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Abstract

Lattice problems are known to be hard to approximate to within sub-polynomial factors.
For larger approximation factors, such as /n, lattice problems are known to be in complexity
classes such as NP N coNP and are hence unlikely to be NP-hard. Here we survey known results
in this area. We also discuss some related zero-knowledge protocols for lattice problems.

1 Introduction

A lattice is the set of all integer combinations of n linearly independent vectors vy, ..., v, in R™.
These vectors are known as a basis of the lattice. Lattices have been investigated by mathemati-
cians for decades, and have recently also attracted considerable attention in the computer science
community following the discovery of the LLL algorithm by Lenstra, Lenstra, and Lovasz [19].
Many different problems can be phrased as questions about lattices, such as integer programming
[15], factoring polynomials with rational coefficients [19], integer relation finding [13], integer fac-
toring, and Diophantine approximation [29]. More recently, the study of lattices attracted renewed
attention due to the fact that lattice problems were shown by Ajtai [3] to possess a particularly
desirable property for cryptography: worst-case to average-case reducibility.

Lattice problems, such as the shortest vector problem (SVP) and the closest vector problem
(CVP), are fascinating from a computational complexity point of view (see Figure[I). On one hand,
by the LLL algorithm [19] and subsequent improvements [28], we are able to efficiently approximate
lattice problems to within essentially exponential factors, namely 27(loglog n)?/logn where n is the
dimension of the lattice. In fact, if we allow randomization, the approximation factor improves
slightly to 2mleglegn/legn [5]° Op the other hand, we know that for some ¢ > 0, no efficient

algorithm can approximate lattice problems to within n¢/loglogn

unless P = NP or another unlikely
event occurs. This was established in a long sequence of works, including [31}, 2, [7, 9, 20, 16, 14].
See also Khot’s chapter [17] in these proceedings.

Considering the above results, one immediate question arises: what can we say about approxi-

mation factors in between these two extremes? There is a very wide gap between the approximation
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Figure 1: The complexity of lattice problems (some constants omitted)

factor achieved by the best known algorithm (2710g18n/1ogm) “and the best known hardness result
(nc/ loglogny ~ Of particular importance is the range of polynomial approximation factors. The
reason for this is that the security of lattice-based cryptographic constructions following Ajtai’s
seminal work [3] is based on the worst-case hardness of approximating lattice problems in this
region (see also [4, 22, 27] and Micciancio’s chapter [21] in these proceedings). If, for instance,
we could prove that approximating lattice problems to within O(n?) is NP-hard then this would
have the tremendous implication of a public key cryptosystem whose security is based solely on the
P # NP conjecture.

This scenario, however, is unlikely to happen. There are several results indicating that approx-
imating lattice problems to within polynomial factors is unlikely to be NP-hard. These results are
sometimes known as ‘limits on inapproximability’. They are established by showing containment
in complexity classes such as NP N coNP. As is well known, if a problem in NP N coNP is NP-hard,
then NP = coNP and the polynomial hierarchy collapses. For lattice problems this is true even
under Cook-reductions, as we show in Appendix [Al

To state these results precisely, let us first recall the promise problems associated with the
shortest vector problem and the closest vector problem. Below we use £(B) to denote the lattice
generated by the basis B. Moreover, all distances and lengths in this survey are with respect to the

/5 norm (but see [26] for an interesting extension of the results described here to other £, norms).

Definition 1.1 GapCVP,
YES instances: triples (B,v,d) such that dist(v, L(B)) < d
No instances: triples (B,v,d) such that dist(v, L(B)) > ~d
where B is a basis for a lattice in Q™, v € Q™ is a vector, and d € Q is some number.

Definition 1.2 GapSVP,,

YES instances: pairs (B,d) such that \(L(B)) <d

No instances: pairs (B,d) such that A\ (L(B)) > ~vd
where B is a basis for a lattice in Q", d € Q is some number, and A1 denotes the length of the
shortest nonzero vector in a lattice.

Note that in both cases setting d to some fixed value (say 1) leads to an essentially equivalent
definition (as one can easily rescale the input).

The oldest result showing a limit on the inapproximability of lattice problems is by Lagarias,
Lenstra and Schnorr [18], who showed that GapCVP,,1.5 is in NP N coNP. As we mentioned above,
this shows that GapCVP,,1.5 is highly unlikely to be NP-hard. Let us remark at the outset that
showing containment in NP is trivial: a witness for dist(v, £(B)) < d is simply a vector u € L(B)
such that ||v — u|| < d. The more interesting part is providing a witness for the fact that a point
is far from the lattice. Some thought reveals that this is no longer a trivial task: there is a huge
number of lattice vectors that can potentially be very close to v. The way containment in coNP is



usually shown is by utilizing properties of the dual lattice. Let us also mention that although we
state this result and the results below only for GapCVP, they all hold also for GapSVP. This follows
from a simple approximation preserving reduction from GapSVP to GapCVP [12], which we include
for completeness in Appendix BL

An improvement of the Lagarias et al. result was obtained by Banaszczyk [6] who showed that
GapCVP,, is in NP N coNP. This was recently further improved by Aharonov and Regev [1] to

Theorem 1.3 ([1]) There exists ¢ > 0 such that GapCVP, /5 is in NP N coNP.

In their coNP proof, the witness simply consists of a list of short vectors in the dual lattice. The
verifier then uses these vectors to determine the distance of the target vector v from the lattice. A
sketch of this proof appears in Section 3.

Another ‘limits on inapproximability’ result is by Goldreich and Goldwasser [11], who showed
that GapCVP JaTTogn is in NP N coAM (where containment in coAM means that the complement of

the problem is in the class AM defined in Definition 2.1)).

Theorem 1.4 ([11]) For any ¢ > 0, GapCVPCW is in NP N coAM.

We present a proof of this theorem in Section 2. The proof uses an elegant protocol in which an
all-powerful prover convinces a computationally limited verifier that a point v is far from the lattice.
We note that their result is incomparable with that of [1] since it involves a slightly harder problem

(GapCVP \/’W) but shows containment in a somewhat wider class (coAM). It is an interesting

open question whether containment in NP N coNP holds also for gaps between /n/logn and y/n.

In Section 4] we will discuss the topic of zero-knowledge protocols. We will observe that the
Goldreich-Goldwasser protocol is zero-knowledge (against honest verifiers). We will then describe
two zero-knowledge protocols with efficient provers, one for coGapCVP and one for GapCVP.

We can summarize our current state of knowledge by saying that for approximation factors
beyond y/n/logn, lattice problems are unlikely to be NP-hard. This naturally brings us to one
of the most important questions regarding the complexity of lattice problems: is there an efficient
algorithm for approximating lattice problem to within polynomial factors? Given how difficult it is
to come up with algorithms that perform even slightly better than the exponential factor achieved
by the LLL algorithm, many people conjecture that the answer is negative. This conjecture lies at
the heart of latticed-based cryptographic constructions such as Ajtai’s [3], and is therefore of central
importance. How can we hope to show such hardness if we do not believe the problem is NP-hard?
One promising direction is by relating lattice problems to other problems that are believed to be
hard. For instance, a reduction from factoring to, say, GapSVP,,> would give a strong evidence to
the conjecture, and would also establish the remarkable fact that lattice-based cryptosystems are
at least as secure as factoring based cryptosystems.

Outline: In Section 2 we present a proof of Theorem 1.4, including some of the technical details
that go into making the proof completely rigorous. These technical details, especially how to work
with periodic distributions, appear in many other lattice-related results, and are therefore discussed
in detail. Then, in Section 3| we present a sketch of the proof of Theorem [1.3. This sketch contains
all the important ideas of the proof, but proofs of technical claims are omitted. The two sections



are independent. Then, in Section |4 we discuss zero-knowledge proof systems for lattice problems,
and in particular sketch the prover-efficient zero-knowledge protocol of Micciancio and Vadhan [23].
This section requires a basic understanding of Section 2. Finally, in Appendix [Al we show in what
sense the two theorems above imply ‘limits on inapproximability’, and in Appendix B! we show how
to extend our results to GapSVP.

2 The Goldreich-Goldwasser Protocol

In this section we prove Theorem 1.4, For simplicity, we will show that GapCVP ;5 € coAM. A
slightly more careful analysis of the same protocol yields a gap of ¢y/n/ logn for any constant ¢ > 0.
First, let us define the class AM.

Definition 2.1 A promise problem is in AM if there exists a protocol with a constant number of
rounds between a BPP machine Arthur and a computationally unbounded machine Merlin, and two
constants 0 < a < b <1 such that

e Completeness: for any YES input, there exists a strategy for Merlin such that Arthur accepts
with probability at least b, and

e Soundness: for any NO input, and any strategy for Merlin, Arthur accepts with probability
at most a.

In order to prove Theorem (1.4, we present a protocol that allows Arthur to verify that a
point is far from the lattice. Specifically, given (B,v,d), Arthur accepts with probability 1 if
dist(v, £L(B)) > y/nd and rejects with some positive probability if dist(v, £(B)) < d.

Informally, the protocol is as follows. Arthur first flips a fair coin. If it comes up heads, he
randomly chooses a ‘uniform’ point in the lattice £(B); if it comes up tails, he randomly chooses a
‘uniform’ point in the shifted lattice v + £(B). Let w denote the resulting point. Arthur randomly
chooses a uniform point x from the ball of radius %\/ﬁd around w and then sends = to Merlin.
Merlin is supposed to tell Arthur if the coin came up heads or not.

The correctness of this protocol follows from the following two observations (see Figure 2)). If
dist(v, £(B)) > /nd then the two distributions are disjoint and then Merlin can answer correctly
with probability 1. On the other hand, if dist(v, £(B)) < d, then the overlap between the two
distributions is large and Merlin must make a mistake with some positive probability.

[ %\

dist > y/nd dist < d

Figure 2: The two distributions



This informal description hides two technical problems. First, we cannot really work with the
point z since it is chosen from a continuous distribution (and hence cannot be represented precisely
in any finite number of bits). This is easy to take care of by working with an approximation of x
with some polynomial number of bits. Another technical issue is the choice of a ‘random’ point
from £(B). This is an infinite set and there is no uniform distribution on it. One possible solution
is to take the uniform distribution on points in the intersection of £(B) with, say, some very large
hypercube. This indeed solves the problem, but introduces some unnecessary complications to the
proof since one needs to argue that the probability to fall close to the boundary of the hypercube
is low. The solution we choose here is different and avoids this problem altogether by working with
distributions on the basic parallelepiped of the lattice. We describe this solution in Subsection 2.3.

In the next few subsections, we present the necessary preliminaries for the proof.

2.1 Statistical Distance

Definition 2.2 The statistical distance between two distributions X, Y on some set € is defined
as
AX,)Y) = rjlgg[Pr(X € A)—Pr(Y € A)|.

One useful special case of this definition is the case where X and Y are discrete distributions
over some countable set 2. In this case, we have
1
AXY) =3 ze;l |Pr(X =w) —Pr(Y =w)|.
w

Another useful special case is when X and Y are distributions on R" with density functions f, g.
In this case, we have

AXY) = [ 17(@) - g(o)] da.

For any distributions X,Y, A(X,Y’) obtains values between 0 and 1. It is 0 if and only if X
and Y are identical and 1 if and only if they are disjoint. It is helpful to consider the following
interpretation of statistical distance. Assume we are given a sample that is taken from X with
probability % or from Y with probability % Our goal is to decide which distribution the sample
comes from. Then, it can be seen that our best strategy succeeds with probability % + %A(X Y.

One important fact concerning the statistical distance is that it cannot increase by the appli-
cation of a possibly randomized function. In symbols, A(f(X), f(Y)) < A(X,Y) for any (possibly
randomized) function f. This fact follows easily from the above interpretation of A.

2.2 Balls in n-dimensional Space

Let B(v,7) denote a ball of radius r around v. It is known that the volume of the unit ball B(0, 1)

in m dimensions is

v, Y il )
(n/2)!

where we define n! = n(n — 1)! for n > 1 and 2! = 1,/7. It can be shown that

(n+3)! n!
nl T (n— ) =V




Lemma 2.3 For any € > 0 and any vector v of length ||v|| < e, the relative volume of the inter-
section of two unit balls whose centers are separated by v satisfies

n—1
vol(B(0,1)NB(v,1)) _ (1—¢?)2
>
wB01) 25 3 V"
Proof: It suffices to consider the case ||v|| = ¢. As shown in Figure 3, the intersection contains a

cylinder of height £ and radius v/1 — €2 centered around v/2. Hence, the volume of the intersection
satisfies:

N

Figure 3: A cylinder in the intersection of two balls

vol(B(0,1) N B(v, 1)) _ Vo1 (V1 —e2)nt no1 oz !
vol(B(0,1)) Vi W%/(
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Notice that for € = %, the right hand side of the expression in Lemma 2.3 is bounded from
below by some positive constant independent of n. This yields the following corollary.

Corollary 2.4 There exists a constant 6 > 0 such that for any d > 0 and any y € R™ such that
lyll < d,
A (U(B(0, 3v/nd)), U(B(y, 3v/nd))) <1-34,

where U(-) denotes the uniform distribution on a set.

Proof: This statistical distance is exactly the volume of the symmetric difference of two balls

divided by the sum of their volumes. According to the above lemma, this is bounded away from 1.
||__|gs

Remark: When ¢ = ¢y/logn/n for some ¢ > 0, the right hand side of the expression in Lemma 2.3
is still greater than some 1/poly(n). Using this, one can obtain the improved result Ga pCVP, JnTlogn €
coAM.

2.3 Working with Periodic Distributions

In the informal description above, we talked about the ‘uniform distribution’ on the lattice. This
is clearly not defined. One possible solution is to restrict our attention to some large enough cube



[— K, K]|™. While possible, this solution introduces some technical annoyances as one has to argue
that the probability to fall too close to the boundary of the cube (where the protocol might behave
badly) is small.

Instead, our solution will be to work with only one period of the distribution. To demonstrate
this approach, let us first consider the one-dimensional case. Assume we want to represent the
distribution intuitively described as follows: choose a random point from the lattice 3Z and add to
it a number chosen uniformly from [—0.1,0.1]. The first solution above would require us to take
some large segment, say, [—1000, 1000], and to restrict our distribution to it. Instead, we take one
period of the distribution, say the segment [0, 3], and consider the distribution on it. Hence, we
obtain the uniform distribution on [0,0.1] U [2.9, 3]. Notice that we could take another period, say
the segment [—3, 0], and work with it instead. Crucially, the transformation from one representation
to another can be performed efficiently (by subtracting or adding 3 as needed).

ONONO,

@ @ @ 7 i

ONONCO -
Figure 4: A periodic distribution on Z2? (left), restricted P((0,1),(1,0)) (center) and to
P((0,1),(1,1)) (right).

A similar idea works for higher dimensions (see Figure 4). If we want to represent a periodic
distribution on a lattice, we consider it as a distribution on some period of the lattice. A common
choice is to take a basic parallelepiped of the lattice, defined as

x; € [O, 1)},

where B = (v1,...,v,) is some basis of the lattice. As before, we have several possible representa-

P(B) =P(v1,...,v) = {szvz
=1

tions, depending on the choice of basis B. The transformation from a representation using B; to
one using By can be done efficiently by reducing points modulo P(Bs) (see Definition 2.5 below).
Mathematically speaking, the objects we work with are distributions on the quotient R"/L(B),
and P(B) is its set of representatives.

We emphasize that it is much easier to imagine ‘periodic distributions’ on R™. However, tech-
nically, it is much easier to work with distributions on P(B).

2.4 The Protocol

We will now show using Protocol 1] that GapCVP 5 € coAM. The protocol uses the following
definition.

Definition 2.5 For xz € R", x mod P(B) is the unique y € P(B) satisfying x —y € L(B).

Remark: For simplicity, we ignore issues of finite precision; these can be dealt with by standard
techniques. One issue that we do want to address is how to choose a point from the ball B(0, R)



Protocol 1 The Goldreich-Goldwasser AM protocol

1. Arthur selects o € {0,1} uniformly and a random point ¢ in the ball B(0,1/nd). He then
sends x = (ov + t) mod P(B) to Merlin.

2. Merlin checks if dist(x, £(B)) < dist(z,v + L£(B)). If so, he responds with 7 = 0; otherwise,
he responds with 7 = 1.

3. Arthur accepts if and only if 7 = 0.

uniformly at random. One option is to use known algorithms for sampling (almost) uniformly from
arbitrary convex bodies, and apply them to the case of a ball. A simpler solution is the following.
Take n independent samples uy, ..., u, € R from the standard normal distribution and let u be the
vector (ui,...,u,) € R™. Then wu is distributed according to the standard n-dimensional Gaussian
distribution, which is rotationally invariant. Now, choose r from the distribution on [0, R] whose
probability density function is proportional to r™~! (this corresponds to the (n — 1)-dimensional
surface area of a sphere of radius r). The vector mu is distributed uniformly in B(0, R).

Claim 2.6 (Completeness) If dist(v, L(B)) > \/nd then Arthur accepts with probability 1.
Proof: Assume 0 = 0. Then
dist(z, £(B)) = dist(t, £(B)) < |l¢]| < %\/?zd.
On the other hand,
dist(z,v + L(B)) = dist(t,v + L(B)) = dist(t — v, L(B)) > dist(v, L(B)) — ||t]| > %\/ﬁd
Hence, Merlin answers correctly and Arthur accepts. The case o = 1 is similar. L
Claim 2.7 (Soundness) If dist(v, £(B)) < d then Arthur rejects with some constant probability.

Proof: Let y be the difference between v and its closest lattice point. So y is such that v —y €
L(B) and ||ly| < d. Let no be the uniform distribution on B(0, 3y/nd) and let 7y be the uniform
distribution on B(y, %\/ﬁd) Notice that the point Arthur sends can be equivalently seen as a point
chosen from 7, reduced modulo P(B). According to Corollary 2.4, A(ng,n1) is smaller than 1 —§.
Since statistical distance cannot increase by the application of a function,

A(no mod P(B),m mod P(B)) < A(ng,m) <1—246

and Arthur rejects with probability at least §. (4

3 Containment in coNP

In this section we sketch the proof of Theorem [1.3. For more details, see [1]. As mentioned in
the introduction, containment in NP is trivial and it suffices to prove, e.g., that GapCVP /5 is
in coNP (we make no attempt to optimize the constant 100 here). To show this we construct an
NP verifier that given a witness of polynomial size, verifies that the given point v is far from the
lattice. There are three steps to the proof.



Figure 5: The function f (left) and its approximation fy (right) for a two-dimensional lattice

1. Define f

In this part we define a function f : R® — RT that is periodic over the lattice £, i.e., for all
x € R" and y € £ we have f(z) = f(x 4+ y) (see Figure [5). For any lattice £, the function
f satisfies the following two properties: it is non-negligible (i.e., larger than some 1/poly(n))
for any point that lies within distance v/logn from a lattice point, and is exponentially small
at distance > y/n from the lattice. Hence, given the value f(v), one can tell whether v is far
or close to the lattice.

2. Encode f

We show that there exists a succinct description (which we denote by W) of a function fy
that approximates f at any point in R™ to within polynomially small additive error (see
Figure [5). We use W as the witness in the NP proof.

3. Verify f

We construct an efficient NP verifier that, given a witness W, verifies that v is far from the
lattice. The verifier verifies first that fyy(v) is small, and also that fy (z) > 1/2 for any x
that is close to the lattice.

We now explain each of these steps in more detail. For all missing proofs and more details, see

1.

3.1 Step 1: Define f

Define the function g : R — R as

g(z) = Z e~ mle—ul*,

yeL



and let

Hence, f is a sum of Gaussians centered around each lattice point, and is normalized to be 1 at

lattice points. See Figure [5l for a plot of f. The function f was originally used by Banaszczyk [6]

to prove ‘transference theorems’, i.e., theorems relating parameters of a lattice to those of its dual.
The two properties mentioned above can be stated formally as follows.

Lemma 3.1 Let ¢ > — be a constant. Then for any x € R", if d(x,L) > c\/n then f(z) =
278m),

3

Lemma 3.2 Let ¢ > 0 be a constant. Then for any x € R™, if d(xz,L) < cv/logn then f(x) >
—10c?
n )

3.2 Step 2: Encode f

This step is the core of the proof. Here we show that the function f can be approximated pointwise
by a polynomial size circuit with only an inverse polynomial additive error. A naive attempt would
be to store f’s values on some finite subset of its domain, and use these points for approximation
on the rest of the domain. However, it seems that for this to be meaningful, we would have to store
an exponential number of points.

Figure 6: The Fourier series f of f

Instead, we consider the Fourier series of f, which is a function f whose domain is the dual
lattice £* (defined as the set of all points in R™ with integer inner product with all lattice points).
For any w € L* it is given by

£ _ 1 —2mi(w,z)
F0) = gy [y O

10



where B is some basis of £. (It can be shown that this definition is independent of the basis we
choose for L£.) A short calculation, which we omit here, shows that f has a nice form, namely

A~

f(w)

o—llwl?
T g AP

See Figure |6 for a plot of f . One very useful and crucial property of f is that it is a probability
distribution over the dual lattice £*. In other words, it is a non-negative function and the sum of
all its values is 1.

A basic result in Fourier analysis is the Fourier inversion formula. It says that a function f can
be recovered from its Fourier series f by using the formula

fa) = 3 Flw)ermitna,

weL*

Since in our case both f and f are real, we can simplify it to

fla) =Y flw)cos(2r(w,x))

weL*

by taking the real part of both sides. By thinking of f as a probability distribution, we can rewrite
this as

f(x) =E,_;[cos(2m(w,z))].

Hence f(z) can be seen as the expectation of cos(2m(w,x)) (whose values range between —1 and
1), where w is chosen according to the probability distribution f .

This brings us to the main idea of this step: we can approximate f by replacing the expectation
with an average over a large enough sample from f . More formally, for some large enough N =
poly(n), let W = (wy,...,wy) be N vectors in the dual lattice chosen randomly and independently
from the distribution f , and define

N
fw(z) < ]t;cos(zm,wi». (1)
See Figure 5 for a plot of fir. Then one can show that with high probability, | fyy (z) — f(z)] < n~10
for all z € R™. The proof of this statement is based on the Chernoff-Hoeffding bound.
Given the above, it is natural to choose our NP witness to be the list W = (wy,...,wy) of
vectors in the dual lattice. We note that these vectors are typically short and hence computing
them directly seems difficult.

3.3 Step 3: Verify f

Here we construct an efficient NP verifier that, given the witness W, verifies that a point is far from
the lattice. More precisely, given a lattice £ and a vector v, it accepts if the distance of v from £
is greater than /n and rejects if this distance is less than 1/100. This shows that GapCVP . s is
in coNP (after appropriate rescaling).

The verifier starts by performing the following test: compute fy(v), as defined in (1), and reject
if it is at least, say, 1/2. We can do this because when the distance of v from L is greater than

11



V1, f(v) is exponentially small by Lemma 3.1 and hence fy(v) must be at most 1/poly(n) < 1/2
(assuming the witness W is chosen from f as it should be).

This verifier, however, is clearly not strong enough: the prover can ‘cheat’ by sending w;’s that
have nothing to do with f or with the lattice, and for which fw (v) is small even though v is within
distance 1/100 of the lattice. One might try to avoid such cheating strategies by verifying that
fw is close to f everywhere, or, alternatively, that the w;’s were indeed chosen from the correct
distribution f . It is not known how to construct such a verifier. Instead, we will show now a
somewhat weaker verifier. (This weaker verifier is what limits the proof to a gap of y/n and not
\/n/logn as one could expect given the properties of f stated in Lemmas 3.1/ and 13.2.)

To test the witness W, we verify that the w;’s ‘look like’ vectors chosen from f , according
to some simple statistical tests. We will later see that these tests suffice to provide soundness.
But what do vectors chosen from f look like? We identify two important properties. First, by
definition we see that all the w;’s are in £*. Second, it turns out that with high probability, for any
unit vector u € R™ it holds that + SN | (u,w;)? is bounded from above by some constant, say 3.
Intuitively, this follows from the fact that the length of the w;’s is roughly y/n and that they are
not concentrated in any particular direction (the proof of this fact is not trivial, and is based on a
lemma by Banaszczyk [6]).

Fortunately, the verifier can check these two properties efficiently. The first property is easy to
check by, say, solving linear equations. But how can we check the second property efficiently? It
seems that we have to check it for all unit vectors u. The main observation here is that we can
equivalently check that the largest eigenvalue of the n x n matrix W - W7, where W is the n x N
matrix whose columns are the vectors wq,...,wy, is at most 3NN. This can be done in polynomial
time by known algorithms for computing the eigenvalues of a matrix.

To summarize, the verifier performs the following three tests and accepts if and only if all of
them are satisfied:

(a) Checks that fy(v) < 1/2;
(b) Checks that W consists of vectors in the dual lattice £*;

(c) Checks that the maximal eigenvalue of the n x n positive semidefinite matrix WW7 is at
most 3N.

As mentioned above, if v is a YES instance, i.e., its distance from L is at least /n, then a
witness W chosen according to f satisfies all the tests with high probability. Hence completeness
holds. To complete the proof, we need to prove soundness. We will show that any witness W that
passes tests (b) and (c¢) must satisfy fy(x) > 1/2 for all  within distance 1/100 from the lattice.
In particular, if v is a NO instance, i.e., its distance from £ is at most 1/100, then test (a) must
reject.

To see this, we note that by the definition of fy,, the fact that W consists of vectors in L£*
guarantees that the function fy is periodic on L. Indeed, for any v € L,

(v + 2, wi) = (v, w;) + (z, w;)

with the first term being integer by the definition of a dual lattice. Hence, it suffices to show that
fw(z) > 1/2 for any z satisfying ||| < 1/100. For such z, the eigenvalue test implies that for

12



most i’s, [(x,w;)| is small. Therefore, for such z most of the cosines in the definition of fy () are
close to 1. This implies that fy(x) is greater than 1/2 and soundness follows. In more detail, let
x be such that ||z] < 1/100. Since test (c) accepts, we have that

N
1 s 1 4 . 1 3N 3
il N 2 Tww < 2T 2
N ; (@ w;)” = G = "N10000 ~ 10000

where the inequality follows by expressing « in the eigenvector basis of W7, Using the inequality
cosx > 1 — x2/2 (valid for any = € R) we get

N
1 N 672 1

4 Zero-Knowledge Proof Systems

The containments in NP, coNP, and coAM discussed in the previous sections can be stated equiv-
alently in terms of proof systems between a computationally unbounded prover and a polynomial
time verifier. For instance, Theorem 1.3 gives a proof system for coGapCVP . in which the prover
simply sends one message to the verifier who then decides whether to accept or reject. Similarly,
Theorem (1.4 gives a proof system for coGapCVP Jn/logn in which the prover and verifier exchange
a small number of messages. Finally, for any v, GapCVP, clearly has a proof system in which the
prover simply sends the nearby lattice point.

In addition to the usual requirements of completeness and soundness, one can ask for proof
systems that satisfy the zero-knowledge property. Intuitively, we say that a proof system is zero-
knowledge if in the case of a true statement the verifier learns nothing beyond the validity of the
statement. There are in fact two natural notions of zero-knowledge: the first is zero-knowledge
against honest verifiers, which are verifiers that obey the protocol but still try to extract some
information from the interaction. The second and stronger notion is zero-knowledge against all
verifiers, which says that even if the verifier deviates from the protocol he can still learn nothing
from the interaction with the prover.

Although for our purposes the above intuitive description suffices, let us mention that the formal
definition of zero-knowledge uses the notion of a simulator. Specifically, one says that a proof system
is (statistical) zero-knowledge against honest verifiers if there exists an efficient algorithm, known
as a simulator, that produces communication transcripts whose distribution is statistically close to
that of the actual transcripts of communication between the verifier and the prover. The existence
of such a simulator captures the intuitive idea that the verifier learns nothing from the interaction.
A similar definition exists for zero-knowledge against all verifiers. The concept of zero-knowledge
has led to many important developments in cryptography and complexity over the past two decades.
For the formal definition and further discussion see [30)].

Among the three proof systems mentioned above, the only one that is zero-knowledge is the
one by Goldreich and Goldwasser. (The other two are clearly not zero-knowledge since the verifier
receives the witness.) Indeed, consider the protocol described in Subsection 2.4/in the case of a true
statement, i.e., dist(v, £(B)) > /nd. Notice that the answer 7 received by the verifier is always
identical to his bit o. Hence, the verifier already knows the answer the prover is about to send him,
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and therefore can learn nothing from the protocol (beyond the fact that dist(v, L(B)) > y/nd). This
argument (once written formally) establishes that the Goldreich-Goldwasser protocol is a statistical
(and in fact perfect) zero-knowledge protocol against honest verifiers, or in complexity-theoretic
terms, that coGapCVPm
Zero Knowledge, or HVSZK. This protocol is not zero-knowledge against dishonest verifiers, since

is contained in a complexity class known as Honest Verifier Statistical

by deviating from the protocol a dishonest verifier can find out if certain points are close to the
lattice or not (which seems to be something he cannot do without the help of the prover). Still,
using the remarkable fact that HVSZK = SZK [30], we obtain that coGapCVPm € SZK, i.e.,
that coGapCVP JnTlogn has a zero-knowledge proof system that is secure also against dishonest
verifiers. Another truly remarkable fact regarding zero-knowledge proof systems is that SZK is
closed under complement [25, 30]. This implies that we also have that GapCVP T logn € SZK, i.e.,
there exists a zero-knowledge proof system that allows a prover to convince a verifier that a point
is close to the lattice.

4.1 Proof Systems with Efficient Provers

In the traditional complexity-theoretic definition of zero-knowledge protocols, the complexity of the
prover does not play any role. However, from a cryptographic standpoint, in order for these proof
systems to be useful the prover must be efficiently implementable. This gives rise to the following
question: do all problems in NP N SZK have a statistical zero-knowledge proof system in which the
prover can be implemented efficiently when given an NP witness? Note that without providing the
prover with an NP witness this task is clearly impossible. This is also the reason the question only
makes sense for problems in NP N SZK.

In the context of lattice problems, this question was raised by Micciancio and Vadhan [23], who
also made some progress towards answering the question for general problems in NPNSZK. Building
on their work, Nguyen and Vadhan [24] very recently gave a positive answer to the question: any
problem in NP N SZK has a statistical zero-knowledge proof system with an efficient prover. Their
protocol is secure even against dishonest verifiers.

From a theoretical point of view, Nguyen and Vadhan’s exciting result gives a complete answer
to our question. Yet, their construction is very complicated, and does not seem to yield protocols
that are efficient in practice. For this reason, we will now describe two examples of ‘practical’ proof
systems for lattice problems. Such direct constructions of proof systems with efficient provers have
applications in cryptography, as described in [23].

The first problem we consider is coGapCVP. As we have seen, coGapCVP 5 is in NP N SZK.
However, in the Goldreich-Goldwasser proof system, the prover is required to solve a non-trivial
problem, namely to tell whether a point x is within distance %\/ﬁd from L£(B) or within distance
$y/nd from v+ £(B) under the assumption that dist(v, £(B)) > y/nd. This seems like a hard prob-
lem, even when given the NP witness described in Section [3. However, the Goldreich-Goldwasser
protocol as described in Subsection 2.4/ does have an efficient prover if we consider it as a protocol
for the (easier) problem coGapCVP,,. Indeed, the prover’s task in this protocol is to tell whether
a point z is within distance £,/nd from £(B) or within distance 1/nd from v + £(B) under the
assumption that dist(v, £L(B)) > nd. Notice that in the latter case the distance of z from L£(B) is
at least nd — %\/ﬁd > nd/2. Hence, the gap between the two cases is at least y/n and therefore
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the prover can distinguish between them by using the witness described in Section [3. This proof
system, just like the original Goldreich-Goldwasser protocol, is secure only against honest verifiers.

The second problem we consider is GapCVP n- Here the prover’s task is to convince the verifier
through a zero-knowledge protocol that a point v is close to the lattice. An elegant protocol for
this task was presented by Micciancio and Vadhan in [23]. Their protocol is secure even against
dishonest verifiers, and in addition the prover’s strategy can be efficiently implemented given a
lattice point close to v. The main component in their protocol is given as Protocol 2. We use Dy
to denote the set of points that are within distance %\/ﬁd of the lattice £(B) and D; to denote the
set of points that are within distance 3+/nd of the shifted lattice v + £(B) (see Figure 2).

Protocol 2 Part of the Micciancio-Vadhan zero-knowledge protocol for GapCVP

1. The prover chooses uniformly a bit ¢ € {0,1} and sends to the verifier a point x chosen

‘uniformly’ from D, .
2. The verifier then challenges the prover by sending him a uniformly chosen bit 7.
3. The prover is supposed to reply with a point y.

4. The verifier accepts if and only if dist(z,y) < 1\/nd and y € v + L(B) (i.e., y is a lattice
point if 7 = 0 and a point in the shifted lattice if 7 = 1).

The soundness of this protocol is easy to establish: if dist(v, £(B)) > y/nd then the verifier
accepts with probability at most % no matter what strategy is played by the prover, since no point
 can be within distance %/nd both from £(B) and from v+ £(B). To prove completeness, consider
the case dist(v, £(B)) < d/10. Using a proof similar to the one of Lemma 2.3, one can show that
the relative volume of the intersection of two balls of radius %\/ﬁd whose centers differ by at most
d/10 is at least 0.9. This means that with probability at least 0.9, the point = chosen by the prover
from D, is also in Di_,. In such a case, the prover is able to reply to both possible challenges
and the verifier accepts. Notice, moreover, that the prover can be efficiently implemented if given
a lattice point w within distance d/10 of v: by adding or subtracting w — v as necessary, the prover
can respond to both challenges in case x falls in Dy N D;.

Unfortunately, Protocol 2| is not zero knowledge. Intuitively, the reason for that is that when
the prover is unable to answer the verifier’s challenge, the verifier learns that = is outside Dy N D1,
a fact which he most likely could not have established alone. We can try to mend this by modifying
the prover to only send points = that are in Dg N D;. This still doesn’t help since now the verifier
obtains a uniform point x in Dy N Dy, and it seems that he could not sample from this distribution
alone. (This modification does, however, allow us to obtain perfect completeness.)

Instead, the solution taken by [23] is to ‘amplify’ Protocol 2/ so as to make the information
leakage negligible. Instead of just sending one point z, the prover now sends a list of 2k points
x1,...,T9r each chosen independently as in the original protocol, where k is some parameter. The
verifier again challenges the prover with a random bit 7. The prover is then supposed to reply with
a list of points y1, ..., yax. The verifier accepts if and only if for all ¢, dist(z;, y;) < %\/ﬁd and y; is
either in £(B) or in v + £(B), and moreover, the number of y;’s contained in £(B) is even if 7 =0
and odd otherwise. The idea in this modified protocol is to allow the prover to respond to the
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challenge whenever there is at least one point x; that falls in Dy N Dy. This reduces the probability

of failure from a constant to an exponentially small amount in k. The soundness, completeness,

prover efficiency, and zero-knowledge property of the modified protocol are established similarly to

those of the original protocol. For further details, see [23].
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A NP-hardness

In this section we show that Theorem [1.3 implies that GapCVP v 1s unlikely to be NP-hard, even
under Cook reductions. One can also show that Theorem [1.4] implies that GapCVP N is
unlikely to be NP-hard. However, for simplicity, we show this only for a y/n gap. Our proof is
based on [22, [8, [10].

First, let us consider the simpler case of Karp reductions. If a problem in coNP is NP-hard
under a Karp reduction (i.e., there is a many-to-one reduction from SAT to our problem) then the

following easy claim shows that NP C coNP (and hence the polynomial hierarchy collapses).

Claim A.1 If a promise problem 1l = (HYES,HNO) 1s in coNP and is NP-hard under Karp
reductions, then NP C coNP.

Proof: Take any language L in NP. By assumption, there exists an efficient procedure R that
maps any z € L to R(z) € IIypg and any « ¢ L to R(x) € IINq. Since IT € coNP, we have an
NP verifier V' such that for any y € Iy there exists a w such that V(y,w) accepts, and for any
y € lIypg and any w, V(y,w) rejects. Consider the verifier U(x,w) given by V(R(z),w). Notice
that for all x ¢ L there exists a w such that U(z,w) accepts and moreover, for all x € L and all w
U(x,w) rejects. Hence, L € coNP. L

The case of Cook reductions requires some more care. For starters, there is nothing special
about a problem in coNP that is NP-hard under Cook reductions (for example, coSAT is such a
problem). Instead, we would like to show that if a problem in NP N coNP is NP-hard under Cook
reductions, the polynomial hierarchy collapses. This implication is not too difficult to show for total
problems (i.e., languages). However, we are dealing with promise problems and for such problems
this implication is not known to hold (although still quite believable). In a nutshell, the difficulty
arises because a Cook reduction might perform queries that are neither a YES instance nor a NO
instance and for such queries we have no witness.

This issue can be resolved by using the fact that not only GapCVP 5 € NP but also GapCVP, €
NP. In other words, no promise is needed in order to show that a point is close to the lattice. In
the following, we show that any problem with the above properties is unlikely to be NP-hard.
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Lemma A.2 Let II = (Ily g, IINg) be a promise problem and let IlyiayBE denote all instances
outside Iy UIIN . Assume that I1 is in coNP and that the (non-promise) problem II' = (Ily pgU
IMmavBE, IINg) s in NP. Then, if Il is NP-hard under Cook reductions then NP C coNP and the
polynomial hierarchy collapses.

Proof: Take any language L in NP. By assumption, there exists a Cook reduction from L to II.
That is, there exists a polynomial time procedure T that solves L given access to an oracle for II.
The oracle answers YES on queries in IIy/ng and NO on queries in IIn. Notice, however, that its
answers on queries from Ilyiaygg are arbitrary and should not affect the output of 7.

Since II € coNP, there exists a verifier V; and a witness wi(x) for every x € Il such that
Vi accepts (z,wi(z)). Moreover, Vi rejects (z,w) for any = € Ilypq and any w. Similarly, since
IT" € NP, there exists a verifier V5 and a witness wo(z) for every x € Ily-pg U IInayBE such that
Va accepts (z,wz(r)). Moreover, V3 rejects (z,w) for any x € Il and any w.

We now show that L is in coNP by constructing an NP verifier. Let ® be an input to L and let
T1,...,T be the set of oracle queries which T' performs on input ®. Our witness consists of k pairs,
one for each ;. For z; € Il we include the pair (NO,w:(z;)) and for z; € IIypg U IIayBE We
include the pair (YES, wa(z;)). The verifier simulates T’; for each query z; that T performs, the
verifier reads the pair corresponding to z; in the witness. If the pair is of the form (YES,w) then
the verifier checks that Va(x;, w) accepts and then returns YES to 7. Similarly, if the pair is of the
form (NO,w) then the verifier checks that Vj(z;, w) accepts and then returns No to 7. If any of
the calls to V; or V5 rejects, then the verifier rejects. Finally, if T' decides that ® € L, the verifier
rejects and otherwise it accepts.

The completeness follows easily. More specifically, if ® ¢ L then the witness described above
will cause the verifier to accept. In order to prove soundness, assume that ® € L and let us show
that the verifier rejects. Notice that for each query z; € Ilyj the witness must include a pair of the
form (No,w) because otherwise V2 would reject. Similarly, for each query z; € Ilypg the witness
must include a pair of the form (YES,w) because otherwise V; would reject. This implies that T
receives the correct answers for all of its queries inside Il U Ilypg and must therefore output
the correct answer, i.e., that ® € L and then the verifier rejects. )

We just saw that the promise problem GapCVP 7 is unlikely to be NP-hard, even under Cook
reductions. Consider now the search problem CVP ND where given a lattice basis B and a vector v,
the goal is to find a lattice vector w € £(B) such that dist(v, w) < y/ndist(v, £L(B)). This problem
is clearly at least as hard as GapCVP vn- Can it possibly be NP-hard (under Cook reductions)?
A similar argument to the one used above shows that this is still unlikely, as it would imply
NP C coNP. Let us sketch this argument. Assume we have a Cook reduction from any NP
language L to the search problem CVP . Then we claim that L € coNP. The witness used to
show this is a list of valid answers by the CVP /m oracle to the questions asked by the reduction,
together with a witness that each answer is correct. More precisely, for each question (B,v), the
witness is supposed to contain the vector w € L(B) closest to v together with an NP proof that
the instance (B, v, dist(v,w)//n) is a NO instance of GapCVP 5. Having the NP proof for each
answer w assures us that dist(v, w) < /ndist(v, £(B)) and hence w is a valid answer of the CVP
oracle.
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B Reducing GapSVP to GapCVP

Both Theorem [1.3| and Theorem 1.4 hold also for GapSVP. The following lemma shows this for
Theorem [1.3. A similar argument shows this for Theorem [1.4.

Lemma B.1 If for some 8 = ((n), GapCVP is in coNP then so is GapSVP .

Proof: Consider an instance of GapSVP given by the lattice £ whose basis is (b1, ...,b,) (in this
proof we use Definitions /1.1 and [1.2 with d fixed to 1). We map it to n instances of GapCVP 5 where
the ith instance, i = 1,...,n, is given by the lattice £; spanned by (b1,...,bi—1,2b;,bit1,...,by)
and the target vector b;. In the following we show that this mapping has the property that if £ is
a YES instance of GapSVPj then at least one of (L;,b;) is a YES instance of GapCVP; and if £ is
a NO instance then all n instances (L;,b;) are NO instances. This will complete the proof of the
lemma since a NO witness for £ can be given by n NO witnesses for (£;, b;).
Consider the case where L is a YES instance. In other words, if

u = aib; + asby + -+ + apby,

denotes the shortest vector, then its length is at most 1. Notice that not all the a;’s are even for
otherwise the vector u/2 is a shorter lattice vector. Let j be such that a; is odd. Then the distance
of b; from the lattice £; is at most ||ul| < 1 since b; + v € L;. Hence, (L£;,b;) is a YES instance
of GapCVP3. Now consider the case where £ is a NO instance of GapSVPy, i.e., the length of the
shortest vector in £ is more than §. Fix any ¢ € [n]. By definition, b; ¢ £; and therefore for any
w € L; the vector b; —w # 0. On the other hand, b; — w € £ and hence ||b; — w|| > §. This shows
that d(b;, £;) > 3 and hence (L;,b;) is a NO instance of GapCVP . (0
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