resulting statement is not so elegant and we therefore choose to ignore this issue.

Before we go on, we should explain how to define a reduction between preprocessing problems.

For example, a Cook reduction from GapCVPP2
γ to GapCVPP

p
γ′ in the non-uniform model is simply

a solution to GapCVPP2
γ whose proof of existence is based on the assumption that a solution to

GapCVPP
p
γ′ exists. A Karp reduction from GapCVPP2

γ to GapCVPP
p
γ′ is a function R that maps

any lattice L to a circuit of size polynomial in the size of L. The circuit maps any instance (L, t, d)

of GapCVPP2
γ to an instance (L′, t′, d′) of GapCVPP

p
γ′ such that YES instances are mapped to YES

instances and NO instances are mapped to NO instances. Crucially, the lattice L′ is fixed and is

independent of t and d.

Theorem 4.8 For any ε > 0, γ > 1 and any 1 ≤ p ≤ ∞, there is a deterministic reduction from

GapCVPP2
γ to GapCVPP

p
γ′ where γ′ = 1−ε

1+εγ.

The proof for the case p < ∞ is very similar to previous proofs, and we describe it here briefly.

Proof: Given an n-dimensional lattice L, the reduction function R maps it to a circuit defined

as follows. Let m be the value given by Theorem 3.2 for n, ε, p. Let f be a (fixed) embedding

in F(p, n,m) for which Theorem 3.2 holds. The output of R is the circuit that maps an instance

(L, t, d) to the instance (f(L), f(t), (1 + ε)d). The proof of correctness is omitted.

Proof: Given an n-dimensional lattice L, the reduction function R maps it to a circuit defined

as follows. Let m be the value given by Theorem 3.2 for n, ε, p. Let f be a (fixed) embedding in

F(p, n,m) for which Theorem 3.2 holds. The output of R is the circuit that maps an instance (L, t)

to the instance (f(L), f(t)). The proof of the correctness is very similar to the proof of Theorem

4.4 and is therefore omitted.
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Lemma 4.9 For any ε > 0, γ > 1, there is a deterministic Cook reduction from GapCVPP2
γ to

GapCVPP∞
γ′ where γ′ = 1−ε

1+εγ.

Proof: Assume there exists a solution P∞ to GapCVPP∞
γ′ . We now describe a solution P2 to

GapCVPP2
γ . Assume we are given an n-dimensional lattice L. Let f1, f2, . . . , fk for k = 10n be a

sequence of embedding functions for which Theorem 3.11 holds. Notice that for each i, P∞(fi(L))

is a circuit that solves GapCVPP∞
γ′ instances of the form (fi(L), t, d). The preprocessing function

P2 outputs the following circuit. Notice that we hardwire fi and P∞(fi(L)) into the circuit.

Decoding circuit for GapCVPP2
γ with the lattice L:

1. Input: t, d

2. For every i = 1, . . . , k apply the circuit P∞(fi(L)) to the instance (fi(t), d
′) where

d′ = (1 + ε)d.

3. If at least one of the circuits returns YES then output YES, else output NO.

We now prove the correctness of the reduction. First assume we are given a YES instance, that

is, there is u ∈ L such that ‖u − t‖2 ≤ d. From (3) it follows that there exists an i for which fi

does not expand u − t by more than (1 + ε). Hence,

‖fi(u) − fi(t)‖∞ = ‖fi(u − t)‖∞ ≤ (1 + ε) ‖u − t‖2 ≤ (1 + ε)d = d′.

Since fi(u) ∈ fi(L) we obtain that at least one of the circuits returns YES and therefore we output

YES. Now assume that we are given a NO instance, that is, for all u ∈ L, ‖u − t‖2 > γ · d. By (4),

we have that for any x ∈ Rn, no fj contracts x by more than (1 − ε). It then follows that

∀j,∀v ∈ fj(L), ‖v − fj(t)‖∞ =
∥

∥

∥
fj(f

−1
j (v) − t)

∥

∥

∥

∞
≥ (1 − ε)

∥

∥

∥
f−1

j (v) − t
∥

∥

∥

2
> (1 − ε)γd = γ′d′.

Therefore all circuits return NO and we output NO.

As before, it is possible to extend this reduction to the search variant of the problem.

Theorem 4.10 For any ε > 0, γ > 1 and 1 ≤ p ≤ ∞, there is a deterministic Cook reduction

from CVPP2
γ to CVPP

p
γ′ for γ′ = 1−ε

1+εγ.

As before, we first handle the case p < ∞ and then discuss the p = ∞ case.

Lemma 4.11 For any ε > 0, γ > 1, p < ∞ there is a Cook reduction from CVPP2
γ to CVPP

p
γ′

where γ′ = 1−ε
1+εγ.

Proof: Assume there exists a solution Pp to CVPP
p
γ′ . We now describe a solution P2 to CVPP2

γ .

Given an n-dimensional lattice L, P2 maps it to a circuit defined as follows. Let m be the value

given by Theorem 3.2 for n, ε, p. Let f be a (fixed) embedding in F(p, n,m) for which Theorem 3.2

holds.

Decoding circuit for CVPP2
γ with the lattice L:

1. Input: t, d
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2. Apply the circuit Pp(f(L)) to f(t) and let v ∈ f(L) be the result.

3. Output f−1(v).

We omit the proof of the correctness, as it is very similar to previous proofs.

Lemma 4.12 For any ε > 0, γ > 1 there is a Cook reduction from CVPP2
γ to CVPP∞

γ′ where

γ′ = 1−ε
1+εγ.

Proof: Assume there exists a solution P∞ to CVPP∞
γ′ . We now describe a solution P2 to CVPP2

γ .

Assume we are given an n-dimensional lattice L. Let f1, f2, . . . , fk for k = 10n be a sequence of

embedding functions for which Theorem 3.11 holds. The preprocessing function P2 outputs the

following circuit.

Decoding circuit for CVPP2
γ with the lattice L:

1. Input: t

2. For every i = 1, . . . , k apply the circuit P∞(fi(L)) to fi(t) where d′ = (1 + ε)d and let

vi ∈ fi(L) be the result.

3. Let ui = f−1
i (vi). Output the ui that minimizes ‖t − ui‖2.

We now prove correctness. Let w ∈ L be a vector in Rn for which ‖w − t‖2 = dist2(t,L). By

(3), there exists an i such that fi does not expand w − t by more than 1 + ε. For this i,

‖fi(t) − fi(w)‖∞ = ‖fi(t − w)‖∞ ≤ (1 + ε) ‖t − w‖2 = (1 + ε)dist2(t,L).

In particular,

dist∞(fi(t), fi(L)) ≤ (1 + ε)dist2(t,L) (10)

By our assumption, vi is such that

‖vi − fi(t)‖∞ ≤ γ′ · dist∞(fi(t), fi(L)) (11)

Applying (4),

∥

∥f−1
i (vi) − t

∥

∥

2
≤ 1

1 − ε
‖vi − fi(t)‖∞ (12)

Combining (10), (11) and (12) we obtain

∥

∥f−1
i (vi) − t

∥

∥

2
≤ 1 + ε

1 − ε
γ′ · dist2(t,L) = γ · dist2(t,L)

and the correctness of the reduction follows.

By combining Theorem 4.8 and [AKKV05] we conclude the following result:

Corollary 4.13 The CVPP problem in the `p norm for 2 ≤ p ≤ ∞ is hard to approximate to

within any constant unless NP has polynomial size circuits (i.e., unless NP ⊆ P/poly), and to

within (log n)1/2−ε, for any ε > 0, unless NP has quasi-polynomial size circuits.
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5 Norm Reduction via Dimension Preserving Random Rotation

In this section we present another embedding result with the property that it preserves the dimen-

sion. By plugging this embedding into the reductions shown in the previous section, one can obtain

the dimension-preserving reductions of Theorem 1.2.

The idea in our dimension-preserving embedding is quite simple: the embedding simply consists

of a random rotation. At first, this seems strange, since a random rotation is clearly not a low-

distortion embedding: the ‘bad’ directions (in which `p differs considerably from `2) are obviously

still there, they are just shifted around. However, it turns out that a random rotation is enough for

lattice problems such as SVP where all that we care about is the length of the shortest vector as

compared with the lengths of other vectors. Indeed, as we shall see below, with high probability,

a random rotation brings the shortest vector (or any other fixed vector) into an area where the `p

norm is almost as short as possible. Other lattice vectors can become longer, but this does not

matter for us.

The following definition is essentially the special case of Definition 3.1 with n = m. For

convenience, we do not include the normalization factor.

Definition 5.1 (Dimension Preserving Embedding family) For any n, p, we define a distri-

bution F(p, n) over embedding functions f : `n
2 → `n

p . Choosing a function f from F(p, n) is done

by choosing n orthonormal vectors in Sn−1 uniformly at random. We define f(x) = Ax where A

is the n × n matrix whose columns are the chosen vectors.

We now give two embedding results, the first into `∞ and the second into `p for finite p. We

define two probability measures. The first is µ, the standard Gaussian measure on Rn, with density

(2π)−n/2e−‖x‖2
2/2.

The second is σ which is the unique rotationally invariant measure on Sn−1.

Embedding `2 into `∞

Theorem 5.2 Let f be chosen from F(∞, n). Then for any x ∈ Rn,

√

1

n
‖x‖2 ≤ ‖f(x)‖∞ .

Moreover, for any x ∈ Rn, with probability at least 1 − n−Ω(1)

‖f(x)‖∞ ≤
√

32 ln n

n
‖x‖2 .

Proof: The first inequality
√

1

n
‖x‖2 ≤ ‖f(x)‖∞

follows from ‖f(x)‖2 = ‖x‖2. For the second inequality, notice that it is enough to prove it for

x such that ‖x‖2 = 1. Moreover, for any such fixed x, f(x) is distributed according to σ. It is

therefore enough to prove that for x chosen according to σ, ‖x‖∞ ≤
√

(32 ln n)/n with probability

1 − n−Ω(1).
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It turns out to be more convenient to work with the Gaussian measure µ instead of σ. To this

end, notice that if x ∼ µ then x/‖x‖2 is distributed according to σ. This follows from the rotational

invariance of µ and the uniqueness of σ. It is therefore enough to prove that an x chosen according

to µ satisfies with probability at least 1 − n−Ω(1) that

∥

∥

∥

∥

x

‖x‖2

∥

∥

∥

∥

∞
≤
√

32
ln n

n
.

We prove this in two steps. We first establish that with high probability ‖x‖2 ≥ √
n/2. We then

complete the proof by showing that ‖x‖∞ ≤
√

8 ln n also holds with high probability.

Claim 5.3 For a vector x chosen from the standard n-dimensional normal distribution,

Pr[‖x‖2 ≤
√

n/2] ≤ (1.37)−n.

Proof: By a change of variable, we see that

∫

Rn

e−‖x‖2
2·2dx = 2−n

∫

Rn

e−‖x‖2
2/2dx.

On the other hand,

∫

Rn

e−‖x‖2
2·2dx ≥

∫

‖x‖2≤ 1
2

√
n

e−‖x‖2
2·2dx ≥ e−3/8n

∫

‖x‖2≤ 1
2

√
n

e−‖x‖2
2/2dx

where we use that e−‖x‖2
2·2/e−‖x‖2

2/2 = e−3/2‖x‖2
2 ≥ e−3/8n whenever ‖x‖2 ≤ 1

2

√
n. The claim follows

by combining the two equations and using (2/e3/8)n ≥ (1.37)n.

Hence, to complete the proof it is enough to show that ‖x‖∞ ≤
√

8 ln n with high probability. Let

Φ(t) denote 1√
2π

∫ t
−∞ e−x2/2dx, that is, the distribution function of the standard normal distribution

N(0, 1). We need the following standard estimate on the tail of the normal distribution (see, e.g.,

[Fel68] Chapter VII Lemma 2).

Fact 5.4 For any t > 2,

e−t2/2/2t ≤ 1 − Φ(t) ≤ e−t2/2/t.

Let M∞ be the median of ‖x‖∞ = max |xi| with respect to µ, defined as the value of M∞ for which

µ{x, ‖x‖∞ ≤ M∞} = 1/2 and µ{x, ‖x‖∞ ≥ M∞} = 1/2.

In other words, the cube [−M∞,M∞]n has Gaussian measure 1
2 . We start by calculating a bound

on M∞. Since the Gaussian measure is a product measure, for any M > 0 we have

µ([−M,M ]n) =

(

1√
2π

∫ M

−M
e−t2/2dt

)n

.

By Fact 5.4 we obtain that

1√
2π

∫ M

−M
e−t2/2dt = 1 − 2(1 − Φ(M)) ≥ 1 − 2e−M2/2/M.
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Thus for M =
√

2 ln n,

1√
2π

∫ M

−M
e−t2/2dt ≥ 1 − 2e− ln n/

√
2 ln n = 1 − 2

n
√

2 ln n

and hence

µ([−M,M ]n) ≥
(

1 − 2

n
√

2 ln n

)n

> 1/2.

We thus obtain the bound M∞ ≤
√

2 ln n.

We show that with high probability a randomly chosen x ∼ µ satisfies ‖x‖∞ ≤ M∞ +
√

2 ln n.

To do so we state Theorem 8.1 in [Bal97].

Lemma 5.5 For a measurable set A ⊆ Rn with µ(A) = 1
2 ,

µ(Aε) ≥ 1 − 2e−ε2/4 (13)

where Aε = {x | dist2(x,A) ≤ ε}.

By definition, µ({x | ‖x‖∞ ≤ M∞}) = 1/2. Since ‖·‖∞ is 1-Lipschitz (i.e., |‖x‖∞ − ‖y‖∞| ≤
‖x − y‖2), we can apply Lemma 5.5 with ε =

√
2 ln n to obtain that

µ
({

x | ‖x‖∞ ≤ M∞ +
√

2 ln n
})

≥ 1 − 2e−ε2/4 = 1 − 2√
n

.

Thus,

Pr
x∼µ

[

‖x‖∞ ≤
√

8 ln n
]

≥ 1 − 2√
n

and the theorem follows.

Embedding `2 into `p

Theorem 5.6 Fix some 2 ≤ p < ∞ and let f be chosen from F(p, n). Then for all x ∈ Rn,

‖f(x)‖p ≥ n1/p−1/2 ‖x‖2 .

Moreover, for any x ∈ Rn, with probability at least 1 − 2−nΩ(1)
over the choice of f ,

‖f(x)‖p ≤ (1 + o(1)) · c(p) · n1/p−1/2 ‖x‖2

where c(p) =

(

2
1+p
2 Γ( 1+p

2
)√

2π

)1/p

.

Proof: The first inequality

‖f(x)‖p ≥ n1/p−1/2 ‖x‖2

follows from ‖f(x)‖2 = ‖x‖2. As in Theorem 5.2, to prove the second inequality it is enough to

show that for x ∼ σ, ‖x‖p ≤ (1 + o(1))c(p)n1/p−1/2 with probability 1 − 2−nΩ(1)
. We start by

bounding the expectation of ‖x‖p for x ∼ σ. We will later see that the median of ‖x‖p is close to

this expectation and that with high probability, for a point x ∼ σ, ‖x‖p is close to that median.
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The above expectation is given by
∫

Sn−1 ‖x‖p dσ. By using polar coordinates we can write

∫

Sn−1

‖x‖pdσ =
Γ(n/2)√

2Γ((n + 1)/2)

∫

Rn

‖x‖pdµ(x) = (1 + o(1))
1√
n

∫

Rn

‖x‖pdµ(x).

In addition,

∫

Rn

‖x‖pdµ(x) =

∫

Rn

(

n
∑

i=1

|xi|p
)1/p

dµ(x)

≤
(

∫

Rn

n
∑

i=1

|xi|pdµ(x)

)1/p

(by Jensen inequality)

=

(

n

∫

R

|x|pdµ(x)

)1/p

(by symmetry)

= n1/p ·
(

2
1+p
2 Γ(1+p

2 )√
2π

)1/p

.

We thus obtain a bound on the expectation of ‖x‖p. We would like to obtain a similar bound

on the median of ‖x‖p defined as the value of Mp for which σ({x | ‖x‖p ≤ Mp}) = 1/2. For this,

we use the following lemma which says that the median is close to the expectation.

Lemma 5.7 (Lemma 2.7 in [FLM77]) Let Mp be the median of ‖·‖p. Then for some absolute

constant c > 0,
∣

∣

∣

∣

∫

Sn−1

‖x‖p dσ(x) − Mp

∣

∣

∣

∣

≤ c√
n

.

Using this lemma, we obtain the bound

Mp ≤
∫

Sn−1

‖x‖p dσ(x) +
c√
n
≤ (1 + o(1)) · c(p) · n1/p−1/2.

The following concentration of measure lemma shows that for x chosen from σ, ‖x‖p is very close

to Mp with high probability.

Lemma 5.8 (Equation 2.6 in [FLM77]) Let Mp be the median of ‖·‖p. Then,

σ
({

x;
∣

∣

∣
‖x‖p − Mp

∣

∣

∣
≤ ε
})

≥ 1 − 4e−nε2/2.

We complete the proof by applying this lemma with ε = n1/p−1/2−ξ for some small enough ξ > 0

to obtain

Pr
x∼σ

[

‖x‖p ≤ (1 + o(1))c(p)n1/p−1/2
]

≥ 1 − 2−nΩ(1)
.
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6 Extensions

In this section we gather some other known results on embedding of normed spaces. There are

obviously many more results in the mathematical literature, and we mention here only those that

seem most relevant for lattice problems.

The embeddings we have seen so far are probabilistic. Let us now mention a few known deter-

ministic (explicit) embeddings. First, if one is only interested in obtaining some constant distortion,

then the situation is relatively well-understood: it follows from the construction of Rudin [Rud60]

that one can embed `n
2 in `m

p for any p < ∞ with some constant distortion and m = poly(n). Such

an embedding can also be obtained using known isometric embeddings of `2 in `2k for integers

k > 1. The exact distortion constants can be derived from the constructions, and are not too large.

For the special case of embedding `n
2 into `m

1 , [LLR95] describes an embedding with distortion
√

3

and m = O(n2) (based on [Ber97]). Another deterministic embedding is given by Indyk [Ind00]: It

is an embedding of `n
2 into `m

1 for m = nO(log n) whose distortion is 1 + ε for an arbitrarily small

constant ε. By using these embeddings in the reductions of Section 4, one can obtain deterministic

reductions among lattice problems.

Another relevant result says that for any 1 ≤ q < p ≤ 2, `n
p can be embedded into `m

q with

distortion 1 + ε whenever n ≤ βm for some constant β = β(p, q, ε) (see [JS01] and references

therein). By using this embedding we obtain randomized reductions from lattice problems in the

`p norm to the corresponding problem in the `q norm for any 1 ≤ q < p ≤ 2 with only 1 + ε loss in

the approximation factor.

7 Discussion

We presented reductions between lattice problems in different norms. Our reductions have proven

useful in deriving new inapproximability results. It would be interesting to find algorithmic appli-

cations of these reductions.

Another direction for future research is to look for ‘reverse reductions’, i.e., reductions from the

`p norm to the `2 norm. Since all subspaces of `2 are `2, this seems to require some substantially

new ideas.

Finally, another interesting open question is related to the covering radius problem. For a full

rank lattice L ⊆ Rn we define the covering radius as the smallest R such that any x ∈ Rn is within

distance R of L. More generally,

Definition 7.1 The covering radius in the `p norm of a lattice L ⊆ Rn is defined as

ρp(L) = max
x∈span(L)

distp(x,L).

In the covering radius problem CRPp
γ , our goal is to approximate ρp(L) to within γ. Using the

techniques of Section 4, one can obtain for any p < ∞ a reduction from CRP2
γ to CRP

p
γ′ where

γ′ = (1 − ε)γ for arbitrary small ε > 0. However, it is not obvious how to extend this to the `∞
norm; the problem is that there is no low-distortion embedding of `n

2 in `m
∞ with m = poly(n),

and the asymmetric embeddings of [Ind03] do not seem strong enough. We leave this as an open

question.
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A Proof of Theorem 3.5

Let z1, z2, . . . , zm be m random vectors in Rn. Each coordinate of zi is chosen i.i.d. according

to the standard normal distribution N(0, 1). Let g(x) = (〈z1, x〉, 〈z2x〉, . . . , 〈zm, x〉) ∈ Rm for

m = (δ−1 + log η−1 + 1/ε)O(1/ε) where δ and η are given in the following theorem.

Theorem A.1 For T = (2 ln(m/
√

lnm))1/2 we have that for any x ∈ Rn,

Pr[‖g(x)‖∞ ≤ (1 − ε)T ‖x‖2] ≤ η

Pr[‖g(x)‖∞ > (1 + ε)T ‖x‖2] ≤ δ
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Theorem 3.5 follows by taking f(·) = 1
T g(·). Our proof closely follows that of Indyk. We first

need to prove an auxiliary lemma that shows that the maximum of standard normally distributed

independent variables is concentrated in some range.

Lemma A.2 Let Y1, Y2, . . . , Ym be i.i.d. normal variables and let Z = max(|Y1|, |Y2|, . . . , |Ym|).
Then for any δ, η ∈ (0, 1)

• Pr[Z < T1] ≤ η where T1 =
√

2 ln( 4m
ln η−1

√
2 lnm

).

• Pr[Z > T2] ≤ δ where T2 =
√

2 ln(2mδ−1).

Proof: Let Φ(t) denote 1√
2π

∫ t
−∞ e−x2/2dx, that is, the distribution function of the standard normal

distribution N(0, 1).

Applying union bound on Fact 5.4 we obtain

Pr[Z > T2] ≤ m · 2(1 − Φ(t)) ≤ 2me−T 2
2 /2 ≤ δ.

For the other claim, by using again Fact 5.4,

Pr[Z < T1] = (1 − 2(1 − Φ(T1)))
m ≤ (1 − e−T 2

1 /2/T1)
m ≤ exp(−me−T 2

1 /2/T1) ≤ η

where the last inequality follows from our choice of T1.

Proof of the theorem: Since g is linear, we can assume without loss of generality that ‖x‖2 = 1.

By the rotational symmetry of the normal distribution, each coordinate of g(x) is distributed as

N(0, 1). We prove the theorem by showing that for large enough m = (δ−1 + log η−1 + 1/ε)O(1/ε),

T1 ≥ (1 − ε)T and T2 ≤ (1 + ε)T . For the first bound,

T1

T
=

√

√

√

√

2 ln( 2m
ln η−1

√
2 ln m·1/2

)

2 ln(m/
√

ln m)
=

√

2 ln m + 2 ln 2 − 2 ln ln η−1 − ln 2 − ln ln m + 2 ln 2

2 ln m − ln ln m

≥
√

2 ln m + 2 ln 2 − 2 ln ln η−1 − ln 2 − ln ln m + 2 ln 2

2 ln m
=

√

1 − 2 ln ln η−1 + ln ln m − 2 ln 2 − ln 2

2 ln m

We only need to show that

2 ln ln η−1 + ln ln m − 2 ln 2 − ln 2 ≤ ε(2 ln m).

Since m > (ln η−1)O(1/ε), the latter holds and we obtain that T1
T ≥ (1 − ε). For the second bound

it is enough to show that T2
T ≤ 1 + ε

T2

T
=

√

2 ln(2mδ−1)

2 ln(m/
√

ln m)
=

√

2 ln m + 2 ln 2 + 2 ln δ−1

2 ln m − ln ln m
=

√

1 +
ln ln m + 2 ln 2 + 2 ln δ−1

2 ln m − ln ln m

Since m > (δ−1)O(1/ε) it holds that

ln lnm + 2 ln 2 + 2 ln δ−1 ≤ ε(2 ln m − ln ln m),

and we obtained T2
T ≤ (1 + ε).
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